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Abstract: Porous organic polymers (POPs) are highly versatile materials that find applications in
adsorption, separation, and catalysis. Herein, a feasibility study on the design and synthesis of POP
supports with a tunable pore structure and high ethylene-polymerization activity was conducted
by the selection of functional comonomers and template agents, and control of cross-linking degree
of their frameworks. Functionalized POPs with a tunable pore structure were designed and
synthesized by a dispersion polymerization strategy. The functional comonomers incorporated
in the poly(divinylbenzene) (PDVB)-based matrix played a significant role in the porous structure
and particle morphology of the prepared polymers, and a specific surface area (SSA) of 10–450 m2/g,
pore volume (PV) of 0.05–0.5 cm3/g, bulk density with a range of 0.02–0.40 g/cm3 were obtained by
the varied functional comonomers. Besides the important factors of thermodynamic compatibility of
the selected solvent system, other factors that could be used to tune the pore structure and morphology
of the POP particles have been also investigated. The Fe3O4 nanoaggregates as a template agent
could help improve the porous structure and bulk density of the prepared POPs, and the highly
cross-linking networks can dramatically increase the porous fabric of the prepared POPs. As for the
immobilized metallocene catalysts, the pore structure of the prepared POPs had a significant influence
on the loading amount of the Zr and Al of the active sites, and the typically highly porous structure
of the POPs would contribute the immobilization of the active species. High ethylene-polymerization
activity of 8033 kg PE/mol Zr h bar was achieved on the POPs-supported catalysts, especially when
high Al/Zr ratios on the catalysts were obtained. The performance of the immobilized metallocene
catalysts was highly related to the pore structure and functional group on the POP frameworks.

Keywords: porous organic polymer (POP); metallocene catalyst; ethylene polymerization; pore structure

1. Introduction

Porous organic polymers (POPs) have received a staggering degree of attention in various research
areas, including adsorption, separation, and heterogeneous catalysis, owing to their huge surface area,
tunable pore size, flexible synthetic strategy, and readily modifiable functionality [1–9]. Numerous
studies on these porous organic materials, including covalent organic frameworks (COFs) and porous
coordination polymers (PCPs) or metal-organic frameworks (MOFs), as olefin polymerization-catalyst
supports and mobilization procedures have been investigated [10–12]. Unlike inorganic supports, such
as silica gel, zeolites, molecular sieves, which need complex chemical treatments to get rid of acidic
groups on their surfaces and present residual inorganic fragments within the produced polyolefins
that may affect their mechanical and optical properties [13–16], POPs offer significant advantages over
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their inorganic equivalents: they provide a much closer analogue to the environment prevailing in the
homogeneous polymerization, do not require a fastidious immobilization procedure, and should not
significantly affect the final polyolefin properties [17–20].

The rich variety of organic building blocks combined with the diverse polymerizations has led to
various types of novel POPs [21–25], and POPs could be divided into two categories, amorphous and
crystalline, according to the crystalline tendency of the molecular chains of the polymers. Generally,
the pore structure and topologies of the crystalline POPs are well-defined, including crystalline
covalent organic frameworks (COFs) and porous coordination polymers (PCPs) or metal-organic
frameworks (MOFs) [26–28]. The absence of functional groups such as catalytic sites, however, renders
them relatively nonspecific, as porous materials for applications such as heterogeneous catalysis and
others, and the targeted functional groups should be incorporated in the organic frameworks in order
to accommodate active sites [21]. Pre- and postsynthetic modification methods were developed
to functionalize the crystalline POPs. Unfortunately, the routes and methods of preparation of
immobilized olefin polymerization catalysts are usually complex and the polymerization activities
are unsatisfactory compared to other industrial catalysts [29,30]. Furthermore, the incorporation of
functional groups and active sites, in turn, would cause defects on the frameworks broadening the
pore-size distribution of the pore structure [21,31].

