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Abstract: Among sustainable alternatives for replacing fossil-based chemicals, lignin is widely
available on earth, albeit the least utilized component of biomass. In this work, lignin was
polymerized with styrene in aqueous emulsion systems. The reaction afforded a yield of 20 wt %
under the conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L sodium dodecyl sulfate
concentration, 5 mol/mol styrene/lignin ratio, 5 wt % initiator, 90 ◦C, and 2 h. The lignin-g-styrene
product under the selected conditions had a grafting degree of 31 mol % of styrene, which was
determined by quantitative proton nuclear magnetic resonance (NMR). The solvent addition
to the reaction mixture and deoxygenation did not improve the yield of the polymerization
reaction. The produced lignin-g-styrene polymer was then sulfonated using concentrated sulfuric
acid. By introducing sulfonate group on the lignin-g-styrene polymers, the solubility and anionic
charge density of 92 wt % (in a 10 g/L solution) and −2.4 meq/g, respectively, were obtained.
Fourier-transform infrared (FTIR), static light scattering, two-dimensional COSY NMR, elemental
analyses, and differential scanning calorimetry (DSC) were also employed to characterize the
properties of the lignin-g-styrene and sulfonate lignin-g-styrene products. Overall, sulfonated
lignin-g-styrene polymer with a high anionicity and water solubility was produced.
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1. Introduction

Lignin is the most abundant aromatic biomaterial in nature and has the potential to be used in
various applications [1,2]. Currently, the commercial use of lignin is limited, as it is primarily used
as an energy source. The chemical modification of lignin has gained attention in order to produce
value-added products from lignin [3].

Recently, there have been noticeable reports on the production of water soluble polymers from
lignin [4–6]. Researchers summarized different chemical modifications of lignin and its applications
in reinforcement fillers, antioxidants, UV absorbents, antimicrobial agents, carbon precursors,
biomaterials [7], gel-coated films [8], and composites [9,10].

Graft polymerization via free-radical polymerization enables the functionalization of lignin
with different monomers, such as acrylates. Polymerization of lignin and cationic, anionic,
amphoteric, and non-ionic monomers were studied in the past [11]. Fang and coworkers
reported using acrylamide as an uncharged monomer in producing enzymatically hydrolyzed
lignin-g-acrylamide polymers [12]. Kong and coworkers successfully polymerized acrylic
acid (i.e., anionic monomer) and kraft lignin using free radical techniques and produced
water-soluble lignin-g-acrylic acid polymers [13]. Lignin-g-acrylamide-g-[2-(methacryloyloxy) ethyl]
trimethylammonium chloride copolymers (KL-g-AM-g-DMC) were also produced using free radical

Polymers 2018, 10, 928; doi:10.3390/polym10080928 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-3874-5089
http://dx.doi.org/10.3390/polym10080928
http://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/10/8/928?type=check_update&version=2


Polymers 2018, 10, 928 2 of 17

polymerization [5]. The functionalization was reported to impart valuable properties to lignin,
making it more hydrophilic, hydrophobic or thermally stable [14,15].

In previous studies, polymers were produced using water soluble monomers. Styrene, on the
other hand, is not water soluble, making its polymerization in aqueous based systems challenging.
Styrene is a known monomer with several applications in nanocomposites [16], ion exchange resins,
and adsorbent productions [17]. Reports are available on the polymerization of lignin and styrene
following different techniques, such as atom transfer radical polymerization [18,19], radiation induced
graft polymerization [20], or emulsion suspension polymerization [21]. Hilburg and coworkers
produced lignin composites by polymerizing styrene and methyl methacrylate on lignin using
atom transfer radical polymerization (ATRP) technique [19]. Wang and coworkers synthesized
lignin graft copolymers via activator regenerated by electron transfer (ARGET) atom transfer radical
polymerization (ATRP) [18]. Podkościelna and coworkers reported graft polymerization of styrene and
divinylbenzene monomers on kraft lignin in a mixture of water and organic solvents (i.e., toluene and
1-decanol) in an emulsion polymerization system [21]. In three component systems, one monomer
may be used as a crosslinker for joining lignin and the other monomers, improving the polymerization
efficiency. The two component systems, however, require the reaction of lignin and another monomer
in polymerization systems, which might be more challenging as lignin is generally not very reactive in
polymerization reactions. In this regard, the polymerization of lignin and styrene in a two-component
aqueous emulsion system using water soluble initiator has not been reported yet, which makes it the
first objective of this work.

