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Abstract: A comparative analysis of intramolecular dynamics of four types of isolated dendrimers
from the fourth to the seventh generations belonging to the siloxane and carbosilane families, differing
in spacer length, core functionality, and the type of chemical bonds, has been performed via atomic
molecular dynamics simulations. The average radial and angular positions of all Si branching atoms
of various topological layers within the dendrimer interior, as well as their variations, have been
calculated, and the distributions of the relaxation times of their radial and angular motions have
been found. It has been shown that the dendrons of all the dendrimers elongate from the center and
decrease in a solid angle with an increasing generation number. The characteristic relaxation times of
both angular and radial motions of Si atoms are of the order of a few nanoseconds, and they increase
with an increasing generation number and decrease with temperature, with the angular relaxation
times being larger than the radial ones. The relaxation times in the carbosilanes are larger than those
in the siloxanes. The rotational angle dynamics of the carbosilane dendrimers show that the chain
bending is mainly realized via trans-gauche transitions in the Si branching bonds.

Keywords: dendrimers; siloxane dendrimers; carbosilane dendrimers; molecular dynamics
simulations; intramolecular dynamics

1. Introduction

Dendrimers are hyperbranched molecules with a regular structure [1–3]. Their behavior is
unique due to the specific organization of their molecular structure, high monodispersity, and high
functionality. Recent progress in chemical synthesis has allowed one to reach a large variety of
dendrimer compositions [4–13] available for various envisioned applications in different areas of
physics [6,7], chemistry [8,9], biology, and medicine [10–13].

Along with single dendrimers in dilute solutions [14–23], much attention is attracted nowadays
to concentrated solutions and melts [24–34], where intermolecular interactions of dendrimer molecules
are significant. It is expected that the tree-like molecular morphology of dendrimers would distinguish
their behavior from that of conventional linear polymers. Indeed, a number of novel unusual
phenomena has recently been observed in dendrimer melts that do not have any strict fundamental
description. One such phenomenon is an unprecedented jump in the viscosity of high-generation
carbosilane dendrimer melts [31]. It has been found that while low-generation dendrimer melts
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are Newtonian liquids, high-generation dendrimers demonstrate solid-like behavior. The transition
between these states is very sharp; it is realized within one generation step (from the fifth to the sixth
generation), and it is accompanied by a six-orders-of-magnitude jump of the melt viscosity [31]. The
dendrimer specificity also manifests itself in NMR spectra of melts of polybutylcarbosilane dendrimers
from the fourth to the sixth generation [32]; in particular, the spectrum of the generation-6 (G6)
dendrimers is characterized by a single unresolved broad line in the whole temperature range above
the glass transition temperature, which suggests the presence of an anomalous phase state of G6
dendrimers with restricted molecular mobility. A similar anomalous phase state has been detected in
generation-5 (G5) dendrimers at enhanced temperatures above 473 K [32]. The physical reason for this
behavior is still unclear, and further studies are needed.

In this respect, computer simulations are a powerful tool to elucidate the impact of the
dendrimer structure on their unusual properties. In particular, computer simulation studies of
polybutilcarbosilane dendrimers of various generations in bulk have recently been performed [33,34]
to find the microscopic origin of the experimental observations of the liquid-to-solid transition in
these systems. An atomistic model developed in [34] has provided a rather good agreement of
the simulation results with the available experimental data; in particular, on a weak dependence
of the melt density on dendrimer generation, the values of the thermal expansion coefficients and
self-diffusion coefficients, as well as the heat capacity at the plateau region, near room temperature.
However, the performed structural analysis has not yet allowed us to find any qualitative differences
between low- and high-generation dendrimers and to make any conclusions on the physical nature
of the experimentally observed phenomena. The further development of this work is envisioned in
two directions. First, investigations of the melt dynamics are needed, and they are currently under
development. Second, an expansion of the research to other systems with a closer but different structure
seems to be promising. The latter can help to find common features in the behavior of the dendrimers
owing to their tree-like architecture. Polymethylsilsesquioxane dendrimers are good candidates for
this purpose, because they do not have any specific chemical groups in their composition and are
characterized by a low energy of interchain interactions as are the carbosilane dendrimers. We have
already studied the structural characteristics of two homologues series of trimethylsilyl derivatives of
polymethylsilsesquioxane dendrimers [35]. An analysis of the radial mobility of their terminal groups
has shown that long trajectories of tens of nanoseconds are required for a proper study of dendrimer
intramolecular dynamics.