Amorphous POPs including polymers of intrinsic microporosity (PIMs), highly cross-linked
networks (also called microporous polymer networks, MPNs), and conjugated microporous polymers
(CMPs) are formed under kinetic control and show no long-range molecular order [32–34].
Typically, they have a wide range of pore-size distribution and unspecified topologies. The synthetic
strategy and the post modifications of this kind of POPs, however, are pretty flexible due to diverse
synthetic methods and suitable functional monomers to incorporate the active species of olefin
polymerization. The produced olefin catalysts immobilized on this kind of POPs are typically highly
active in terms of olefin (co)polymerization. In our previous work [35–37], we have reported that the
pore size and pore-size distribution of the produced HEMA-functionalized POPs are highly tunable
by a dispersion polymerization strategy, and the ethylene polymerization and copolymerization
activities of the produced POPs-supported metallocene catalysts are higher than their conventional
silica gel-supported counterparts; furthermore, the molecular chain structure of the polyolefin could
be tailored due to the confinement effect of the nanopores of the POPs-supported catalysts during the
process of the olefin polymerization. Therefore, it would be beneficial to design and prepare porous
organic polymers with a controlled pore structure and functional groups to incorporate the active sites
for olefin polymerization-catalyst supports.

In this work, we have investigated the design and preparation of 2-hydroxypropylmethacrylate
(HPMA), glycidyl methacrylate (GMA), vinylbenzyl chloride (VBC), and dual-functional
comonomer-functionalized POPs with a controllable pore structure, surface morphology, and bulk
densities through a dispersion polymerization strategy. The POPs-supported metallocene catalysts
showed excellent ethylene-polymerization activities, and the pore structure of the POPs had significant
influence on polymerization activity.

2. Materials and Methods

2.1. Materials

GMA, HPMA, and 2-hydroxyethylmethacrylate (HEMA) (≥98%) were passed through an oxide
aluminum column (neutral) to remove the inhibitor before use. Divinylbenzene (80%/55%, mixtures
of isomers) and styrene (≥98%) were treated with an NaOH solution (10% weight) to remove the
inhibitor, and were washed with distilled water until neutralization. VBC (≥97%) was passed through
an active oxide aluminum column before use. 2,2′-Azo-bis-isobutyronitrile (AIBN) (≥99%), poly(vinyl
alcohol) (PVA, 1788), iron oxide(II,III) (Fe3O4) nanopowder (99.5%, 20 nm beads), and ethanol (≥99.7%)
were used without further purification. All these above agents were purchased from Aladinn Reagent,
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Shanghai, China. Bis (n-butylcyclopentadienyl) zirconium dichloride ((n-BuCp)2ZrCl2) (≥98%) was
purchased from DAL CHEM (Nizhny Novgorod, Russia) and methylaluminoxane (MAO) (10% toluene
solution) was provided from PetroChina, Lanzhou, China and they were used directly as received.

2.2. Preparation of the Functionalized POP Supports

Functionalized POP particles were synthesized according to a dispersion polymerization or
precipitation polymerization method by previous references [12,35]. Briefly, 130 mL solvent was
charged into a 250 mL glass reactor, then 5.0 g (0.0384 mol) of divinylbenzene (DVB) (80%) and
0.0256 mol functional monomer(s) (HEMA, HPMA, GMA, or VBC) and 2 wt % of PVA were added into
the reactor when stirring. After the monomers and the stabilizer were dissolved in the solution, 2 wt %
of the initiator AIBN was added into the reactor to initiate the free-radical polymerization at 70 ◦C for
1–4 h. After aging for 3–6 h at 80 ◦C, the product was purified by ethanol/distilled water-washing and
vacuum-dried for further use. When Fe3O4 nanopowder was used as a template to prepare the target
product, the similar procedure was adopted except that 3 wt % Fe3O4 nanoaggregates were added
into the reactor before the addition of the initiator AIBN, and that the prepared particles were washed
twice with hydrochloric or sulfuric acid for 1–2 h to remove the template before the products were
washed and vacuum-dried to remove impurities.