Sulfonation has been widely used as a means for generating sulfonated lignin products [22].
Sulfonated lignin has been used as dispersants and flocculants in the past [23]. The sulfonation of
polystyrene (PS) has also been performed commercially [24]. Several approaches for sulfonating
PS are available in the literature, such as using concentrated sulfuric acid in liquid form [25] or
vapor form [26], combination of concentrated sulfuric acid with catalyst [27], chlorosulfonic acid [28],
silica sulfuric acid [29], acetyl sulfate [30], and sulfur trioxide [31]. Sulfonated PS can be used as
electrolyte fuel cells (PEFC) [32], capillary electrophoresis (CE) [33], flocculants, and cation-exchange
resins [29]. If lignin-g-styrene is sulfonated, it may have similar applications to that of sulfonated lignin
and/or PS. The second objective of this work was to investigate the sulfonation of lignin-g-styrene
using concentrated sulfuric acid as sulfonating reagents [30].

The primary novelty of this study was the investigation on the production of lignin-g-styrene in
an emulsion polymerization system and the sulfonation of the produced polymer. The reaction was
optimized to obtain the highest yield in the emulsion polymerization reaction and the products were
characterized using different techniques. The main aim of this study was the production of a high
molecular weight and water-soluble lignin-based product via emulsion polymerization system.

2. Experimental

2.1. Materials

Softwood kraft lignin was received from a company located in south eastern USA (Domtar,
Plymouth, NC, USA). Sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO), trimethylsilyl
propanoic acid (TSP), dodecyl benzenesulfonic acid (DBAS), ethanol (80 vol %), potassium persulfate,
sulfuric acid (98%), and acetone, all of analytical grade, were obtained from Sigma-Aldrich (Markham,
Canada) and used as received without further purification. Styrene was also received from
Sigma-Aldrich (Markham, ON, Canada). To remove inhibitors from styrene, it was first washed
with NaOH (5%) solution and then with deionized water three times, each time followed by drying
with anhydrous calcium chloride (CaCl2), then it was kept at 4 ◦C for further use [34]. Cellulose
acetate dialysis membrane (with molecular weight cut off of 1000 g/mol) was obtained from
Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA. Polydiallyldimethylammonium chloride
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(PDADMAC) and potassium polyvinyl sulfate (PVSK) were obtained from Sigma-Aldrich (Markham,
ON, Canada) and diluted to 0.005 M prior to use.

2.2. Polymerization of Lignin and Styrene

The polymerization of lignin and styrene was conducted in an aqueous medium using an emulsion
suspension polymerization methodology under various conditions. All reactions were performed in
three neck flasks equipped with condensers. In these experiments, a 100 g/L lignin concentration was
prepared in 30 mL deionized water and after mixing for 30 min, surfactant was added to the mixture
and suspension was stirred for another 30 min. The pH of the suspension was adjusted to 2.5 using
20 wt % H2SO4 solution. Styrene and constant amount of initiator (5 wt %) were subsequently added.
The reaction was initiated by transferring the three neck flask in an oil bath and stirring for 2 h at 90 ◦C.
The polymerization reactions were repeated under different conditions of styrene/lignin molar ratios
(0.5–20 mol/mol), surfactant types (sodium dodecyl sulfate (SDS) and dodecyl benzenesulfonic acid
(DBAS)), concentrations (0.1–1.7 mol/L), reaction temperatures (70–95 ◦C), and reaction times (1–3 h).
The impacts of solvent (DMSO) and nitrogen purging (i.e., oxygen-free environment) on the reaction
medium were also investigated in this work.

After completion of the reaction, the mixtures were cooled to room temperature and the products
of the reactions were precipitated from the systems by mixing the reaction media with ethanol.
The precipitates were separated using centrifugation at 3500 rpm for 5 min, then they were dried in
the oven at 60 ◦C for 2 days. Afterward, the products were purified in boiling acetone by Soxhlet
extraction [35] and were then characterized. These products are denoted lignin-g-styrene (KL-g-PS) in
this work. The yield of the polymerization reaction was determined following Equation (1) and the
results are depicted in Table 1.

Yield =
WT

WL + Ws
× 100 (1)

where WT is the weight of KL-g-PS collected after Soxhlet extraction (g); and WL and Ws are the weights
(g) of lignin and styrene used in the polymerization reaction, respectively. The KL-g-PS products
generated under different styrene/lignin molar ratios were collected for sulfonation experiments.