In this paper, we focus on the comparative study of the dynamics realized in single siloxane
and carbosilane dendrimer molecules of the fourth to the seventh generation. There is little research
on intramolecular dynamics in dendrimers. One should mention a few studies considering the
orientational segmental mobility within the coarse-grained approaches [36–39] and semi-atomic
studies of the local conformational mobility of dendrimer units for carbosilane dendrimers of the
fifth generation [40,41]. In this paper, we study two types of siloxane dendrimers, which differ by the
length of the spacers, and two types of the carbosilane dendrimer with different functionality of the
core atom. The importance of this research is twofold. First, it gives some insight into the effect of the
structural parameters of the dendrimers on the local dynamics of their branching atoms. Second, the
obtained results would serve as a basis for future investigations of the local dynamics in their melts.

2. Materials and Methods

In this section, we describe in detail the structure of the dendrimers under study, the method of
simulation, as well as the approaches to the analysis of the intramolecular dendrimer dynamics.

2.1. Dendrimer Structures

We model two families of silicone-containing dendrimers, each of them is represented by two
types of dendrimer molecules with different molecular structures. The first family is of siloxane nature,
their representatives are shown in Figure 1a,b. Both of them have a trifunctional Si-(CH3) core and
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trifunctional branching Si atoms, while the terminal segments are methyl groups. The difference is
in the length of spacers. The siloxane dendrimers of the first type have short -O- spacers (Figure 1a),
while the spacers -O-Si(CH3)2-O- of the second-type of siloxane dendrimer are longer (Figure 1b).
For convenience, we denote the siloxane dendrimers with the shorter and longer spacers as s- and
l-dendrimers, respectively.
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Figure 1. The structure of the first generations of the dendrimers under study. (a) siloxane
dendrimers with shorter spacers (s-dendrimers), (b) siloxane dendrimers with longer spacers
(l-dendrimers), (c) polybutylcarbosilane dendrimers with three-functional Si core atoms (c3-dendrimers)
and (d) polybutylcarbosilane dendrimers with tetrafunctional Si core atoms (c4-dendrimers).

The second family under study consists of similar carbosilane dendrimers with -(CH2)3- spacers
and -(CH2)3-CH3 terminal groups but belonging to the different homologue rows with three-
and tetrafunctional Si core atoms. The structure of the first-generation carbosilane dendrimers is
schematically shown in Figure 1c,d, respectively. We shall use the abbreviations c3-dendrimers and
c4-dendrimers for these two types of carbosilanes.

Thus, the object of our study are four types of dendrimers, which can be divided into three pairs
for a reasonable comparison. First, a comparative analysis of two siloxane dendrimers can give us some
information on the effect of the spacer length on the dendrimer behavior. Investigations of equilibrium
properties of these dendrimers have been performed in [35]. Here, we focus on some differences in
their dynamic behavior. Second, the siloxane l-dendrimers and carbosilane c3-dendrimers have almost
identical spacer lengths but differ in chemical composition and thus in the type of chemical bonds.
One can expect that the different rotational mobility of Si-O and Si-C bonds would contribute to the
distinct dynamics of the corresponding dendrimers. Finally, the two carbosilane c3- and c4-dendrimers
differ in the core functionality defining the density of their molecular structures and thus the main
features of their intramolecular dynamics.

To specify the generation number of a particular dendrimer under discussion, we use the notation
Gi, where i is the generation number.
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2.2. Model

We perform molecular dynamics simulations of dendrimer molecules within the PUMA software
package [42,43]. The siloxane dendrimers are modeled by the polymer consistent force field (PCFF) [44],
while the AMBER force field [45,46] is used in the simulations of carbosilane dendrimers. The AMBER
force field is an appropriate one for simulations of carbon-chain polymers; however, it does not contain
potentials for modeling Si-O bonds, which are supported by the PCFF. To make a comparison between
these two families of dendrimers feasible, the interaction parameters for the siloxane dendrimers
were taken from the PCFF in the same functional forms as in the AMBER force field. We believe that
the substantially different type of Si-O bonds in the siloxane dendrimers plays a major role in their
dynamics and determines the major differences with the carbosilane dendrimers. Potentials describing
bond stretching and bond bending are accounted for in both dendrimer families, and the potential
of the dihedral angle rotation around the equilibrium values is additionally used for the carbosilane
dendrimers. Non-bonded interactions are expressed via the Lennard-Jones (LJ) potential with the
cutoff distance set to 1.05 nm. In addition, electrostatic interactions arising from partial charges on the
constitutive atoms are also taken into account. Contributions to the partial charges on the atoms from
redistributions of charges via covalent bonds are taken from the PCFF. Coulomb interactions between
atoms with partial charges qi and qj at the distance rij are calculated using the screened Coulomb
potential as follows:

