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Abstract: Bulk solutions of therapeutic proteins are often frozen for long-term storage. During the
freezing process, proteins in liquid solution redistribute and segregate in the interstitial space between
ice crystals. This is due to solute exclusion from ice crystals, higher viscosity of the concentrated
solution, and space confinement between crystals. Such segregation may have a negative impact on
the native conformation of protein molecules. To better understand the mechanisms, we developed a
phase-field model to describe the growth of ice crystals and the dynamics of freeze concentration
at the mesoscale based on mean field approximation of solute concentration and the underlying
heat, mass and momentum transport phenomena. The model focuses on evolution of the interfaces
between liquid solution and ice crystals, and the degree of solute concentration due to partition,
diffusive, and convective effects. The growth of crystals is driven by cooling of the bulk solution,
but suppressed by a higher solute concentration due to increase of solution viscosity, decrease of
freezing point, and the release of latent heat. The results demonstrate the interplay of solute exclusion,
space confinement, heat transfer, coalescence of crystals, and the dynamic formation of narrow gaps
between crystals and Plateau border areas along with correlations of thermophysical properties in
the supercooled regime.

Keywords: phase-field modeling; freeze concentration; space confinement; freezing of biologics;
ice crystals; supercooled water

1. Introduction

Understanding the mechanisms and process impacts of freezing on protein solutions is critical
in the pharmaceutical industry for the manufacturing of high quality biologics. During the freezing
process, the heat, mass, and momentum transport influence the size, shape, and growth rate of
ice crystals as well as the distribution of protein molecules in between. When a frozen product is
freeze-dried, the ice crystal size and distribution resulting from freezing determine the sublimation
kinetics during primary drying, and eventually the stability of the biologics [1–4]. Freeze concentration
occurs due to the exclusion of protein and other solutes from ice crystals and space confinement
between ice/freeze concentrate interfaces. Overall, the seeding or nucleation pattern and the freezing
rate control the growth of ice crystals. Current understanding is that at fast cooling rates, dendritic
crystals branch out quickly, trapping proteins among side branches of crystals to yield a more uniform
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protein distribution. In contrast, at slow cooling rates, protein molecules redistribute while cellular
(instead of dendritic) crystal structure forms, resulting in a more significant concentration polarization
as crystals continue to grow and coalesce. Freeze concentration and its impact on protein stability
is more prominent during large scale freezing. Although rapid freezing is likely advantageous
because of more uniform protein distribution in the frozen product, it can be difficult to achieve at
the manufacturing scale. Experimentally it has been observed that upon freezing the local thermal
and convective effects induced by phase transition, cooling, gravity, control of ice nucleation for
freeze-drying, and protein residence time in the freeze concentrates all have impacts on the process
performance and the distribution and stability of proteins [5–8].