Table 1. Formulation of lignin and styrene emulsion polymerization and corresponding yields (%) of
the products.

Exp. No. SDS (mol/L) DBAS (mol/L) Styrene/Lignin (mol/mol) Temp (◦C) Yield (%) (±2%)

1 0.11 0 5 90 22
2 0.23 0 5 90 23
3 0.35 0 5 90 22
4 0.70 0 5 90 28
5 1.20 0 5 90 34
6 1.40 0 5 90 34.3
7 1.75 0 5 90 41
8 0 0.11 5 90 18
9 0 0.23 5 90 21

10 0 0.35 5 90 21.4
11 0 0.70 5 90 25
12 0 1.20 5 90 31
13 0 1.40 5 90 23.3
14 0 1.75 5 90 23
15 0.35 0 0.5 90 50
16 0.35 0 1 90 40
17 0.35 0 3 90 32
18 0.35 0 5 90 21.4
19 0.35 0 20 90 7.8
20 0.35 0 0.5 70 36
21 0.35 0 0.5 80 48
22 0.35 0 0.5 90 50
23 0.35 0 0.5 100 49

All the experiments were conducted in a 100 g/L lignin concentration, pH 2.5, 5 wt % initiator for 2 h.
Sodium dodecyl sulfate (SDS), dodecyl benzenesulfonic acid (DBAS).
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2.3. Sulfonation of Lignin-g-styrene

Sulfonation was performed with concentrated sulfuric acid in this work. Sulfonation was
conducted on the KL-g-PS polymers produced under the conditions of 100 g/L lignin concentration,
pH 2.5, 0.35 mol/L sodium dodecyl sulfate concentration, 5 wt % initiator, 90 ◦C, and 2 h reaction
with different molar ratios of styrene/lignin (0.5, 1, 3, 5) in order to explore the effect of polystyrene
chains in sulfonation feasibility. In this set of experiments, 1 g of KL-g-PS was transferred into three
neck flasks. Sulfuric acid (98%) was added to the system at the ratio of 1/10 wt/v (KL-g-PS)/sulfuric
acid. The reaction was carried out for 1 h at 90 ◦C. To stop the reactions, they were cooled to room
temperature, and their pH was adjusted to 7 using 10 M NaOH. Ion impurities were separated from
the sulfonated products (KL-g-SPS) via maintaining the products in dialysis membranes, while water
was changed every 12 h for 2 days. The final products were dried at 105 ◦C in an oven overnight.
The products of this step were named sulfonated lignin styrene polymer, KL-g-SPS.

KL-g-PS, which was produced under the reaction conditions of 100 g/L lignin concentration,
pH 2.5, 0.35 mol/L sodium dodecyl sulfate concentration, 5 mol/mol styrene/lignin ratio, 5 wt %
initiator, 90 ◦C, and 2 h, and its corresponding sulfonated polymer, KL-g-SPS, with the charge density
of −2.4 mmol/g, were selected for the chemical and physical assessments.

2.4. Nuclear Magnetic Resonance (NMR) Analysis

The structures of unmodified lignin (KL) and KL-g-PS were analyzed by proton nuclear magnetic
resonance spectroscopy of 1H and two-dimensional homonuclear correlation spectroscopy spectrum
1H–1H COSY. Trimethylsilyl propanoic acid (TSP) was used as internal standard for quantitative
1H-NMR analysis. KL and KL-g-PS were dissolved in 500 µL of DMSO-d6 to make 40–50 g/L
concentrations, and 2 mg of TSP was also mixed with the solutions to generate reference peak in the
NMR analysis [36]. The solutions were stirred at 100 rpm overnight prior to analysis. The analysis
was performed using an INOVA-500 MHz instrument (Varian, Palo Alto, CA, USA). Adjustments for
1D 1H and 2D 1H–1H COSY are follows, respectively: 1D 1H: 64 number of scans, A 45◦ pulse width
and a relaxation delay of 1.00 s, which was followed by 2D 1H–1H COSY: 4 scans per increment with
128 increments.

2.5. FTIR Analysis

The Fourier-transform infrared (FTIR) spectra of unmodified lignin, KL-g-PS and KL-g-SPS
polymers were recorded in this set of experiments. The samples were dried in an oven prior to analysis,
and 0.05 g of each sample was taken into account for analysis using an FTIR instrument (Bruker Tensor
37, Ettlingen, Germany, ATR accessory). The analysis was conducted in transmittance mode in the
range of 500 and 4000 cm−1 with a 4 cm−1 resolution, and 32 scans per sample were conducted.