Uq
(
rij
)
=

qiqj

rij
Wq
(
rij
)
. (1)

The screening function is as follows:

Wq(r) =


(

1 − r
Rq

)2
, r < Rq

0, r ≥ Rq
(2)

where Rq is the screening radius. Its value is chosen to be equal to the cutoff distance of the LJ potential.
Tables S1−S5 in the Supplementary Materials provide all the main parameters of the potentials

for the siloxane and carbosilane dendrimers. The same values have also been used in [34,35].
Within the accepted model, we effectively simulated isolated dendrimers in a vacuum. They could
serve as a reference system for further simulations of the melts of these dendrimers. Moreover, at
room temperature, the adopted values of the interaction potentials roughly describe the dendrimer
conformations in a poor solvent. At enhanced temperatures, the dendrimer is expected to swell,
because the attractive part of the Lennard–Jones potential becomes insignificant; however, it should be
mentioned that this swelling could be different from that in an explicit solvent.

The details of the preparation of the initial non-overlapping dendrimer conformations with
correct values of the bond length and valence angles are described elsewhere [40]. Standard
molecular dynamics (MD) techniques with a collisional thermostat [47,48] were used for the system
relaxation. The elementary integration step was 0.002 ps. The results of our previous work [35]
clearly demonstrated that the relaxation of the dendrimer macroparameters is reached after 3 ns
for all the generation numbers; in particular, all the potential energy contributions, as well as the
radius of gyration or the shape factor, are completely equilibrated. Thus, in this study, equilibration of
dendrimers from the fourth up to the seventh generation was performed for 6 ns at T = 600 K. Then,
long trajectories of up to 100 ns (200 ns for the generation-7 (G7) s-dendrimers) were obtained for all
the types of dendrimers. It has been shown in [35] that a complete mixing of the atoms within the
dendrimer interior takes place during 30–80 ns depending on the generation number (i.e., the atoms
belonging to the same topological layer became indistinguishable from the point of view of the radial
and angular types of motion).

On this long trajectory of 100 ns, the autocorrelation functions for the radial and angular
displacements of each Si atom were obtained (see below), and the time necessary for an objective
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analysis of the corresponding autocorrelation functions was estimated. Thus, to study dynamic
characteristics and to calculate relaxation time distributions (described in more detail below),
8 independent samples of each dendrimer type and every generation were simulated at 300 K and
600 K, with the time trajectories of 30 ns, after equilibration for 6 ns, in order to collect more complete
statistics. Ensemble averaging was performed for the evaluation of relaxation time distributions.

2.3. Radial and Angular Mobility

To study the dendrimer intramolecular dynamics, we decompose the movement of each branching
Si atom into radial and angular ones. The radial motion is described by the atom displacements from
the center and toward the center of the dendrimer along its radius (i.e., by the time evolution of the
distance R from a particular Si atom to the core one).

The angular motion of Si atoms is described by the dynamics of the angle Ω between two vectors
drawn (i) from the central atom to the atom under consideration and (ii) from the central atom to the
center of mass of the dendron to which the atom belongs (see Figure 2). This method was chosen to
unambiguously exclude the effect of a possible rotation of the dendrimer molecule as a whole. It should
be noted that the average value of the angle Ω and its dispersion can give us some information on
the degree of dendron mixing within dendrimer molecules and allow a qualitative comparison of
dendron interpenetration in dendrimers of various generation numbers and structures. In particular,
a decreasing Ω together with its dispersion indicates a weaker overlap of dendrons. The degree of
dendron mixing can also be estimated via snapshot visual analysis. Snapshots of G6 s- and l-dendrimer
molecules presented in Figure 2b,c demonstrate that the dendrons overlapping in these molecules are
small (snapshots of the other dendrimers are shown in Figure S1 of the Supplementary Materials).
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Figure 2. Schematic representation of the angle used to characterize the angular motion of Si branching
atoms. The green color indicates the Si atom being studied, and the red square indicates the center of
mass of the corresponding dendron (a). A balanced molecule of generation-6 (G6) s-dendrimer (b) and
l-dendrimer (c). The different colors in (b,c) are painted atoms belonging to different dendrons.

