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Abstract: Adding melamine as additives in food products will lead to many diseases and even death.
However, the present techniques of melamine detection require time-consuming steps, complicated
procedures and expensive analytical apparatus. The fluorescent assay method was facile and highly
sensitive. In this work, a fluorescence resonance energy transfer (FRET) system for melamine detection
was constructed based on conjugated polymer nanoparticles (CPNs) and gold nanoparticles (AuNPs).
The energy transfer efficiency is up to 82.1%, and the system is highly selective and sensitive to
melamine detection with a lower detection limit of 1.7 nmol/L. Moreover, the interaction mechanism
was explored. The results showed that the fluorescence of CPNs were firstly quenched by AuNPs,
and then restored after adding melamine because of reducing FRET between CPNs and AuNPs.
Lastly, the proposed method was carried out for melamine detection in powdered infant formula
with satisfactory results.

Keywords: fluorescent assay; fluorescence resonance energy transfer; conjugated polymer
nanoparticles; gold nanoparticles; melamine

1. Introduction

As we all know, melamine (C3H6N6), an odorless and white heterocycle compound, is widely
used in the manufacturing of plastics, laminates, dyes, fabrics, and fertilizers [1,2]. Moreover, it is often
added as an additive in food products to increase the amount of protein detection due to its high
nitrogen concentration (66% by mass) [3]. However, this will result in kidney stones, urinary system
damage and even death [4]. Melamine is ingested beyond the safety limit of 8 µmol/L for infant
formula in China and 20 µmol/L in the USA and EU [5]. Therefore, it is quite necessary to develop
a cheap, sensitive and reliable method for melamine detection.

Nowadays, many analytical approaches of melamine detection, such as mass
spectroscopy (MS) [6], potentiometric [7], gas chromatography mass spectrometry (GC-MS) [8]
and electrochemical [9] have been applied. But these methods require expensive and complicated
analytical instruments, are time-consuming and require experienced operators, which limit their wide
applications in routine analysis.
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Fluorescence assays based on FRET have attracted much interest due to significant merits
including high sensitivity, simple instruments, operational simplicity and test rapidity, which can
be observed when the space distance between the acceptor and the donor is very close (7~10 nm).
Many quantum dots (QDs) and organic dyes were recognized as efficient FRET-based melamine
donors such as CdTe [10,11], fluorescein [12], rhodamine B [3,13] and so on. However, these materials
suffer from high toxicity, poor stability and photobleaching, which lead to irreproducible fluorescence
signals for further analysis. Recently, several methods have been reported based on gold nanoparticles
(AuNPs) by color changes of the solution to detect melamine [14,15]. Melamine can reduce the stability
of AuNPs and result in their aggregation. Meanwhile, the color of AuNPs solution turned to deep
blue from wine red. This variation can be lightly observed by the naked eye and UV-Vis absorption
measurement [16,17]. Therefore, AuNPs-based colorimetric detection melamine method is rapid and
simple [18]. However, interference substances in milk, which compete with melamine during AuNPs
binding, often result in a false positive response. To solve this problem, AuNPs have been successfully
utilized as the acceptor for the FRET system owing to high extinction coefficients, conductivity,
excellent biocompatibility and size-dependent optical properties [19,20]. In addition, CPNs have
been developed as fluorescence probes for tumor imaging [21,22], neuroinflammation [23,24] and cell
tracking [25]. Compared to organic dyes and traditional QDs, the superiorities of CPNs include easy
preparation, extraordinary fluorescence brightness, low toxicity and good biocompatibility [26,27].
For all we know, the melamine detection based on FRET of CPNs and AuNPs has not been reported.

Herein, an efficient “turn-on” fluorescence sensor for melamine detection was designed based
on melamine-induced reduction of FRET efficiency between AuNPs and CPNs. The key diagram
of our method is displayed in Scheme 1. The fluorescence of CPNs was well quenched when the
CPNs nanoparticles were apt to close the surface of AuNPs. However, the aggregation of AuNPs
via N-Au interaction after adding melamine would reduce the FRET of CPNs-AuNPs and promote
the fluorescence recovery of CPNs. This is because the spectral overlap between the absorption
spectrum of AuNPs and the fluorescence emission spectrum of CPNs will alter after adding melamine,
and decrease the energy transfer efficiency of CPNs-AuNPs. Furthermore, the above technique has
been well used for melamine detection in real milk powder samples.
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Scheme 1. The mechanism diagram of melamine detection by FRET based on CPNs-AuNPs;
(a) the preparation process of CPNs; (b) the fluorescence of CPNs was quenched by the FRET of
CPNs-AuNPs; (c) the fluorescence of CPNs was restored after adding melamine.
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2. Experimental

2.1. Chemicals and Apparatus

HAuCl4·4H2O and sodium citrate were gained from Shanghai Chemical Reagent Co. (Shanghai,
China). Melamine was obtained from Aladdin Reagent Company (Shanghai, China). L-cysteine,
L-histidine, Vitamin C, Glucose, NaOH, Ca(NO3)2·4H2O, FeCl3·6H2O, KNO3, Na2SO4, MgCl2, NaCl
were purchased from Tianjin Chemical Works (Tianjin, China). All chemical reagents were used
without further purification. The milk powder was obtained from the local supermarket.