2.6. Elemental Analysis

The organic elements of the samples were determined using an Elementar Vario EL Cube
elemental analyzer (Langenselbold, Germany). After removing their moisture by putting samples in
an oven at 105 ◦C overnight, 2 mg of KL, KL-g-PS, and KL-g-SPS were transferred in the integrated
carousel of the elemental analyzer and burned at 1200 ◦C, which facilitated their carbon, hydrogen,
nitrogen, and sulphur assessments.

2.7. Molecular Weight Determination

The weighted average molecular weights of KL, KL-g-PS, and KL-g-SPS were analyzed using a
static light scattering, SLS, analyzer (BI-200SM Brookhaven Instruments Corp., Holtsville, NY, USA).
The maximum solid-state laser power was 35 mW at the wavelength of 637 nm. The samples were
dissolved in 20 mL of a 0.5 M NaOH with a 10 mM KNO3 by stirring at 300 rpm overnight at 25 ◦C
to prepare various concentrations ranging from 0.2 to 2 mg/mL. Afterward, solutions were filtered
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using 0.45 µm syringe filters and transferred to 20 mL glass vials. The measured data was further
analyzed using Zimm plot software (Holtsville, NY, USA) to obtain the absolute molecular weights.
The results were reported based on three independent measurements. It was previously stated that
lignin-g-polyacrylic acid with the molecular weight of 7 × 105 g/mol had the hydrodynamic size
of 35 nm [6]. Lignin-g-styrene polymer’s molecular weight was in the same range and thus they
probably had a similar hydrodynamic size. Therefore, all of lignin-g-styrene probably passed through
the filter. However, analysis on the impact of filtration on screening lignin-g-styrene polymer should
be investigated in future.

2.8. DSC Analysis

The thermal stability of the samples was determined by a differential scanning calorimeter
(TA instrument, Q2000 DSC, Brossard, QC, Canada) using the standard cell RC mode. The dried
samples were analyzed in the heat/cool/heat mode between 30 and 250 ◦C at a rate of 5 ◦C/min and
a 50 mL/min nitrogen flow. In the second heating cycle, the glass transition temperatures (Tg) were
recorded accordingly.

2.9. Charge Density Analysis

The charge density of produced KL-g-SPS samples was measured using a particle charge detector
(PCD-04, Mutek, Eclépens, Switzerland). In this set of experiments, 1 mL of 10 g/L solution of
KL-g-SPS was prepared and then titrated against PDADMAC standard solutions (0.005 M) as stated
elsewhere [37].

3. Results and Discussion

3.1. Lignin-g-Styrene Polymerization

The polymerization reaction was conducted through a free radical emulsion polymerization
system, which was initiated by potassium persulfate. The main components of emulsion systems were
monomers, initiator, and surfactant in water. Lignin was the main component on which polymerization
was initiated. By keeping the concentration of surfactant (SDS) above its critical micelle concentration,
CMC (8.2 mM at 25 ◦C) [38], hydrophobic styrene monomers would diffuse into the micelles and form
monomer micelles. In addition, styrene molecules could exist in monomer droplets, which would
be formed by agglomeration of hydrophobic styrene molecules in water [39], and a small fraction
of styrene molecules would dissolve in the aqueous system (0.03% at 20 ◦C) [40]. Lignin molecules,
owing to their hydrophilic functional groups, would not be able to form micelles and were partially
soluble in the aqueous medium. After formation of water soluble initiator radicals, polymerization
would start with lignin macromolecules and presumably soluble styrene monomers in the system.
As a result, when an essential chain length of polystyrene formed on lignin, the generated lignin based
macroradicals would be sufficiently hydrophobic to enter the micelles [39]. The propagation would
subsequently continue with styrene monomers in the micelles.