It should be stressed that the averaging time is fundamentally important for the calculation
of the radial and angular position averages. This fact is clearly demonstrated in Figure 3, where
the snapshots of the positions of the two terminal Si atoms belonging to the same branching layer
but different branches of a generation-7 (G7) l-dendrimer are shown for 1-ns and 10-ns trajectories.
Different atoms of one branching layer, or one topological distance, have completely different radial
and angular mobility on the shorter trajectory. In particular, after 1 ns of the system evolution, the
radial displacement of the atoms shown by the yellow is very small in comparison with the one of the
red atoms. They have also different angular mobility. Our measurements show that the characteristic
times necessary for all the atoms to become indistinguishable from the point of view of these statistics
are tens of nanoseconds, which is an order of magnitude higher than the relaxation time of the molecule
as a whole (in particular, the relaxation times of the gyration radius of the carbosilane and siloxane
dendrimers were calculated in [34,35], respectively). Indeed, one can see in Figure 3b that after 10 ns,
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the areas covered by the red and yellow atoms in the course of their motion are practically identical.
The radial mobility of the terminal groups of siloxane dendrimers has been studied in [35], where it
has already been mentioned that there are different populations of terminal groups with enhanced and
reduced radial mobility. In this paper, we show that a similar situation takes place with carbosilane
dendrimers; furthermore, tens of ns are needed not only for radial but also for angular mixing.
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l-dendrimer, during 1 ns (a) and 10 ns (b). The central atom of the dendrimer is painted blue.

It should be mentioned that the interpretation of the behavior of the dendrimer as a sequence of
spherical layers with different dynamics has been described in [36] within a coarse-grained approach.

2.4. Autocorrelation Functions and Relaxation Time Distributions

The autocorrelation functions were used to study the characteristic relaxation times of the radial
and angular motions of all the Si atoms excluding the core one. The autocorrelation functions were
calculated according to the following expression:

A(t) = (<δX(t)·δX(0)>)/(<δX2>) (3)

with
δX(t) = X(t) − <X> (4)

where X is either the radial coordinate R or the value of the angle Ω of the atom being studied.
The autocorrelation functions can be nicely fitted by one exponential function. Thus, the relaxation

time is defined as the time at which A(t) reaches the value of 1/e. As an example, an angular
autocorrelation function of a terminal group of the G6 s-dendrimer and its exponential fitting are
shown in Figure 4a. In this particular case, the characteristic relaxation time is about 490 ps.

Relaxation times of the radial and angular motions of all Si atoms for all types of siloxane
and carbosilane dendrimers of the fourth to the seventh generations were calculated from the
autocorrelation functions. Relaxation time distributions for Si atoms belonging to a particular
branching layer were obtained via averaging over all the atoms of the same branching layer and
over eight ensembles of dendrimers. As an example, the corresponding distribution calculated for the
third layer of the fourth generation of the s-dendrimer is shown in Figure 4b. Given the large number
of histograms, we will further analyze the dynamics of Si atoms using mean values of relaxation times
together with the corresponding variances.

Furthermore, we have analyzed the dynamics of the torsional angles of all the dendrimers
under study.
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the generation-6 (G6) s-dendrimer. The green line indicates the value of 1/e. (b) The example of the
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calculated at 300 K. The solid and dashed curves show distributions of relaxation times for the radial
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3. Results and Discussion

3.1. Radial and Angular Positions of Si Branching Atoms

Let us discuss first the results on the radial and angular motion of the Si atoms within the
dendrimer molecules of various types.

In Figures 5–7, we plotted the average radial distance, <R>, of Si atoms from the dendrimer
core, and the average angle, <Ω>, of Si atoms with respect to the center of mass of the corresponding
dendrons, as well as their variations, versus the number of the branching layers to which the Si atoms
belong, calculated for the all the types of dendrimers of various generations on 100 ns trajectories
at 600 K. As has been mentioned above, the time of 100 ns is long enough for the Si atoms of each
layer to be almost indistinguishable in their mobility characteristics, and the averaging was performed
within each branching layer. For the reasonable comparison, we sorted out the results into three series.
In particular, Figure 5 shows the corresponding dependences for the s- and l-dendrimers differing by
the spacer length. Figure 6 demonstrates the effect of the chemical nature of the dendrimer molecules
through the comparison of l- and c3-dendrimers, while the results for c3- and c4-dendrimers shown
in Figure 7 allow us to make some conclusions on the influence of the core atom functionality. The
corresponding plots of another indicative characteristic, which is the difference between the maximum
and minimum values of the radial distance (and angle), Rmax–Rmin, (and Ωmax–Ωmin) are presented in
the Supplementary Materials, Figures S2–S4.