Absorption spectra were measured on UV-2500 spectrophotometer (Shimadzu, Shuzhou, China).
Fluorescence measurements were finished with F-7000 FL spectrometer (Hitachi, Tokyo, Japan).
Transmission electron microscopy (TEM) were given on a JEM–2100 transmission electron microscope
(JEOL Ltd., Musashino, Japan). The zeta potentials and size distribution were estimated by dynamic
light scattering (DLS) on a Zetasizer Nano ZS90 (Malvern, Worcestershire, UK).

2.2. Preparation of AuNPs

AuNPs were synthetized via the citrate reduction method described in previous reports [28,29].
Typically, 1 mL aqueous solution of HAuCl4 (1%) and 100 mL ultrapure water were firstly heated
to boiling, and sodium citrate solution (1%, 4 mL) was added quickly. The reaction was further
refluxed for 20 min, and then stored at 4 ◦C. The sizes of AuNPs were measured to be about 24 nm
by DLS (Figure S1a) and TEM (Figure 4A). The molar concentration of AuNPs was calculated to be
approximately 2.96 × 10−9 mol L−1 by Lambert-Beer law using the molar extinction coefficient of
reported AuNPs in the literature (2.7 × 108 mol−1 L cm−1 at 520 nm) [16].

2.3. Preparation of CPNs

The Conjugated polymer TEB (Scheme 1) was synthesized according to our previous method [30].
The Mw and Mw/Mn of TEB was 7032 and 1.174, respectively. The nanoparticles of TEB were carried
out using the procedure described in the literature [31,32]. As shown in Scheme 1a, TEB were fully
dissolved in 10 mL THF to prepare a 20 µg/mL stock solution, and then the solution was rapidly
injected into 20 mL of ultrapure water in a sonication bath. After 15 min, THF was removed by
rotary evaporation and the solution was concentrated to 10 mL, and then filtered through a 0.22 µm
micro-filter. The sizes of CPNs were measured to be about 50.7 nm by DLS (Figure S1c).

2.4. Fluorescence Analysis

Typically, at room temperature, 100 µL CPNs (20 µg/mL) was mixed with as-prepared original
AuNPs with different concentrations and incubated for 10 min. Then the emission spectra of solutions
were measured.

The AuNPs solution was diluted with ultrapure water to 2.37 × 10−9 mol L−1 for further use.
The as-prepared AuNPs solution was mixed with different concentrations (0–2 µmol/L) of melamine
solution, and the mixture liquid was incubated for 15 min at room temperature. Then, 100 µL CPNs
was injected into the above liquid and diluted to 4 µg/mL with PBS (pH = 7). Finally, the above
mixture was in a still state for 10 min before the spectral measurement.

2.5. Pretreatment of Real Samples

Milk powder was firstly processed according to the previous reports [11,33]. Briefly, 2 g of milk
powder was fully dissolved in 5 mL of acetonitrile and 15 mL of 1% (w/v) trichloroacetic acid. Then the
mixed liquid was ultrasonically treated and centrifuged at 10,000 rpm for 15 min. Lastly, the liquid
was filtered by a 0.22 µm filter, and further diluted 25-fold to acquire the testing samples.
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3. Results and Discussion

3.1. Optical Characteristics of AuNPs and CPNs

The AuNPs were prepared by the reported method [34]. The as-prepared AuNPs was negatively
charged with a zeta potential of 8.43 mV (Figure S2a). The absorption and fluorescence emission
spectra of AuNPs and CPNs were measured and shown in Figure 1. A broad overlap from 480 to
600 nm between them was found, which implied that the FRET may occur between CPNs (donor) and
AuNPs (acceptor). Consequently, the fluorescence intensity of CPNs may be evidently quenched or
reduced if CPNs and AuNPs coexist.
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Figure 1. The absorption spectra of the CPNs (a) and AuNPs (b) and fluorescence emission spectrum
of CPNs (c).