The polymerization scheme of lignin and styrene is shown in Scheme 1. Sulfate radicals would
be formed by heating the reaction medium (Scheme 1a), which would have the ability to release
unstable hydrogen of phenol to form phenoxy radicals (Scheme 1b) [41]. Lignin had two possible
positions on its backbone for the production of active radicals; one on its phenol group and the other
one on its aliphatic hydroxyl group [42]. Kong et al. reported that the polymerization of lignin with
acrylic acid was favorable on the phenol group because the phenol group could produce more stable
radical than the aliphatic hydroxyl group [13]. Polymerization would be initiated following the attack
of phenoxy radicals to the vinyl group of styrene (Scheme 1c) [41]. Continuing the polymerization,
the π bond between two carbons on styrene monomers would be broken and a new σ bond between
styrene monomers would be formed, which is substantially stronger than the π bond. Therefore,
a long chain of polystyrene would be generated on lignin backbone. As polymerization reaction
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progressed, the reaction medium became highly heterogeneous, which was different from the uniform
suspension system started at the beginning. The heterogeneity could be a sign of producing a more
hydrophobic chemical, resulting from grafting polystyrene chains onto lignin backbone. As styrene had
only aromatic structure and lacked any functional groups, it would render lignin-g-styrene polymer
more hydrophobic.
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3.2. Effect of Polymerization Conditions

3.2.1. Effect of Surfactant Type

Surfactants are one of the vital components in emulsion polymerizations, and their role has
been investigated widely [43]. It was claimed that polymerization rate was improved, and overall
polymerization activation energy was reduced by adding surfactants to the emulsion reaction
systems [44]. Various types of surfactants, such as anionic, cationic, and nonionic types, were previously
used in emulsion polymerization of polystyrene latex generation [45,46]. In addition, anionic and
nonionic surfactants were reported to be the most effective surfactants widely used in emulsion
polymerization systems. It was reported that anionic surfactants provided electrostatic stability to the
emulsion systems [47]. Nonionic surfactants mostly provide steric stabilization by preventing particle
coagulations [48].

In the present study, the effect of process parameters on the yield of lignin and styrene
polymerization was investigated and the results are presented in Figure 1. It is observable that the
increase in the dosage of SDS and DBAS improved the yield of polymerization (Figure 1a), while SDS
showed slightly better results than DBAS in all dosages. As it was more effective than DBAS, it was
selected for further analysis.
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3.2.2. Effect of Styrene/Lignin Ratio

In the present work, the lowest styrene/lignin molar ratio with 0.2 mol/L styrene concentration
generated the highest yield in the reaction (Figure 1b). The high amount of styrene might have led to
the more favorable production of polystyrene. On the other hand, as more styrene molecules were
grafted on the lignin radical, viscosity of the suspension would increase; therefore, it is possible that
the diffusion of new styrene molecules or polystyrene radicals to the lignin polymer radical would be
limited. In other words, propagation on the macroradical sites of lignin-g-styrene may not proceed,
leading to the higher production of homopolymer. As reported in the past, by increasing the ratio of
styrene to chitin, the grafting of styrene on chitin was improved because of more diffusion of styrene
in the macroradical sites of chitin [40]. In another report on the graft polymerization of styrene and
soy protein, the grafting was improved by increasing styrene concentration from 0.2 to 0.4 mol/L,
but further concentrating styrene in the system adversely affected grafting, which was claimed to
be related to the viscosity increase of the reaction system that caused the diffusion of styrene to soy
proteins radicals more difficult [49]. Therefore, by keeping the styrene concentration at a low amount,
the possibility for producing homopolymer of polystyrene could be reduced and higher yield of
KL-g-PS may be obtained.

3.2.3. Effect of Reaction Temperature

By increasing reaction temperature from 70 to 100 ◦C, the yield of the reaction was enhanced
(Figure 1c). The same phenomenon was observed in Kong and coworkers’ studies in the polymerization
of acrylic acid on lignin [13]. It was also postulated on the polymerization of styrene that, by increasing
the temperature from 50 to 80 ◦C, the monomer conversion and polymerization rate were improved
dramatically [50]. It is also known that the initiators’ performance is sensitive to temperature, and a
higher temperature would generally lead to a faster decomposition rate of initiators leading to faster
radical formation, and therefore a higher polymerization rate and yield [51].

3.2.4. Effect of Time

In a series of reactions, the effect of time on the polymerization of lignin and styrene was
investigated. The results revealed that the time of reaction (between 1 and 4 h) had a limited effect
on the polymerization yield. Therefore, 2 h of reaction that showed slightly better yield than 1 h was
chosen for other experiments.