First of all, one can see in Figures 5–7 that the Si atom behavior was qualitatively quite similar
for all the types of dendrimers. In particular, with increasing the generation number, the average
radial position of Si atoms realized within a given branching layer increased, while the average angle
decreased. At the same time, the allowable value corridor (i.e., the difference between the maximum
and the minimum values of the radial position), as well as the angle, became narrower. We directly
looked at the maximum and minimum values of these parameters, and we concluded that the radial
corridor was compressed to the maximum values and the angular one to the minimum values. This
means that the dendrons were stretched from the center and squeezed in the solid angle. An enhanced
angular mobility of Si atoms of generation-4 (G4) s-dendrimers (Figure 5b,d) was due to the absence of
any significant excluded volume restrictions. The space-filling effect was not yet manifested for this
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dendrimer with the small number of atoms. It should also be noted that the variations of both R and Ω
stayed rather small for two internal layers of all generation dendrimers, except for G4 s-dendrimers,
and then started to grow rather rapidly. The variation of R increased more rapidly for high generation
dendrimers, while the Ω variation growth slowed down with the generation number (i.e., the angular
mobility of the outer layers decreased with generation). Visual examination of the movement of a
given dendrimer chain from the core atom to one of the terminal groups indeed showed that the
Si atoms of a few internal topological layers just slightly fluctuated around their average positions,
while the bending of the chain usually occurred starting from the third topological layer (snapshots of
bent and stretched conformations of a G7 l-dendrimer chain are shown in Figure 8, while the movie
demonstrating its movement is available in the Supplementary Materials, Video S1). This conclusion
was also supported by a sharp increase of DΩ at the third layer (G = 3 in Figure 5d), as well as by
the distributions of the Si branching points belonging to various layers with respect to the dendrimer
center of mass calculated in [35]. The maxima of the distributions for the Si atoms belonging to the
first two layers were well separated, while some layer mixing occurred starting from the third layer.
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Figure 5. (a) The average distance, <R>, of the Si branching atoms to the core atom, (b) the average
angle, <Ω>, between the Si atom and the center of mass of the dendron (c) the square root of the R
dispersion, DR, and (d) the square root of the Ω dispersion, DΩ, calculated for s-dendrimers (solid lines)
and for l-dendrimers (dashed lines).
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Figure 6. (a) The average distance, <R>, of the Si branching atoms to the core atom, (b) the average
angle, <Ω>, between the Si atom and the center of mass of the dendron (c) the square root of the
R dispersion, DR, and (d) the square root of the Ω dispersion, DΩ, calculated for c3-dendrimers
(solid lines) and for l-dendrimers (dashed lines).

If we look at the positions of the terminal groups in Figures 5–7, one can see that their radial
distance from the core naturally increased with the generation number and so did the dispersion
of R and the value of Rmax–Rmin. This fact corresponds well to the well-known backfolding
phenomenon [20]. The angular behavior of the terminal groups with the generation number was
quite different; namely, the average value stayed practically constant, but its variation and Ωmax–Ωmin

decreased considerably with G. The latter fact was more pronounced for the carbosilane dendrimers.
The tendencies mentioned above were typical for all the dendrimers under study; however, the

absolute values of the corresponding parameters depended on the dendrimer structure. In Figure 5,
one can see that the increase of the spacer length caused some increase of <R> value for all branching
layers but had a minor effect on the average angle except for the G4 dendrimers. On the other hand,
the variations of both parameters grew considerably for l-dendrimers (i.e., the longer spacer gave more
freedom for Si atoms in both angular and radial motions). It is natural that the largest difference was
realized for the outer layers.
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Figure 7. (a) The average distance, <R>, of the Si branching atoms to the core atom, (b) the average
angle, <Ω>, between the Si atom and the center of mass of the dendron (c) the square root of the
R dispersion, DR, and (d) the square root of the Ω dispersion, DΩ, calculated for c3-dendrimers
(solid lines) and for c4-dendrimers (dashed lines).
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Figure 8. Two instant conformations (a,b) of one isolated linear chain of the generation-7 (G7)
l-dendrimer, from the core Si atom to the terminal group, taken within an interval of 100 ps. The Si
branching atoms are numbers from the core.

The c3- and l-dendrimers were expected to have a comparable length of the spacers but different
bond structures; thus, one can see in Figure 6 that indeed, the average radial positions of Si atoms
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were practically the same in these two types of dendrimers with <R> being a bit smaller for the
c3-dendrimers. However, the difference in the average angle and especially in the angle variation was
rather big. The inner layers of the carbosilane c3-dendrimers have more angular mobility. Perhaps this
difference was due to the presence of two methyl groups on the Si atom in the center of the l-dendrimer
spacers, which occupied some additional volume, caused some stretching of the spacers, and slowed
down the mobility of the branching atoms.

