Supplementary Materials

A Pseudopeptide Polymer Micelle Used for Asymmetric Catalysis of the Aldol Reaction in Water

Keyuan Liu, Long Ye, Yao Wang, Ganhong Du, Liming Jiang *
MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University, Hangzhou 310027, China
* Correspondence: cejlm@zju.edu.cn

1. Structural Characterization of the Monomer 3

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$.

Figure S3. ESI-MS of $\mathbf{3}$.

2. SEC Characterization of Copolymers

Figure S4. SEC curves of diblock copolymers (a) and random copolymers (b).

3. Determination of Monomer Reactivity Ratios

Based on the random copolymerization of (S)-2-(1-Boc-amino-2-phenyl)ethyl- 2oxazoline (3) and EtOx, the monomer reactivity ratios of $\mathbf{3}$ and EtOx were determined by linear regression analysis according to the Fineman-Ross (FR) method. ${ }^{1}$ The FR equation is given below:

$$
\frac{1-f}{F}=\frac{f}{F^{2}} r_{2}-r_{1}
$$

where r_{1} and r_{2} are the reactivity ratios of $\mathbf{3}$ and EtOx and F and f represent the feed molar ratio of $\mathbf{3}$ to EtOx and the corresponding molar ratio of copolymer composition, respectively. The value of $\frac{1-f}{F}$ should be in a linear relationship with $\frac{f}{F^{2}}$ theoretically. The slope could be calculated as r_{2} and the intercept was considered as $-r_{1}$. Figure S 7 a shows the FR linear extrapolation plot for copolymerization of $\mathbf{3}$ and EtOx via the polymerization data listed in Table S1. The reactivity ratios of $\mathbf{3}\left(r_{1}\right)$ and EtOx $\left(r_{2}\right)$ were calculated to be 0.044 and 2.832 , respectively.

Figure S5. FR plot for the copolymerization of $\mathbf{3}$ and EtOx at low conversion.

Table S1. FR parameters for copolymerization of $\mathbf{3}$ with EtOx at low conversion. ${ }^{\text {a. }}$

Entry	\boldsymbol{F}	$\boldsymbol{f}^{\mathbf{b}}$	$\frac{f}{F^{2}}$	$\frac{1-f}{F}$	Conversion rate (\%) ${ }^{\mathbf{c}}$
	2.500	0.483	0.078	0.207	3.2
2	1.670	0.362	0.130	0.383	4.7
3	1.000	0.283	0.283	0.717	5.9
4	0.600	0.202	0.561	1.330	6.6
5	0.400	0.118	0.734	2.202	8.1

${ }^{\text {a }}$ Conditions: $\mathrm{I}=\mathrm{Sc}(\mathrm{OTf})_{3} ;[\mathrm{M}]_{0, \text { total }} /[\mathrm{I}]_{0}=100,[\mathrm{M}]=2 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{CH}_{3} \mathrm{CN}, 90^{\circ} \mathrm{C} .{ }^{\mathrm{b}}$ Calculated by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$. ${ }^{\mathrm{c}}$ Isolated yield.

4. DLS and TEM Measurements

Figure S6. TEM images of aqueous solutions of $\mathbf{7 a}, \mathbf{7 b}, \mathbf{7 d}$, and $\mathbf{7 e}$; see Table 3 .

Figure S7. DLS results of $7 \mathbf{c}$ aq. solution ($1 \mathrm{mg} / \mathrm{mL}$) before and after addition of (a) cyclohexanone ($\sim 0.2 \mathrm{mg} / \mathrm{mL}$) and (b) TFA ($1 \mu \mathrm{~L} / \mathrm{mL}$).

5. HPLC Analysis

		1 [modified by hplc]	30.0		-1	
No.	Ret. Time/min	Peak Name	Height/mAU	Area/mAU* ${ }^{\text {min }}$		Rel. Area/\%
1	21.91	1\#	151.894	95.055		5.22
2	26.95	2\#	159.086	132.068		7.25
3	29.34	3\#	305.176	262.831		14.43
4	39.02	4\#	1231.101	1331.268		73.10
Total:			1847.256	1821.222		100.00

Figure S8. A representative HPLC analysis of the aldol products. Mobile phase: n-hexane:
$i \mathrm{PrOH}=1: 9,0.8 \mathrm{~mL} / \mathrm{min}$.

Ref.:

1. Fineman, M.; Ross, S.D. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 1950, 5, 259-262.