3.2.5. Solvent and Deoxygenation Effects

The use of solvent in altering the yield of reaction was also considered. In a set of experiments,
the reactions were conducted in 10/90 (vol/vol) of DMSO/water, 100 g/L lignin concentration,
5 mol/mol styrene/lignin ratio, pH 2.5, 0.35 mol/L SDS, and 90 ◦C for 2 h, but results showed that the
addition of solvent did not improve the yield of reaction. In another set of experiments, the impact
of nitrogen on the polymerization of lignin and styrene was studied under the conditions of 100 g/L
lignin concentration, 5 mol/mol styrene/lignin ratio, pH 2.5, 0.35 mol/L SDS, and 90 ◦C for 2 h.
The results supported that nitrogen environment marginally affected the yield of polymerization.
It was documented that the presence of oxygen in free radical polymerization, including emulsion
polymerization, may have detrimental effects on the polymerization rate [52]. Dissolved oxygen is
considered as an impurity in reaction systems that consumes radicals [53]. However, Cunningham
and coworkers stated that the presence of oxygen only impacted the molecular weight of polystyrene
at a high oxygen concentration at the beginning of the reaction. However, similar molecular
weights for polystyrene were obtained at the end of the reaction in absence or presence of oxygen
(2.65 or 2.12 × 106 g/mol, respectively) [53]. At early stages of the polymerization, an early termination
would happen for the growing chains in the presence of oxygen, which would prevent the propagation
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step to continue, but probably by consuming residue oxygen, the polymerization would continue to
increase the molecular weight of polymers at the later stage of polymerization [53].

3.3. Sulfonation

Sulfonation of KL-g-PS in concentrated sulfuric acid is a heterogenous reaction. This method
of sulfonation has been previously conducted on polystyrene, and partially soluble polystyrene was
obtained in a homogenous medium [54]. Scheme 2 shows the sulfonation of KL-g-PS. The sulfonate
groups could graft on the para position of the aromatic ring of the polymer. Furthermore,
steric hinderance is probably the reason for preference of para over ortho and meta positions on
the polystyrene chains structure. Sulfonation was conducted on the polymers produced under the
conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L SDS, 5 wt % initiator, 90 ◦C, and 2 h,
with different molar ratios of styrene/lignin (0.5, 1, 3, 5). The results for solubility and charge density
of different KL-g-SPS are shown in Figure 2. It is depicted in Figure 1b that the highest polymerization
yield was obtained for the lowest styrene/lignin molar ratio implying more polymerization, and thus
presence of styrene on the KL-g-PS. The results in Figure 2 show that the more polystyrene chains
grafting on lignin, the lower the solubility and charge density obtained for KL-g-PSP.
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Figure 2. Charge density and solubility of KL-g-SPS polymers in 10 g/L water solution (experiments
were performed under the conditions of KL-g-PS/sulfuric acid 1/10 wt/v and 90 ◦C for 1 h).

The results in Figure 2 show that the sulfonation of the polymer produced at the lowest
styrene/lignin ratio was rather ineffective. An efficient sulfonation of the polymer at the higher
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styrene/lignin ratio was achieved. As a result, KL-g-SPS polymer with the solubility of 92% in
deionized water and charge density of −2.4 meq/g in 10 g/L concentration was obtained for the
KL-g-PS produced at the higher styrene/lignin ratio. Limited sulfonation efficiency with increasing
the polymerization yield is probably attributed to the higher molecular weight of the polymers.
Linkage between polymer chains was more feasible through cross-linking of polystyrene chains [31].
Steric interruption between long chains of polystyrene might hinder the effectual reaction of sulfuric
acid with polystyrene benzene rings on the KL-g-PS. Also, the limited sulfonation efficiency may be
a result of the chemical nature of the sulfonate group that deactivates the aromatic ring. It was also
observed in other studies that polystyrene sulfonation with sulfuric acid resulted in insoluble or partial
soluble products in water [29].

3.4. Properties of Polymers

3.4.1. NMR Analysis

The 1H NMR spectra of unmodified lignin and KL-g-PS are depicted in Figure 3. The region
between 6.0 and 7.5 ppm belongs to aromatic hydrogens of lignin and that between 3.5 and 4.0 ppm
belongs to the methoxy group of lignin, which are available in both KL and KL-g-PS spectra [55].
The two new signals in the aromatic region in KL-g-PS spectrum are attributed to the benzene rings
of styrene molecules polymerized on lignin that are shown as H6 and H5-5′ . Polystyrene chain also
contains aliphatic parts that contribute to –CH– and –CH2 groups [56]. The first molecule of styrene is
attached to lignin through formation of ether bond with –CH2 group (H1). Therefore, a distinguished
peak is allocated for the first styrene molecule (H1:1.5 ppm and H2:0.7 ppm). Other styrene molecules
attached to the first styrene molecule are assigned to separate signals at 1.2 and 0.8 ppm relating to
–CH2(H3) and –CH–(H4) peaks, respectively. The 2D 1H–1H COSY was used to confirm the signal
assignments in this study. The cross peak duplicated in the Figure 4 confirms that H2 signal is coupled
by H1 signal in the first molecule of styrene. In addition, H4 and H3 are coupled by each other. Based on
NMR results, the grafting degree of 31 mol % of styrene in KL-g-PS based on H3 signal was obtained.Polymers 2018, 10, x FOR PEER REVIEW  11 of 17 
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3.4.2. FTIR Analysis

