A Pseudopeptide Polymer Micelle Used for Asymmetric Catalysis of the Aldol Reaction in Water

Keyuan Liu, Long Ye, Yao Wang, Ganhong Du, Liming Jiang *

MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University, Hangzhou 310027, China

* Correspondence: cejlm@zju.edu.cn

1. Structural Characterization of the Monomer 3

Figure S1. ¹H NMR spectrum of 3 (CDCl₃, 400 MHz).

Figure S3. ESI-MS of 3.

2. SEC Characterization of Copolymers

Figure S4. SEC curves of diblock copolymers (a) and random copolymers (b).

3. Determination of Monomer Reactivity Ratios

Based on the random copolymerization of (S)-2-(1-Boc-amino-2-phenyl)ethyl- 2-oxazoline (**3**) and EtOx, the monomer reactivity ratios of **3** and EtOx were determined by linear regression analysis according to the Fineman–Ross (FR) method.¹ The FR equation is given below:

$$\frac{1-f}{F} = \frac{f}{F^2}r_2 - r_1$$

where r_1 and r_2 are the reactivity ratios of **3** and EtOx and *F* and *f* represent the feed molar ratio of **3** to EtOx and the corresponding molar ratio of copolymer composition, respectively. The value of $\frac{1-f}{F}$ should be in a linear relationship with $\frac{f}{F^2}$ theoretically. The slope could be calculated as r_2 and the intercept was considered as $-r_1$. Figure S7a shows the FR linear extrapolation plot for copolymerization of **3** and EtOx via the polymerization data listed in Table S1. The reactivity ratios of **3** (r_1) and EtOx (r_2) were calculated to be 0.044 and 2.832, respectively.

Figure S5. FR plot for the copolymerization of 3 and EtOx at low conversion.

Table S1. FR parameters for copolymerization of 3 with EtOx at low conversion.^{a.}

Entry	F	$f^{\mathfrak{b}}$	$\frac{f}{F^2}$	$\frac{1-f}{F}$	Conversion rate (%) ^c
1	2.500	0.483	0.078	0.207	3.2
2	1.670	0.362	0.130	0.383	4.7
3	1.000	0.283	0.283	0.717	5.9
4	0.600	0.202	0.561	1.330	6.6
5	0.400	0.118	0.734	2.202	8.1

^a Conditions: I = Sc(OTf)₃; $[M]_{0,total}/[I]_0 = 100$, $[M] = 2 \text{ mol/L in CH}_3\text{CN}$, 90 °C. ^b Calculated by ¹H NMR (CDCl₃). ^c Isolated yield.

4. DLS and TEM Measurements

Figure S6. TEM images of aqueous solutions of 7a, 7b, 7d, and 7e; see Table 3.

Figure S7. DLS results of **7c** aq. solution (1 mg/mL) before and after addition of (**a**) cyclohexanone (~0.2 mg/mL) and (**b**) TFA (1 μ L/mL).

5. HPLC Analysis

Figure S8. A representative HPLC analysis of the aldol products. Mobile phase: *n*-hexane: *i*PrOH = 1:9, 0.8 mL/min.

Ref.:

1. Fineman, M.; Ross, S.D. Linear method for determining monomer reactivity ratios in copolymerization. *J. Polym. Sci.* **1950**, *5*, 259–262.