Comparing c3- and c4-dendrimers (Figure 7), one can conclude that the increase of the core
functionality caused some stretching of the branching layers, a decrease the radial fluctuations of the
branching Si atoms, as well as a decrease of their angular mobility due to some growth of the molecular
structure density.

In Table 1, we summarize the results on the radial and angular parameters obtained for the
terminal groups of the sixth generation of each type of dendrimers. One can see that s-dendrimers,
with spacers twice as short as those of the other dendrimers, had a smaller <R> value. On the other
hand, l-, c3-, and c4-dendrimers had very close radial characteristics; the larger differences were in their
angular behavior. The largest value of Ω, as well as its variation, were realized for the c3-dendrimer.
For the c4-dendrimer, the angular motion was limited due to the increased amount of dendrons while
the slowing in the angular mobility within the l-dendrimers could be caused by some additional
restrictions due to the presence of two methyl groups in their spacers.

Table 1. Mean values, the root of the dispersion, and the difference between the maximum and
minimum values for the end groups of the sixth generation.

Characteristics s-Dendrimer l-Dendrimer c3-Dendrimer c4-Dendrimer

<R>, Å 13.0 20.0 19.3 20.8
DR, Å 2.5 4.7 4.7 4.8

Rmax−Rmin, Å 12.7 25.6 25.4 25.8
<Ω>, deg. 46.9 47.7 48.0 42.7
DΩ, deg. 18.9 21.6 22.7 19.4

Ωmax−Ωmin, deg. 109.3 145.3 152.3 130.6

As for the dendrons themselves and the dynamics of the angle between them, it was determined
by the symmetry and steric constraints. Accordingly, with increasing generation, the magnitude of
the fluctuations decreases. For example, for all dendrimers with a three-functional core, the values of
the angles between the dendrons fluctuated about 120 degrees. The fourth generation had the largest
spread, up to 30 degrees, and the values themselves were slightly lower. For the seventh generation,
the deviations were very small, only a few degrees. For the c4-dendrimers, there were six angles
between the dendrons, and they could be divided into two “big” and four “small” ones. Changes
in these angles were clearly correlated with each other. The correlation coefficients were calculated
from the time dependences of all the angles presented in the Supplementary Materials, Figure S5. The
values of the correlation coefficients for the dendrons with the in-phase and anti-phase movements
within the G7 c4 molecules were in the range of 0.41–0.56 and −0.12–−0.7, respectively. As for the
deviations, their behavior was identical to the other types of dendrimers, but for “big” angles, the
corresponding values were several degrees higher. The characteristic values were 27 degrees for the
fourth generation and 8 degrees for the seventh generation. We should also note that the dynamics
of these angles do not show so much the movement of a branch as a whole but rather a constant
redistribution of mass inside the dendron.

3.2. Relaxation Time

As it was mentioned in Section 2.4, it is convenient to perform the analysis of the relaxation
time distributions for the radial and angular motion of Si atoms through their mean values, τ, and
dispersions, Dτ. They were calculated for all the types of dendrimers under study. In Figure 9, we
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plotted the corresponding graphs for the G6 dendrimers in the same comparative way as in the
previous section. In particular, we compared the mean relaxation times for the s- and l-dendrimers
(Figure 9a,b), for the l- and c3-dendrimers (Figure 9c,d), and for the c3 and c4-dendrimers (Figure 9e,f).
The corresponding plots for the dendrimers of all other generation numbers can be found in the
Supplementary Materials, Figures S6–S8.
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Figure 9. Dependences of the mean relaxation times (left column) and their variations (right column)
for the radial (blue) and angular (red) motion of Si branching atoms on the branching layer number for
the six generation of s- (solid line) and l-dendrimers (dashed line) (a,b); l- (solid line) and c3-dendrimers
(dashed line) (c,d); and c3- (solid line) and c4-dendrimers (dashed line) (e,f), at 300 and 600 K.
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First of all, it is worth noting that the variations of τ were very large, being even comparable with
the mean values themselves, indicating a fairly broad nature of the distributions. Second, for all the
types of molecules, the relaxation of the angular motion was slower than the radial one. Third, the
characteristic relaxation times of all Si atoms increased with an increasing generation number and
also from the core layer to the periphery. Nevertheless, the periphery itself (one or more terminal
layers) relaxed more rapidly, which was especially noticeable for the siloxane dendrimers. As a
result, most of the τ dependences had a maximum located at the intermediate branching layers. This
maximum shifted to the terminal layer with an increasing dendrimer generation. Finally, an increase
in temperature accelerated relaxation, but for large generations of siloxane dendrimers, this effect was
less pronounced or reversed, as in the case of the G7 s-dendrimer. Perhaps, this later fact is due to the
very stressed conformations of the G7 s-dendrimer (the conformational analysis has been performed
in [35]).