To identify the above hypothesis, the fluorescence intensities of CPNs were investigated with the
increased concentrations of AuNPs (Figure 2). The energy transfer efficiency (E) was measured and
gained by the following equation [34]:

E = 1 − I/I0 (1)

where I and I0 are the fluorescence intensity of the donor (CPNs) after and before the
addition of acceptor (AuNPs), respectively. E obtained the value of 82.1% according to
Equation (1). The fluorescence intensities of CPNs were contravariant to the concentrations
of AuNPs. The fluorescence quenching efficiency of CPNs by AuNPs was measured by the
Stern–Volmer equation [35]:

F0

F
= KSV × CQ + 1 (2)

where F0 and F denoted the fluorescence intensity of CPNs before and after the addition of AuNPs,
respectively. CQ is the concentration of AuNPs. The curve of F0/F to CQ was linearly fitted and shown
in Figure 2b, and the Stern–Volmer equation is described below:

F0

F
= 1.635 CQ + 1

(
R2 = 0.9916

)
(3)

KSV was the quenching constant and gained to be 1.635 × 109 (mol−1 L)−1. This analytical parameter
is better than those in previous reports [36,37].
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Figure 2. (a) Fluorescence emission spectra of CPNs with the increased concentrations of AuNPs;
(b) the linear fitting plot of F0/F values at 520 nm versus AuNPs concentrations from 0 to 2.370 nM,
CPNs: 0.187 µM.

3.2. Interaction of AuNPs-CPNs with Melamine

The color variation and absorption spectra of AuNPs solutions with the increased concentrations
of melamine are shown in Figure 3a,b. The obvious color variations from red to deep blue were found
in the concentrations of melamine from 0.4 to 1.6 µM. The characteristic absorption of AuNPs gradually
decreased at 522 nm and showed slightly red-shifted. Meanwhile, a longer wavelength absorption band
(700 nm) appeared gradually. The possible reason may be that melamine could strongly coordinate
to AuNPs by the amine groups, and finally lead to the aggregation and destabilization of dispersed
AuNPs [38–40]. Meanwhile, the red-shifted absorption of Au NPs declined the spectral overlap
between the emission spectrum from CPNs and the absorption spectrum of AuNPs and reduced E.
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A good linear relationship between the decreased absorbance at 522 nm and the concentrations of
melamine was gained from 0.1–1.5 µmol/L (R2 = 0.9949, Figure 3c). The relative standard deviation
was 0.8% for seven repeated measurements, which illustrated the reliability of the proposed method.
The limit of detection (LOD = 3δ/K, where K represents the slope and δ is the standard deviation) was
measured to be 6.8 nmol/L. This analytical parameter is better than those in previous reports (Table 1).

Table 1. Comparison of different methods for the determination of melamine.

Method LOD (µM) Ref. Recovery (%)

HPLC 0.79 [41] 97.2–101.2
Turn-off fluorescence CdTe quantum dots 0.31 [11] 103–104

CdTe QDs and Rhodamine B 0.01 [35] 99.2–104
FRET/carbon dots and Au nanoparticles 0.036 [5] 90.5–111.4

FRET between CdTe/CdS QDs and AuNPs 0.03 [2] 90.0–101
Au nanoparticles and Melamine 0.0068 This work (1) -

FRET/CPNs and Au nanoparticles 0.0017 This work (2) 95.93–100.8

TEM observations could further confirm the aggregation of dispersed AuNPs owing to the
addition of melamine. From Figure 4A, the original AuNPs were uniform in size and spherical in
shape. After mixing with CPNs, AuNPs were still in a scattered state, indicating that the addition of
CPNs did not affect the dispersity of AuNPs (Figure 4D). However, obvious aggregation of AuNPs
could be found after adding melamine (Figure 4B). The DLS data also indicated the same conclusion
because the average sizes of AuNPs were 24 and 58.8 nm in the absence and presence of melamine
(Figure S1a,b), respectively. The results were fully consistent with the spectral variation in Figure 3.
Hence, the fluorescence intensity of CPNs could be monitored in the AuNPs-CPNs system by FRET,
which afforded a feasible and new strategy for melamine detection. Actually, the addition of melamine
led to the aggregation of AuNPs accompanying color change, which have been used for the visual
sensing for melamine detection in infants and liquid milk [18]. However, these colorimetric techniques
usually displayed lower sensitivity to melamine in comparison with fluorescence analytical methods.
It is greatly hopeful to develop a simple way based on the FRET method with the higher sensitivity
and the lower detection limit, and fluorescence signals can replace the variation of absorption.
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3.3. FRET-Based AuNPs-CPNs Emission Response to Melamine