The FTIR spectra of KL, KL-g-PS, and KL-g-SPS are shown in Figure 5. The broad band at
3400 cm−1 is assigned to the O–H stretching absorption of the phenolic and aliphatic hydroxyl
groups, and a band around 2900 cm−1 is assigned to the C–H stretching of the methyl groups [57,58].
Two absorption bands at 1225 and 1140 cm−1 are related to the C–O and C–H stretch of guaiacyl unit,
respectively, demonstrating that lignin was a softwood species [59]. Peaks at 1601, 1490, and 760 cm−1

are related to the CH stretching of aromatic ring, and 1700–2000 cm−1 is assigned to the C=C stretching
in aromatic ring, which are available on the lignin spectrum as well as on that of other products [60].
A new peak at 700 cm−1 appeared on the KL-g-PS sample, which was not observed on lignin and is
assigned to the C–H stretching of aliphatic C–H (the new σ bond) between the aryl group of polystyrene
chain [61]. The same peak also exists in KL-g-SPS, but shifted to 615 cm−1, probably as a result of
sulfonate group addition. In the case of the sulfonated sample (KL-g-SPS), the peak at 1100 cm−1 is
the evidence of S=O bond [22], which is a confirmation for the attachment of sulfonate group to the
KL-g-PS polymer.
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3.4.3. Molecular Weight and Elemental Analyses

The carbon, hydrogen, and sulfur contents of KL, KL-g-PS, and corresponding sulfonated polymer
KL-g-SPS are summarized in Table 2. The carbon content of KL-g-PS is more, but its oxygen content is
less, when compared with KL. Molar ratio of H/C was also calculated based on the data in Table 2.
This value is a relative proportion of groups with double bonds, such as cycles and aromatic rings
with respect to aliphatic groups [62]. This ratio is 1.05 in KL and 1.1 in KL-g-PS, and the increase is
attributed to the grafting of styrene monomers on aromatic rings of lignin indicating that the number
of double bond equivalents in the KL-g-PS polymer was more than double bonds in KL. On the other
hand, there is a slight decrease in this value after sulfonation of KL-g-PS with sulfuric acid, which can
be related to the degradation of some polystyrene chains in a harsh acidic condition. The increase in
the sulfur and oxygen contents is indicative of success in sulfonation of KL-g-PS and attachment of
sulfonate group to the KL-g-PS. The structural formula of products based on nine carbons of lignin are
shown in Table 2. The C9 formula also supports the increment in the sulfur and oxygen contents, but a
decrease in the hydrogen content, of lignin via sulfonation and polymerization.

Table 2. Elemental compositions and molecular weight of KL, KL-g-PS, and KL-g-SPS.

Lignin Products Elemental Analysis (wt %)
C9 Formula H/C ‡ (mol/mol) MW (g/mol)

C H O † N S

KL 61.6 ± 0.2 5.4 ± 0.1 31.4 0 1.6 ± 0.05 C9 H9.47 O3.44 S0.08 1.05 (7.91 ± 0.80) × 104

KL-g-PS 65.1 ± 0.3 6.0 ± 0.2 27.3 0 1.6 ± 0.06 C9 H9.95 O2.83 S0.06 1.1 (1.05 ± 0.31) × 106

KL-g-SPS 38.9 ± 0.2 3.5 ± 0.1 52.2 0 5.4 ± 0.04 C9 H9.72 O9.05 S1.5 1.08 (1.89 ± 0.13) × 105

† By difference. ‡ The molar ratio of hydrogen and carbon in the sample.