2.3. Catalyst Immobilization

The single-site catalyst was immobilized on the prepared functionalized POPs after they were
vacuum-dried. All supporting procedure was free from air and moisture under high-purity nitrogen
according to a previous work [35]. Typically, in a 250 mL glass reactor, 3.0 g treated functionalized
POP particles and 80 mL toluene, and a 20 mL MAO solution were charged into the reactor and stirred
at ambient temperature for 1–2 h. Then, 0.30 mmol (n-BuCp)2ZrCl2 was added to the MAO-treated
POPs, and the suspension was kept stirring at –20 ◦C for 2–3 h. Then, the obtained solid was washed
and vacuum-dried to get the final supported metallocene catalyst.

2.4. Characterization

Nitrogen sorption was analyzed on a Nova 2000e (Quantachrome Instruments, Boynton Beach,
FL, USA) at liquid nitrogen (77.3 K). The POP samples were tested in a glass tube before the samples
were vacuum-dried at 120 ◦C for 12 h to remove adsorbed materials, and the supported catalysts
were directly tested under N2 protection without heating for desorption. Al and Zr loading of the
supported catalysts were performed on a VISTA ICP-MPX (VARIAN, Palo Alto, CA, USA). 0.1 g
catalyst was dissolved in a 10 mL aqua regia by heating, and then the solution was metered to 100 mL
constant volume using 2% HCl solution. Al and Zr loading contents were obtained by the standard
curves of their characteristic peaks. IR analysis was performed on a NEXUS 670 FTIR (Glendale, WI,
USA). The surface morphology of the POP samples was conducted on a scanning electron microscope
(SEM, Philips, XL20, Amsterdam, The Netherlands). The functionalized POP samples were mounted
on electric glue, then sprayed with a thin layer of gold in vacuum before testing.

3. Results and Discussion

3.1. Preparation of Poly(divinylbenzene) (PDVB)-Based Functionalized Porous Organic Polymers

In this work, the emphasis focus on the design and synthesis of potential DVB-based
porous organic polymer supports with different functional comonomers for metallocene catalysts
by a dispersion polymerization method [12,35], and the suitable polymer supports, like the
inorganic counterparts, generally contain relatively high specific surface area (SSA) and porosity
(SSA ≥ 100 m2·g−1, PV ≥ 0.2 cm3·g−1) with good morphology and suitable bulk density
(0.2–0.4 g·cm−3). A series of functionalized PDVB-based POP particles were prepared using St, HEMA,
HPMA, GMA, and VBC as comonomers.
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The schematic illustration of synthesis of functionalized PDVB particles is shown in Figure 1.
The porosity results based on N2 sorption results and bulk density are listed in Table 1. Non Local
Density Functional Theory (NLDFT or DFT) simulation was adopted using N2-carbon kernel at 77 K
based on a slit-pore model to evaluate the pore textural structure, especially the pore-size distribution
of the prepared POP samples.
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Table 1. Characterization of poly(divinylbenzene) (PDVB)-based functional polymer from N2 sorption results and bulk density.

No. Functional
Comonomer (FC) Solvent Divinylbenzene

(DVB)
FC/DVB

(Molar Ratio)
Template

Agent

Specific Surface
Area(Multi Point

BET) [m2/g]

Total Pore
Volume
[cm3/g]

Average Pore
Diameter

[nm]