The FRET system of CPNs-AuNPs would be modulated by the concentrations of melamine,
and the fluorescence intensity of CPNs would change accordingly because melamine congregated the
AuNPs (Scheme 1). The relationship between melamine and the FRET system was further investigated
to validate the competition effect between CPNs and melamine. As displayed in Figure 5, it was proved
that CPNs and melamine did not directly interact because the absorption and fluorescence intensity
of CPNs (curves a and a’ in Figure 5) were identical to the mixture of CPNs and melamine (curves b
and b’ in Figure 5). The characteristic absorption of AuNPs displayed no distinct variation before and
after adding CPNs (curve c and d in Figure 5a), indicating that CPNs and AuNPs were not directly
interacting. In addition, the characteristic absorption of AuNPs-melamine were identical in the absence
or presence of CPNs (curves e and f in Figure 5a), which indicated that the aggregation of AuNPs was
the result of the addition of melamine. The same conclusion could be got by no change for the average
size of AuNPs-melamine before and after adding CPNs (Figure S1b,d). The fluorescence intensity of
CPNs-AuNPs was evidently quenched owing to the FRET (curve c’ in Figure 5b) when CPNs and
AuNPs were mixed together. Nevertheless, the addition of melamine could distinctly recover the
fluorescence of CPNs curve d’ in Figure 5b. In addition, the fluorescence quantum yields (φs) of CPNs
in the absence and presence of AuNPs and melamine have been calculated using a solution containing
coumarin 307 (φ = 0.56, in methanol) standard as the reference according to the equation reported [42].
The values of φs were listed in Table 2. The change of φs was similar to that of fluorescence. With the
addition of AuNPs, φs of CPNs reduced from 0.22 to 0.0050. However, further adding melamine, φs of
CPNs were restored. But no obvious variation was found for φs of CPN in the presence of melamine.

The present technique for melamine detection was further researched under the optimal
conditions. From Figure 6a, the fluorescence emission intensities of AuNPs-CPNs were recovered
gradually with the increased concentrations of melamine. The increased fluorescence intensity and
melamine concentrations had a fine linear relationship from 5 nmol/L to 1.9 µmol/L (R2 = 0.9915,
Figure 6b). The detection limit was calculated to be 1.7 nmol/L. This analytical parameter is very low
in comparison with the reported literatures (Table 1). The relative standard deviation by operating
10 repeated measurements of melamine (1.9 µmol/L) was 1.2%, which illustrated that the fluorescence
response of AuNPs-CPNs toward melamine was highly reproducible.
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Figure 5. (a) Absorption spectra; a: CPNs; b: CPNs and melamine; c: AuNPs; d: AuNPs and
CPNs; e: AuNPs and melamine; f: mixture of CPNs, AuNPs and melamine; (b) fluorescence spectra;
a’: CPNs; b’: CPNs and melamine; c’: AuNPs and CPNs; d’: mixture of CPNs, AuNPs and melamine;
CPNs: 0.187 µM; AuNPs: 2.37 nM; melamine: 0.8 µM.



Polymers 2018, 10, 873 8 of 11

Table 2. The fluorescence quantum yields of CPNs under difference conditions.

Components Concentration (nM)
(CPNs/AuNPs: /Melamine) φ

CPNs 187/0/0 0.22
CPNs +Au NPs (1) 187/1.184/0 0.022
CPNs +Au NPs (2) 187/2.370/0 0.0050

CPNs + AuNPs + melamine (1) 187/2.370/300 0.0086
CPNs + AuNPs + melamine (2) 187/2370/1200 0.016

CPNs + melamine 187/0/1200 0.22

φ: Fluorescence quantum yield.
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3.4. Selective Studies and the Application to Real Samples

To evaluate the method used in the specific detection of melamine, the potential interfering
substances in real sample and melamine (2 µmol/L), such as Ca2+, Fe3+, Na+, SO4

2−, Cl−, vitamin C,
cysteine, histidine and glucose, were examined, respectively. From Figure 7a,b, no obvious interferences
were found, which indicated that the AuNPs-CPNs towards melamine detection is highly selective.
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To further prove the present method, the amount of melamine was directly spiked into milk
powder after sample pretreatment, and the melamine-doped milk samples were further handled by
the procedure described in Section 2.4. The analytical results are given in Table 3. The recovered values
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of the three milk powder samples varied from 95.93% to 100.8%. These analytical parameters are better
than those in previous reports (Table 1), which indicated that the proposed method was suitable for
melamine detection in real samples.

Table 3. The application of the proposed method for melamine detection in milk samples spiked with
different concentrations of melamine (n = 3, average value of three determinations).

Sample Amount Added (10−7 M) Amount Founded (10−7 M) Recovery (%) R.S.D. (%)

1 5.2 5.080 97.74 5.0
2 14 13.430 95.93 4.1
3 18 18.144 100.8 2.7

R.S.D.: relative standard deviation.

4. Conclusions

A new and effective FRET based on the system of CPNs-AuNPs was developed for melamine
detection. In the presence of melamine, the FRET between AuNPs and CPNs was gradually inhibited,
resulting in the fluorescence recovery of CPNs. Melamine could be detected with a lower detection
limit of 1.7 nmol/L under the optimum experimental conditions. Moreover, the proposed technique
was used for the detection of melamine in real samples with the satisfactory experimental results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/873/s1.
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