It is worth noting that the characteristic order of the relaxation times was fundamentally different
in case of siloxane and carbosilane dendrimers. If we compare the sixth generations, the mean
relaxation time of the Si atoms belonging to the first two layers of both the s- and l-dendrimers was
very low, while it was larger than 500–1000 ps for the carbosilane molecules. It should be noted that
different force fields were used for modeling of siloxane and carbosilane dendrimers; however, owing
to the same functional form of the potentials and a proper parametrization, we cannot expect that this
fact significantly affected their comparative dynamics. The difference in relaxation times for siloxane
and carbosilane dendrimers was due to the different nature of the chemical bonds in these two types
of molecules rather than any impact of the force fields used.

3.3. Rotational Angle Dynamics

In addition, we performed the analysis of the rotational angle dynamics for all the types of
dendrimers. To characterize the conformational mobility of the bonds, we calculated the frequency of
the transitions between the trans and gauche isomers. For each torsion angle, the whole angular space
was divided into three equal regions near the energy minima. We considered that a transition between
the trans and gauche states (between neighboring angle regions) takes place if the bond remains in the
new state (new angle region) longer than 0.4 ps.

Due to the difference of the bond nature in the carbosilane and siloxane dendrimers, the rotational
dynamics of bonds is quite different for these two dendrimer families. Let us discuss first the
carbosilanes. In Figure 10, we plotted the average frequency of the transitions between the trans
and gauche conformations for all the dendrimer bonds of the G4–G7 c3-dendrimers (the corresponding
plots for the other dendrimers are shown in Figure S9 of the Supplementary Materials). The averaging
was performed among all the bonds corresponding to a given topological distance from the core Si
atom. One can see a clearly expressed alternation of the values of this quantity along the topological
distance. Two subsequent smaller values corresponded to the C-Si and Si-C consecutive bonds, which
were less mobile than the C-C bonds, demonstrating a higher frequency of transitions between the
rotational states.

This conclusion is confirmed by the angle distributions around the Si-C and C-C bonds
(an example of this distribution for the generation-5 (G5) and G7 c3-dendrimers is shown in Figure 11,
the corresponding plots for the other generations can be found in the Supplementary Materials,
Figures S10 and S11), as well as their time evolution demonstrated in Figure 12 by two arbitrarily
chosen angle trajectories. One can see that the probabilities of the trans and gauche conformations of
the Si-C bonds of the G5 dendrimer were practically equal (Figure 11a). Indeed, Figure 12a shows that
these bonds experienced multiple transitions between the trans and gauche states, but the lifetime in
each state was rather long. On the contrary, C-C bonds stayed primarily in the trans conformation
but jumped frequently to the gauche conformation; as a result, the angle distribution function had
the highest maximum at 180◦ and a small one at around 90◦. The transitions between the trans
states through a gauche state, as shown in Figure 12b, were very rare. They were realized only in
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4% of trajectories. Thus, one can expect that any bending of the chains took place predominantly via
trans-gauche transitions of bonds belonging to the branching Si atoms. Similar behavior was realized
in the case of the c4-dendrimers (see the Supplementary Materials, Figure S12).
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Figure 12. Time evolution of the rotational angles around the Si-C bonds (a) and around the C-C bonds
(b) for sixth layer of the c3-dendrimers of the sixth generation.

While for the G4–G6 dendrimers the probabilities of trans and gauche conformation realizations
were nearly equal, the relative height of the two maxima of the angle distribution functions was slightly
different for the seventh generation of both the c3- (Figure 11c) and c4-dendrimers (Figure S11 in the
Supplementary Materials), the rotational angles around the Si-C bonds, which were located after the Si
branching point (if we count from the core) in the second and third branching layers, stayed in the
trans conformation more often. Also, the C-C bonds of the first and the second topological layers were
predominantly in the trans state.

It should also be mentioned that while the mobility of the internal bonds stayed practically
constant, the terminal segments appeared to be much more mobile. The frequency of the
conformational transitions grew tremendously for two C–C bonds within the methylene terminal
segments (Figure 10).