Qualitative and quantitative analyses of the relevant dynamics in freeze concentration are
complicated by the coupling of thermal and multi-component mass transport, phase transition
physics, protein interactions with co-solutes, morphological change and the space confinement
effect, thermophysical properties at the supercooled regime, and molecular crowding and
protein-protein interactions. Although casting in conventional thermal manufacturing process is
a well-established technology, where the relevant physics such as dendritic growth, patern formation,
and microsegregation of pure and alloy systems has been studied extensively [9–15], the existing
theoretical models and experimental results are not readily applicable to describe freezing of protein
biologics. Even at the laboratory scale, only a few investigations on the phase transition of protein
solutions have focused on fundamental heat transfer, phase change, and computational fluid dynamics
simulations. Nakagawa et al. [16] proposed a thermal conduction model using the classical enthalpy
method to trace phase change and temperature distribution during freezing of mannitol and BSA
based solutions in a vial. Without further description of the growth dynamics of ice crystals, the
estimated sizes of crystals and the freeze-dried layer permeability correlate well with the freezing front
rate and temperature gradient in the frozen zone. Radmanovic et al. [17] modeled the heat transfer
involved in freezing of monoclonal antibody solution and evaluated the product quality based on the
size and polydispersity of the protein aggregates. Roessl et al. applied volume-of-fluid computational
fluid dynamics to simulate the freezing process and compared the results with measurements of
temperature and cryoconcentration fields [18]. On a smaller scale, Butler observed the solute profile
at the ice/freeze concentrate interface due to freeze concentration using optical interferometry [19].
Kaempfer and Plapp developed phase-field modeling of sublimation dynamics and relevant vapor
and thermal transport on the microstructure of dry snow and compared with microtomography
images [20]. van der Sman developed a phase-field model to simulate growth and suppression of
ice crystals in sugar solutions [21], and successfully incorporated polymer mean field theory into the
phase transition dynamics with simplified thermal effect. Huang et al. [22] revealed directional growth
of anisotropic ice crystals in ceramic colloidal suspensions, with the resulting porous material having
potential for biomedical applications such as functional materials for implants. These relevant studies
have only focused on either thermal or composition with phase transition in the freezing process,
however, at the mesoscale in particular, multiple physics are often convoluted in the phase transition
dynamics, requiring the inclusion of the effects of thermal, fluid flow, thermal mechanical response,
composition and changes of thermophysical properties into the analysis [23,24]. Here we propose a
new model to integrate these effects and provide mathematical descriptions and simulation of the
freeze concentration effect.

The phase-field method is an Eulerian approach that naturally resolves fusion, merging, splitting,
topological and morphological changes of dynamic interfaces and thermodynamic states of the
materials involved. The underlying concept of a smooth transition between phases and the contribution
of non-local or gradient energy was initially introduced by van der Waals in 1893 [25] to describe
liquid-vapor phase transition over a diffuse interface. A general phase transition process is driven
by the increase of entropy or reduction of free energy. The gradient effect due to spatial variation of
the phase-field function or order parameter eventually leads to a continuous phase-field equation
that describes the local state of the material, and can clearly distinguish the location of the transition
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interface between phases. This approach was further developed in many research areas in physics
and material sciences, known as Ginzburg-Landau free energy theory to describe superconductivity,
Allen–Cahn model to descibe transition dynamics of non-conserved phase field or order parameter,
Cahn–Hilliard model for conserved parameters such as density or concentration, and Model A/B
for isothermal and H for nonisothermal fluids near a critical state [26,27]. The phase-field function
is uniform within a homogeneous phase, but has a narrow and smooth transition profile across the
interface between phases. Rigorous derivation of phase-field equations for non-isothermal systems
is based on the principles of irreversible thermodynamics [28,29], in which the entropy functional
of the system, entropy transport equation, and the 2nd law of thermodynamics are the starting
point of derivation. The phase-field method has been widely applied to model dendritic pattern
formation in material sciences since the works of Kobayashi [9], Warren and Boettinger [10], Murray,
Wheeler, and Glicksman [11], and Karma and Rappel [12,13] in the 1990s. The transient evolution
of the solidification interfaces is driven by thermal gradient, interfacial instability, Gibbs–Thompson
kinetics, and anisotropic interfacial energy along with hydrodynamics effect, which all play an
important role in pattern formation, solute distribution, and coarsening and remelting of dendritic
microstructures [14,15,30,31]. The method has been further extended to address multi-component
problems with and without convective effect, and for a variety of applications in thermal fluid sciences
and applied mechanics including geohydraulics, fracture mechanics, multiphase flows, and reaction
engineering etc. [32–35]. In this paper we apply phase-field method to model freeze concentration of
protein solutions and observe concentration polarization without considering anisotropic dendritic
formation. Instead of anisotropic interfacial energy, the focus here is to couple the evolving dynamics
of crystals with fluid flow, heat transfer, protein diffusion, and the convective transport induced
by gravity effect and density variation across the moving ice/freeze-concentrate interface. In the
mesoscale domain, the cooling effect is simplified by using a representative bulk cooling rate, which
reduces the computational cost and potentially can be extended and integrated with multiscale analysis
including container configuration and experimental settings at a larger scale.