Bulk Density
g/cm3

1 St EtOH/H2O = 10:1 55% 5:4 - 41.6 0.0836 8.03 0.08

2 – EtOH/H2O = 9:1 80% - - 178 0.396 8.89 0.02

3 HEMA EtOH/H2O = 9:1 80% 2:3 - 417 0.434 4.16 0.20

4 HPMA EtOH/H2O = 9:1 80% 2:3 - 430 0.447 4.16 0.24

5 GMA EtOH/H2O = 9:1 80% 3:5 - 17.1 0.040 9.34 0.08

6 VBC EtOH/H2O =9:1 80% 0.52:1 - 50.9 0.104 8.21 0.05

7-1 HPMA EtOH/H2O = 9:1 80% 2:3 Fe3O4-20 nm
3 wt % 412 0.420 4.08 0.25

7-2 - 441 0.480 4.35 0.24

8-1 HEMA/St
(FC1/FC2) EtOH/H2O = 9:1 80% FC1/FC2/DVB

= 1.0/0.7/1.15
Fe3O4-20 nm

3 wt % 199 0.299 6.01 0.30

8-2 215 0.301 5.59 0.29

9 HEMA/St
(FC1/FC2) EtOH/H2O = 9:1 80% 1.0/0.7/1.15 - 183 0.296 6.45 0.22

10 HEMA/VBC EtOH/H2O = 9:1 80% 1:0.29:1.5 - 90.8 0.122 5.32 0.16

11 HEMA/VBC EtOH/H2O = 9:1 80% 1:0.56:1.19 *a - 15.1 0.0383 10.1 0.39

12 HEMA/VBC ethanol 80% 1:0.32:1.19 *a 4.88 0.0131 10.7 0.33

13 HEMA/VBC ethanol 80% 1:0.147:1.19 - 210 0.244 4.63 0.28

14 HEMA/VBC ethanol 80% 1:0.17:1.5 - 380 0.400 4.21 0.22

*a The reaction solution after stirring is not homogeneous system due to bad thermal compatibility. HEMA: 2-hydroxyethylmethacrylate; HPMA: 2-hydroxypropylmethacrylate; GMA:
glycidyl methacrylate; VBC: vinylbenzyl chloride.
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3.2. The Influence of Functional Comonomers on the Pore Structure of POPs

The influence of functional comonomers on the formation of a nanoporous structure was
investigated firstly. As shown in Figure 2, quite different N2 sorption isotherms (Samples 1, 3, 4,
5, and 6 with St, HEMA, HPMA, GMA, VBC as functional comonomers, respectively, and Sample 2:
DVB only) mean that quite different porous structure were produced by dispersion polymerization in
ethanol/deionized water (V:V = 9:1) from these different functional comonomers. The PDVB-based
POPs prepared with functional comonomers such as HEMA and HPMA are highly porous, and the
PDVB without other functional comonomers is moderately porous, while the POPs synthesized with
GMA, VBC, and St (actually with no other functional group and non-cross-linking ability compared
with DVB) are poorly porous. Therefore, the type of the chosen functional comonomer in the synthesis
is an important factor of tuning the pore structure of prepared POPs. From the nitrogen sorption
isotherms of these functional POPs, we can also reasonably infer that two major factors of the used
comonomers could influence the porous structure of the prepared POPs. The first one is the functional
group on the selected comonomer; the polarity of the prepared POPs were changed when changing the
functional comonomer, which would vary the thermal compatibility between the prepared POPs with
the solvent system, and the porous structure could be adjusted by the thermodynamic compatibility.
Generally, a highly porous structure was produced from a thermodynamic compatible system, and
a nonporous structure was generated from systems with bad thermodynamic compatibility, which
could be explained by the classical pore-formation mechanism of porous polymer microspheres.
The second factor is the cross-linking content in the prepared functional POPs; when a kind of
functional comonomer with only one polymerizable double bond is added, the cross-linking degree is
actually decrease.
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Figure 2. N2 sorption isotherms of porous organic polymers synthesized with different
functional comonomers.