Let us now discuss the rotational mobility of the siloxane dendrimers. Their rotational angles
were not so well distinguished as those in the carbosilanes; thus, to study their rotational mobility,
we calculated the frequency of transitions through 120◦. The corresponding plot for the l-dendrimers
of various generation numbers is shown in Figure 13b. It resembles the graph in Figure 10 obtained
for the c3-dendrimers; however, one can see that the frequency values were much higher for the
l-dendrimers. As in the c3-dendrimers, the bonds belonging to the branching Si atoms showed smaller
conformational transition frequency than those within the spacers.
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The rotational mobility of the bonds of the inner part of the G6–G7 s-dendrimers was considerably
suppressed (see Figure 13a), perhaps due to some stretching of the first one or two layers in the sixth
and seventh generations. The frequency of the trans-gauche transitions for the bonds of the peripheral
layers was as high as that in the l-dendrimers. The highest mobility was realized in the G4 s-dendrimer;
it grew fast from the core to the terminal segments.

4. Conclusions

In summary, a full-atomic molecular dynamics simulation of the siloxane and carbosilane
dendrimers from the fourth up to the seventh generation was carried out to examine the effects
of the chemical nature of the bonds, the spacer lengths, and the core functionality on the intramolecular
dynamics. The latter was analyzed in terms of the radial and angular displacements of each branching
point and the relaxation time spectrum of the radial and the angular motion of the Si branching atoms,
as well as the dynamics of the rotational angles belonging to all the bonds of the molecules.

It has been shown that all the dendrimer molecules have some similarities in dynamic behavior.
In particular, the dendrons became stretched from the center and decreased in a solid angle with
increasing generations. The characteristic relaxation times of the both angular and radial motion
increased with increasing generations, with the angular relaxation times being larger than the radial
ones. At that, the branching atoms within the intermediate layers relaxed more slowly than those that
were close to the core and to the periphery of the dendrimer molecule. Furthermore, the relaxation
became faster with enhanced temperatures. It should be stressed that the relaxation time distributions
of the majority of the branching layers were very broad with the variation comparable to the mean
value, that is, of the order of a few nanoseconds. However, the Si branching atoms of the two first
layers, which were the closest to the core, only slightly fluctuated around their average positions, and
considerable radial and angular displacements of the Si atoms were realized starting from the third
topological layer leading to the backfolding of dendrimer branches.

Comparing the behavior of all the dendrimers under study, one can also find some differences.
In general, the dendrimers of the siloxane family relaxed faster than the carbosilane molecules. The
s-dendrimers were the most compact among all the dendrimers under study. They had the smallest
angular mobility and well-pronounced boundaries between their dendrons. An increase in the spacer
length of the siloxane dendrimers gave rise to an enhanced freedom of Si atoms in both the angular
and radial motions, which was the best manifested for the Si branching points belonging to one–two
terminal layers. The l-dendrimers demonstrated a better mixing of their dendrons in comparison with
the s-dendrimers.

The c3-dendrimers were slightly more compact but had a higher angular mobility than did the
l-dendrimers in spite of the comparable length of their spacers. This could be caused by the presence
of two methyl groups on the Si atoms of the siloxane spacers. However, the relaxation times of both
the angular and radial motions were larger for the carbosilanes. An increase of the core functionality
made the Si atoms of the c4-dendrimers less mobile; however, the relaxation time of their inner layers
became smaller.

There was an unambiguous difference in the rotational mobility of the bonds belonging to the Si
branching atoms of the carbosilane dendrimers and those of the spacers. While the frequency of the
transitions between the trans and gauche states was higher for the spacer bonds, the bending of the
chains took place mainly through rotational isomerism of the Si branching atoms.

These features of the intramolecular dynamics observed in the isolated dendrimer molecules is
expected to affect their melt properties. The present study makes a foundation for further investigations
of the dynamics of the melt properties of these dendrimers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/838/s1,
Tables S1–S5: Parameters of the force fields for the atoms; Figure S1: Snapshots of all dendrimers under study;
Figures S2–S4: The difference between the maximum and minimum values of the angular and radial positions of
the branching Si atoms for all types of dendrimer molecules; Figure S5: Time dependences of the angles between
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dendron center of mass; Figures S6–S8: Dependences of the mean values and the square root of the dispersion
of the relaxation time of each generation layer for all types of dendrimer molecules; Figure S9: The average
frequency of the transitions between the trans and gauche conformations vs the bond number for all types of
dendrimers; Figures S10–S11: The distribution function of the rotational angle for Si-C and C-C bonds for the
c3- and c4-dendrimers; Figure S12: Time evolution of the rotational angles around C-C and Si-C bonds for c3- and
c4-dendrimers; and Video S1: Time evolution of the conformation of one of the linear chains from the core of the
dendrimer to one of the end groups.
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