The results of molecular weight analysis are also depicted in Table 2. As expected, the molecular
weight of KL-g-PS increased markedly with respect to the KL. In contrast, sulfonation with sulfuric
acid had a disintegrative effect on the polymer structure, and the final KL-g-SPS polymer had the
molecular weight of (1.89 ± 0.13) × 105 g/mol, depicting a slight hydrolysis and MW reduction under
a strong acidic condition.
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3.4.4. DSC Analysis

The Tg analysis was conducted to study the polymer’s molecular mobility and thermal behaviour.
The DSC of KL, KL-g-PS, and KL-g-SPS are tabulated in Table 3. It is seen that KL-g-PS had a lower
Tg than KL. The Tg for polystyrene is reported to be between 90–100 ◦C [63]. The Tg of lignin was
reported to be in the range of 90–180 ◦C [64]. The drop in the Tg was a result of grafting PS on
KL. Nonderivatized lignin samples mostly show a high Tg stemming from the restriction in the
thermal mobility of lignin molecules. It is probable that intermolecular hydrogen bonding between
hydroxyl functional groups in addition to condensed rigid phenolic moieties would result in thermal
behaviour [65]. After polymerization, the elimination of these factors resulted in a Tg drop. It was
reported previously that this phenomenon would happen in miscible polymer blends [66]. The same
trend was observed in heat capacity (Cp) changes of KL and KL-g-PS, which would be related to
the limited intermolecular interaction after polymerization [67]. After sulfonation, the Tg of 152 ◦C
was achieved for the KL-g-SPS, illustrating a slight increase in Tg. Previous reports on the thermal
behaviour of polystyrene after sulfonation displayed the same trend [68]. Polar sulfonate group
interaction may be the main reason for this observation, which limits the molecules mobility.

Table 3. Tg and heat capacity of the KL, KL-g-S, and KL-g-SPS.

Sample Tg (◦C) Heat Capacity (Cp) (J/g ◦C)

KL 156 0.420
KL-g-PS 149 0.075

KL-g-SPS 152 0.023

4. Conclusions

Sulfonated lignin-g-styrene polymer was produced for the first time via emulsion polymerization.
The conditions of 100 g/L lignin concentration, pH 2.5, 0.35 mol/L SDS, 5 mol/mol styrene/lignin
ratio, 5% initiator, 90 ◦C, and 2 h generated lignin-g-styrene with a 20 wt % yield and grafting degree
of 31 mol % based on the quantitative 1H-NMR analysis. Molecular weight of KL and KL-g-PS
were (7.91 ± 0.80) × 104 and (1.05 ± 0.31) × 106 g/mol, respectively. FTIR, NMR, and SLS analyses
confirmed the success of the polymerization reaction. Among all factors studied, styrene/lignin molar
ratio seemed to have the most significant effect on the yield of reaction, as well as on the sulfonation
efficiency. In addition to the factors investigated in this work, other factors, such as pH and initiator
dosage, could impact the yield of the polymerization. Therefore, more attempts are required for
improving the yield of this polymerization reaction. It was concluded that the higher polystyrene
grafting efficiency on lignin led to the less soluble product after sulfonation reaction, and cross-linking
of polystyrene chains seems to be the dominant reason for this phenomenon. The sulfonation of
the polymer with sulfuric acid generated sulfonated lignin-g-styrene polymer with 92% solubility
(in a 10 g/L polymer solution) and −2.4 meq/g charge density. The sulfonation caused deduction in
molecular weight to (1.89± 0.13)× 105 g/mol. The FTIR and elemental analyses confirmed the success
of the sulfonation reaction. It is suggested that NMR may be also used for confirming the sulfonation
reaction. Regarding the thermal properties of the polymer, limited intermolecular interaction after
polymerization probably caused a drop in the Tg from 156 ◦C for KL to 149 ◦C for KL-g-PS; however,
sulfonation resulted in a slight increment in Tg to 152 ◦C for KL-g-PSP. Overall, the product was
partially soluble in water. The soluble part of the product can be separated and considered as a
flocculant for use in water purification, for example, for treating tailing wastes of the mining industry,
owing to its high charge density and molecular weight. The insoluble part can also be used as an ion
exchange material for water purification purposes. However, further investigations are necessary to
unravel the efficiency of these products as flocculants and ion exchange resins.
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29. Sułkowski, W.W.; Nowak, K.; Sułkowska, A.; Wolińska, A.; Bajdur, W.M.; Pentak, D.; Mikuła, B. Chemical
recycling of polystyrene. Sulfonation with different sulfonation agents. Mol. Cryst. Liq. Cryst. 2010, 523,
218–227. [CrossRef]
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