Due to the amorphous nature of the prepared functional POPs, which make it impossible to
characterize by X-ray crystallography, an NLDFT simulation was used to evaluate the pore size and
pore-size distribution of these POPs. From Figure 3, we can see that the pore-size abundance of these
POPs mainly focuses on a relatively wide range from 1 to 10 nm, except that GMA and styrene as
comonomers resulted in nearly nonporous materials. HPMA and HEMA-functionalized PDVB are
highly porous with well-defined cavities mainly scattering in micropores and narrow mesopores from
1.1 to 4.5 nm, and the cumulative SSA and PV of the HPMA- and HEMA-functionalized PDVB are
about 250 m2/g and 0.264 cm3/g, and 240 m2/g and 0.256 cm3/g, respectively. The mode value (the
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highest peak) of pore diameter from the NLDFT analysis of the HPMA-functionalized PDVB is 1.3 nm
in the range of micropores in the SSA and PV pore-size-distribution curves, and the mode values of pore
diameter of HEMA-functionalized PDVB are 1.4 nm in the pore-size distribution of SSA and 2.2 nm
in the pore-size distribution of PV in the range of micropores and narrow mesopores. Furthermore,
we can see the larger pore size from above 4.5 nm contributes more to total pore volume than surface
area. In contrast, the mode value of pore diameter of the VBC-functionalized PDVB is about 2.1 nm,
which is similar to that of the PDVB, and the similar pore-size distribution could be explained by their
approximate solubility parameters, and the decrease of abundance of pore-size distribution, despite
similar pore-size distribution, could be explained by the worse thermal compatibility of VBC with the
mixture solvent and the decrease of cross-linking degree by adding the non-cross-linking functional
comonomer VBC.
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As shown in Table 1, HEMA and HPMA are good functional comonomers to prepare porous
polymers for catalyst support, with the highly porous structure of Sample 3 (SSA = 417 m2/g,
PV = 0.434 cm3/g) and Sample 4 (SSA = 430 m2/g, PV = 0.447 cm3/g), while VBC, St, and GMA
are typically bad for synthesis of porous polymers, at least in this mixture solvent, and they also cause
low bulk density (<0.1 g/cm3) due to their poor thermal compatibility with the dispersion solvent.
From the above pore-size-distribution curves, we can also reasonably conclude that the increase of
average pore diameter from about 4 nm to 8 nm of poorly porous polymers is caused mainly by the
decrease of abundance of pore-size distribution in the range of micropores and narrow mesopores.
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3.3. The Synthesis of PDVB-Based POPs with Dual Functional Comonomers

Two functional comonomers, HEMA and VBC (or styrene), with different thermal compatibility
with the dispersion solvent were used to tune the pore structure, bulk density, and particle morphology.
The pore structure of the prepared PDVB-based POPs with dual functional comonomers could be
controllable by tuning the HEMA/VBC/DVB molar ratio. Three samples of POPs (Samples 12, 13,
and 14) were synthesized in different HEMA/VBC/DVB molar ratios, and three types of nitrogen
isotherms were obtained as seen in Figure 4. When the functional comonomer VBC was in a relatively
high molar ratio, the comonomer systems are inhomogeneous in ethanol dispersion solvent due to the
bad solubility of VBC, so Sample 12 wasn’t synthesized in dispersion polymerization, but in suspension
polymerization, and nonporous isotherm was obtained with relatively high bulk density 0.33 g/cm3.
By decreasing the VBC molar ratio, the HEMA/VBC/DVB systems could be homogeneously dispersed
in ethanol, and porous isotherms were obtained in Samples 13 and 14.
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Comparing Sample 13 with Sample 14 prepared in dispersion polymerization, we could see
that the PDVB-based POPs with dual functional comonomers HEMA and VBC have a similar pore
structure with characteristic peaks (around 1.3, 2.2, and 3.8 nm right shift compared with S3/S4 of
3.6 nm in this peak) in their pore-size-distribution curves as, in the HEMA-functionalized PDVB, the
HEMA content or VBC added in ethanol could be used to tune the abundance in triple peaks of pore
distribution. From Figure 5, when decreasing the overall content of HEMA (cross-linking degree in the
prepared POPs increased actually), the abundance in the micropores and narrow mesopores (roughly
1–5 nm) increases. The SSA and PV witness a rapid increase from Sample 13 with SSA of 210 m2/g,
PV of 0.244 cm3/g to Sample 14 with SSA of 380 m2/g, PV of 0.400 cm3/g. Another important role that
the dual functional comonomers played is that this dual functional comonomer system could adjust
the bulk density and morphology of prepared POPs. As seen in Table 1, the bulk density of Sample
13 had a relatively high bulk density of 0.28 cm3/g, which is hard to obtain using a HEMA/DVB
comonomer system given no other template agent was added. We will discuss the morphology of the
prepared POPs in detail later.
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3.4. The Influence of a Template Agent on the Pore Structure of POPs