2. Theoretical Analysis

A challenge in the theoretical analysis is to compile relevant thermophysical properties of
protein solutions as in crystal or supercooled liquid state, including density, specific heat, thermal
conductivity, mass diffusivity, and dynamic viscosity. These physicochemical properties in general
depend on temperature and solute concentration, and the available measurements are very limited.
Here we consider sucrose solution to demonstrate the modeling results based on available data.
Although sucrose has very different properties than proteins, it is a very common excipient used
as a cryoprotectant in protein formulations, freeze concentration of sucrose may also impact
protein stability, and thus the investigation is very relevant to the biopharmaceutical industry.
The temperature–composition phase diagram of a binary model protein solution (e.g., sucrose and
water) at ambient pressure is shown in Figure 1a [6,36]. The freezing curve (liquidus) shows freezing
point depression, and the extension of the freezing curve intercepts the glass transition curve at the Tg

′

point, where the solute concentration reaches the maximum value. Freezing of protein solutions often
starts from room temperature to a supercooled liquid state (Figure 1b) with a few to tens of degree
Kelvin below the equilibrium freezing temperature at a given composition. The temperature raises
due to heat release from freezing or solidification, possibly near the equilibrium freezing temperature
and eventually drops due to the cooling rate applied to the material volume. In this study, assuming
that the heterogeneous nucleation can be controlled by random seeding, ultrasound, electrical, or
other freezing methods [3], the supercooled temperature and the size and locations of seeding are
predetermined as the initial conditions, and then the simulation proceeds as a non-equilibrium
freezing process. The continuous increase in viscosity and change of local freezing point from freeze
concentration are considered. The following assumptions are made to facilitate and simplify the
theoretical analysis and computation: (i) ice/freeze concentrate interfacial energy is assumed half
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of the free surface energy of water, (ii) the interfacial energy is assumed isotropic or no preferential
directions for the formation of dendritic pattern, which can be considered in further investigations,
(iii) thermal expansion, thermal stress, or elasticity in the crystal phase are neglected, and in fact ice
crystals are treated as a highly viscous fluid with dynamic viscosity at least four orders of magnitude
larger than fluid, (iv) entanglement or crystallization of the solute molecules at high concentrations
is not considered as the corresponding mean field theory is much more complicated, (v) adsorption
and molecular interactions of proteins with the ice/freeze concentrate interfaces are not considered,
(vi) thermal radiation and van der Waals force between nearby interfaces may have effects on heat
transfer and interfacial dynamics at the mesoscale, but are assumed negligible in this work.

Figure 1. (a) Temperature–composition phase diagram of a binary protein solution including freezing,
solubility, glass transition curves, and material states. (b) Schematic of the cooling process in terms of
the average temperature of the representative volume versus time, and with initial condition defined at
the crystallization point with temperature T0 − ∆T, where the subcooled temperature ∆T is used for
temperature scaling.

2.1. Thermodynamics Approach

Irreversible thermodynamics provides a rigorous route to derive the phase-field governing
equations for a non-isothermal system involved in thermal manufactuing processes, in which the
coupling of phase-field functions with other transport equations is important. Here we consider
phase field φs`(r, t) as a function of location r and time t to distinguish the solid (ice crystal, φs` = 1)
and liquid (liquid protein solution, φs` = −1) phases, and the ice/freeze concentrate interface has a
narrrow but smooth transition of φs` between −1 to 1. The 2nd phase-field function is the protein
volume fraction φc(r, t) as a conserved parameter at the range of 0–1. To derive the thermodynamically
consistent formulation we follow the approach proposed by Penrose and Fife [28] and Wang et al. [29].
Starting from the entropy functional of the material volume that takes the contributions of the entropy
density in the bulk phase and the non-local or gradient effects due to spatial variation of the phase
fields φs` and φc into account, we have