We have reported in our previous research [12] that the template agent is a useful tool to tune the
pore structure, bulk density, and morphology of the prepared POPs. In the prepared PDVB-based POPs
with dual functional comonomers HEMA and styrene, iron oxide (II, III) aggregates of 20 nm were used
as a template to tune their pore structure and morphology. As seen in Table 1, the iron oxide (II, III)
template could help to improve the specific surface area and the total volume in the HEMA/St/DVB
system (Samples 8-2 and 9), increasing the SSA from 183 to 215 m2/g and the PV from 0.296 to
0.301 cm3/g. Furthermore, the bulk density of the prepared poly(HEMA-co-St-co-DVB) particles
increased obviously from 0.22 to 0.29 g/cm3. As we explained, the particle-forming mechanism using
a template agent in our previous work [12], when a hydrophilic metal oxide was used as a template
agent, the hydrophilic functional comonomers would adsorb on the interfaces of nanoaggregates of the
iron oxide (II, III). After a free-radical initiator initialized the copolymerization on their interfaces, the
poly(HEMA-co-St-co-DVB) particles were prepared around the nanoaggregates of iron oxide (II, III).
As the HEMA, styrene, and DVB monomers continued to diffuse and polymerize on the surface of the
metal oxide, the POP particles continuingly grew larger and finally the metal oxide or nanoaggregates
were dispersed in the matrix of the prepared POPs. After acid etching, the metal oxide was removed
and the final POPs were obtained. From Figure 6, we can observe an overall increase of SSA and PV
of Sample 8-2 when the nanoaggregates of iron oxide (II, III) in Sample 8-1 was removed, while the
pore-size-distribution curves of the three samples (8-1/8-2/9) kept similar. These results could be
reasonably explained by this proposed particle-forming mechanism of the template agent. Similar
results are also observed when the nanoaggregates of iron oxide (II, III) were used as a template agent
in the synthesis of poly(HPMA-co-DVB) particles (see Samples 7-1/7-2/4).
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3.5. Cross-Linking Degree and Solvent on the Pore Structure of POPs

As discussed above, the cross-linking degree of the prepared POPs could be identified as an
important factor to tune the pore structure of the amorphous POPs. The solubility parameters of St and
DVB (55% and 80%) are very close, and their chemical properties are also similar to each other, except
their cross-linking degree produced in the POPs. When decreasing the content of cross-linking degree
from DVB (80%) to St/DVB (55%) (5:4), as seen from Samples 1 and 2 (DVB only) in Figures 2 and 3,
Sample 1 became less porous and the characteristic peak around 2.1 nm in the pore-size distribution
decreased dramatically compared to the highly cross-linked PDVB networks.

The solvent system used was also a key factor in influencing the pore size and the pore-size
distribution, the bulk density, and surface morphology of the target polymer. This factor was discussed
in detail in our previous work [35]; the pore structure and morphology of the prepared polymer are
highly related with the thermodynamic compatibility evaluated by the difference of the solubility
parameters between the polymer and the solvent system. Typically, it is very important to match the
functional comonomers/DVB system with suitable solvent(s) in the design and synthesis of potential
POPs as suitable metallocene-catalyst support.

3.6. IR Analysis

The IR spectra of the five prepared functionalized PDVB samples (1, 5, 7-2, 12, and 14 with St,
GMA, HPMA, HEMA/VBC, and HEMA/VBC as functional comonomers, respectively) are shown
in Figure 7. We can observe that the bands in 1450 and in 2930 cm−1 exist in all these samples
which is the inplane-bending or twist-bending mode, and the stretching vibration of
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methylene(–CH2–), respectively. The peak around 1725 cm−1 is the sketching mode of C=O in the 4
samples (5, 7-2, 12, and 14) with GMA, HPMA, and HEMA units in their own network. Generally,
the bands in 1450 and in 2930 cm−1 can be used to calibrate relative content of the C=O functional
group in these functionalized PDVB samples by peak area or peak height contrast with the peak
around 1725 cm−1 [38,39]. Furthermore, the peak in 3030 cm−1 due to the stretching vibration mode of
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(C–H) inbenzene was observed obviously in the P(St-co-DVB) Sample 1. In the GMA-functionalized
PDVB (Sample 5), except from the peak around 1725 cm−1, the bands around 910 and 845 cm−1