S =
∫

Ω

[
ρs(e, φs`, φc)−

1
2

ξ2
s`|∇φs`|2 −

1
2

ξ2
c |∇φc|2

]
dV, (1)
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where ρ is density, s is specific entropy as a function of specific internal energy e and the two
phase-field functions, and ξs` and ξc are the assumed constant coefficients corresponding to the
gradient effects [15,29] . The gradient coefficient ξs` is connected with reference density ρ0, solid-liquid
energy barrier coefficient hs`, and the characteristic interfacial thickness Ws` as

ξ2
s` = ρ0hs`W2

s`. (2)

The solid-liquid interfacial energy γs` or the equivalent surface excess energy across the smooth
interface is further associated with the above parameters through a one-dimensional approximation,
expressed as

γs` ' ρ0hs`W2
s`T0

∫ ∞

−∞

(
dφs`
dx

)2
dx =

2
√

2
3

ρ0hs`Ws`T0, (3)

where the factor 2
√

2/3 comes from the hyperbolic tangent function to approximate φs` in equilibrium,
which has a defined value from −1 to 1, and the reference temperature T0 here represents the
equilibrium freezing temperature of pure water. We assume γs` ' (1/2)γg at the ice/freeze concentrate
interface, where γg is the surface tension of the free surface of water at T0, and all intensive thermodynamic
properties are defined as per unit mass quantity.

By applying the Reynolds transport theorem to the entropy of the system, the general differential
entropy transport equation can be written as

ρ
Ds
Dt
− 1

2
ξ2

s`
D
Dt
|∇φs`|2 −

1
2

ξ2
c

D
Dt
|∇φc|2 = −∇ · Js + Γ̇− Ω̇

T
, (4)

where t is time, D/Dt ≡ ∂/∂t + v · ∇ indicates material derivative, Js represents entropy flux, Γ̇ is the
rate of entropy production, and Ω̇ is a heat sink to mimic the cooling from the bulk fluid flow around
the mesoscale volume. Considering internal energy e = e(s, φs`, φc), de = Tds + (∂e/∂φs`)dφs` +

(∂e/∂φc)dφc, and thus ds = de/T − (∂e/∂φs`)dφs`/T − (∂e/∂φc)dφc/T, the time rate of change of
entropy Ds/Dt in the transport equation (Equation (4)) can be replaced by the material derivatives of
internal energy and the two phase fields, expressed as

Ds
Dt

=
1
T

De
Dt
− 1

T
∂e

∂φs`

Dφs`
Dt
− 1

T
∂e

∂φc

Dφc

Dt
, (5)

where the three material derivatives on the right-hand side eventually lead to the thermal energy
equation and two phase-field equations. Substituting Equation (5) into (4) and by separating the
contributions of entropy flux and entropy production terms due to heat conduction and the evolution
of phase fields, that is,

ρ

T
De
Dt

= − 1
T
∇ · q̇− Ω̇

T
= −∇ ·

(
q̇
T

)
+ q̇ · ∇

(
1
T

)
− Ω̇

T
, (6)

1
2

D
Dt
|∇φs`|2 = ∇ ·

(
∇φs`

Dφs`
Dt

)
− Dφs`

Dt
∇2φs`, (7)

and

1
2

D
Dt
|∇φc|2 = ∇ ·

(
∇φc

Dφc

Dt

)
− Dφc

Dt
∇2φc, (8)

where q̇ = −kT∇T is the conduction heat flux and kT is the thermal conductivity. The resulting
positive entropy production rate can be obtained and expressed as
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Γ̇ = q̇ · ∇
(

1
T

)
+

[
ξ2

s`∇
2φs` −

ρ

T
∂e

∂φs`

]
Dφs`
Dt

+

[
ξ2

c∇2φc −
ρ

T
∂e

∂φc

]
Dφc

Dt
≥ 0, (9)

in which the viscous dissipation and capillary work have been neglected due to relatively low
dissipated energy compared to heat conduction (small Brinkman number). To accommodate the
positive entropy production, one can conclude the non-conserved phase-field equation for the growth
of ice crystals as