were also observed, which are the characteristic peaks of the asymmetic vibration of the epoxy group
of GMA units, and the lack of absorbance in the range from 3600 to 3200 cm−1 proved that GMA
units are incorporated into the P(GMA-co-DVB) network by C=C double bond, not by ring-opening
polymerization of the epoxy group in GMA. In the P(HEMA-co-DVB-co-VBC) systems (Samples 12
and 14), the peak around 1265 cm−1 could be attributed to the characteristic absorption peak of methyl
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chloride linked to benzene ring, and this peak was stronger in Sample 12 than in Sample 14 due to the
higher adding ratio of the VBC comonomer.
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3.7. Bulk Density and Surface Morphology of the POPs

By the design of the PDVB-based functionalized POPs with varied functional comonomer(s),
template agent, and solvents, a wide range of bulk density of the prepared POPs (0.02–0.39 g/cm3)
could be obtained as seen from Table 1. In the ethanol/deionized water (9:1) mixture solvents, styrene,
VBC, GMA, and DVB and their own polymer networks exhibited bad thermodynamic compatibility
with the solvents system, which caused the early-phase separation of the prepared POPs and low
bulk density (0.02–0.08 g/cm3). The SEM images of representative POPs were shown in Figure 8.
From Figure 8, we can see that the P(St-co-DVB) and the P(DVB) particles consist of aggregates of
nano-microspheres and their low bulk density was caused by fluffy stacking of the microspheres.
When HEMA and HPMA functional comonomers were incorporated into the PDVB networks, the
bulk density of the P(HEMA-co-DVB) and P(HPMA-co-DVB) particles increased dramatically, from
0.02 to above 0.20 g/cm3, due to their good thermodynamic compatibility with the same solvents
system, and the SEM image of S3 proved that the dramatic increase of bulk density was due to
the compact stacking of the microspheres. Furthermore, when the HEMA functional comonomer
was incorporated into the P(St-co-DVB) or P(VBC-co-DVB) networks, it could also help improve the
thermodynamic compatibility with the selected solvents system; the prepared P(HEMA-co-St-co-DVB)
or P(HEMA-co-VBC-co-DVB) particles obtained relatively high bulk density (0.16–0.28 g/cm3) by
dispersion polymerization. As seen from the SEM image of Sample 14, the highly porous structure
and compact stacking of the aggregates was observed due to their good thermodynamic compatibility
with the chosen solvents. Samples 11 and 12 were prepared in an inhomogeneous system due to the
bad solubility of VBC in the used solvents system, and higher bulk density (0.33–0.39 g/cm3) was
obtained with a bad porous structure (Figure 8e,f) in suspension polymerization.
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Figure 8. Scanning electron microscope images of functionalized POP particles. (a) The P(DVB) particles
of Sample 2, (b) the P(st-co-DVB) particles of Sample 1, (c,d) the P(HEMA-co-DVB) particles of Sample
3, (e,f) the P(HEMA-co-VBC-co-DVB) particles of Sample 11, (g,h) the P(HEMA-co-VBC-co-DVB)
particles of Sample 14.

3.8. Ethylene Polymerization of Supported Metallocene Catalysts

The metallocene-catalyst systems ((n-BuCp)2ZrCl2/MAO) were immobilized on the prepared
PDVB-based POPs, then the supported (n-BuCp)2ZrCl2/MAO@POPs catalysts were evaluated for
ethylene polymerization in a slurry process reactor. The supported catalysts were characterized
for zirconium- and aluminium-loading content, and the results of Zr, Al/Zr (molar ratio) and
ethylene polymerization were shown in Table 2. From Table 2, we can see that quite different Zr
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and Al/Zr values were obtained, and the Zr- and Al-loading content were highly dependent on
the pore structure of the prepared POPs, when MAO can be effectively immobilized on the surface
of the prepared functionalized POPs. High loading content of Zr and Al were obtained on highly
porous POPs—Samples 4 and 14 with SSA of 430 and 380 m2/g, respectively, while low loading
content Zr and Al were obtained on badly porous POPs—Samples 5 and 12 with SSA of 17.1 and
4.88 m2/g, respectively. The ethylene-polymerization results show that high polymerization activity
and productivity were obtained on the immobilized catalysts with a high Zr loading content and Al/Zr
molar ratio. Samples 4 and 14-supported catalysts obtained high polymerization of 8033 and 7152 kg
PE/mol Zr h bar, respectively. Compared with Sample 4, Sample 5-supported catalysts obtained low
polymerization activity and productivity due to low Al/Zr- and Zr-loading content, and the Sample
12-supported catalyst exhibited no polymerization activity due to near lack of Zr loading on its badly
porous surface.

The bulk density of the obtained PE could be explained by the replicating mechanism of the
polyethylene on the support in the polymerization process proposed by Fink and coworkers [40,41].
The higher the bulk density of the prepared POPs is, the higher the bulk density of the obtained PE
from them can be achieved. The PE from Sample 4 (0.24 g/cm3) obtained the highest bulk density of
0.30 g/cm3, while the PE from Sample 5 (0.08 g/cm3) obtained the lowest bulk density of 0.11 g/cm3.

Table 2. Ethylene polymerization results (catalyst: (n-BuCp)2ZrCl2/MAO@POPs) *b.

No. Zr
(µmol/g)

Cat
(mg)

Al/Zr Molar
Ratio

Yield
(g)

Activity Kg
PE/mol Zr h bar

Productivity
g PE/g cat h

Bulk Density
g/mL

S4 15.6 208 272 39.1 8033 376 0.30
S5 2.3 192 179 1.45 2189 15.1 0.11

S12 0.6 184 247 - - - -
S14 16.7 211 254 37.8 7152 358 0.29

*b Slurry polymerization condition: 3 bar ethylene pressure in 800 mL reactor of stainless steel, 350 mL hexane,
80 ◦C, 2 mL (1 M in hexane) TIBA (scavenger), polymerization time: 30 min.

From the polymerization results, we can see that the support plays a significant role on the
supported metallocene catalyst and the polyolefin product. Therefore, the design and synthesis also is
critical to the supported catalysts and the polyolefin product, especially on how to control the pore
structure and the bulk density by choosing suitable functional comonomer(s) on the PDVB backbone.

4. Conclusions

A feasibility study on the design and synthesis of POP supports with a tunable pore structure
and high performance of ethylene polymerization was conducted by the selection of functional
comonomers, template agent, and control of the cross-linking degree of their frameworks. Functional
porous organic polymers with a tunable pore structure and varied particle morphology were designed
and synthesized, and the pore-size distributions of POPs are generally wider than the crystalline
polymers, and the micropores and the mesopores could be tuned at the same time by the dispersion
polymerization method. A single functional comonomer or dual comonomers in the PDVB-based POPs
played a significant role in the porous structure and particle morphology of the prepared polymers,
and different N2 isotherms and pore structure with SSA of 10–450 m2/g, PV of 0.05–0.5 cm3/g,
and bulk density with a range of 0.02–0.40 g/cm3 were obtained by the varied functional POPs,
mainly due to their different functional groups and thermodynamic compatibility with the selected
solvent system. Furthermore, the Fe3O4 nanoaggregates as a template agent could improve the
porous structure and bulk density of the prepared POPs, and the highly cross-linking networks
can dramatically increase the porous structure of the prepared POPs. The pore structure of the
prepared POPs had a profound influence on the loading amount of the Zr and Al of the active sites,
and the typically highly porous structure of the POPs would contribute the immobilization of the
active species. High ethylene-polymerization activities of 8033 and 7152 kg PE/mol Zr h bar were
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achieved on the POPs-supported catalysts, especially when high Al/Zr ratios on the catalysts were
obtained. By replicating the effect, the produced PE obtained higher bulk densities from the POPs
with higher bulk densities. Therefore, it is a facile and practical approach to tailor the active sites of the
metallocene catalysts and polyolefin particle morphology through the design of pore structure and
surface morphology of the prepared POPs.
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