Dφs`
Dt

= Ms`

[
ξ2

s`∇
2φs` −

ρ

T
∂e

∂φs`

]
, (10)

and the conserved phase-field equation for tracking the single-component protein volume fraction:

Dφc

Dt
= −∇ · Jφc = −∇ ·

[
Mc(φs`, φc)∇

δS
δφc

]
= ∇ ·

[
Mc∇

(
ρ

T
∂e

∂φc
− ξ2

c∇2φc

)]
, (11)

where Jφc is the species flux, δS/δφc is the first variation of the entropy functional, and Ms` and
Mc are assumed positive interfacial mobility coefficients. Equations (10) and (11) are essentially
the Allen–Cahn (2nd-order) and Cahn–Hilliard (4th-order) equations for a non-isothermal system,
respectively. The mobility Ms` may be acquired empirically or from scaling and asymptotic estimation
of the the evolution kinetics of the diffuse interface [12], whereas Mc is associated with the classical
Fickian diffusion coefficient.

2.2. Internal Energy and Free Energy

The specific internal energy including solid and liquid phases and mixing energy of proteins in
solutions can be approximated by

e(T, φs`, φc) = es`(T, φs`) + RTχ(φs`)G(φc), (12)

where es` represents the internal energy of solid to liquid phases, R is gas constant, T is temperature,
and χ is the Flory’s interaction parameter of regular solutions, and along with the G function the
mixing term indicates the increase of internal energy due to mixing of water and proteins in either
liquid or crystal phases. Here we assume χ > 0 (net repulsion between interacting species). The typical
G function for the mixing effect can be replaced by a double-well potential for keeping φc within the
range of 0 to 1 in the phase-field computation, written as

G(φc) = φc(1− φc) ∼ 4φ2
c (1− φc)

2. (13)

Furthermore, the internal energy es` can be formulated as

es`(T, φs`) = es(T) + P(φs`)La = e`(T) + [P(φs`)− 1]La, (14)

where the subscript s and ` indicate homogeneous solid and liquid phases, respectively, and La is
the assumed constant latent heat based on the reference freezing temperature T0 of pure water at
equilibrium. Developed by Wang et al. [29], the 5th-order interpolation polynomial P(φs`) describes a
smooth transition of the internal energy between the liquid (P = 1, φs` = −1) and solid (P = 0, φs` = 1)
phases. Here a P function that satisfies P′ = P′′ = 0 at φs` = ±1 is

P(φs`) =
1
2
− 15

16

(
1
5

φ5
s` −

2
3

φ3
s` + φs`

)
, (15)

which gives P(1) = 0 and P(−1) = 1 so that es`(T, 1) = es(T) and es`(T,−1) = e`(T). The P function
can be widely used for other thermodynamic properties for a smooth transition between solid and
liquid phases. For example, we define Flory’s parameter as
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χ(φs`) = Pχ` + (1− P)χs, (16)

with the interaction parameters χs > χ`, which adjusts the partition or exclusion effect for the proteins
at the freezing front. Proteins are mostly excluded from ice crystals due to relatively high mixing
energy, and are soluble (within the solubility limit) in the liquid phase (Figure 1a).

Similar to the model proposed for binary alloy systems [15,32], in a regular protein solution the
free energy density can be obtained by superposing the contributions of pure solid and liquid water,
proteins, and the mixing entropy and enthalpy effects based on Flory-Huggins mean field theory
for polymer solutions [21,37], applicable for polymer solutions with temperature above Tg. Here we
incorporate the G function into to the free energy as

f (T, φs`, φc) = (1− φc) fs` + φc fc

+ RT
[

1
N

φcln(φc) + (1− φc)ln(1− φc) + χ(φs`)G(φc)

]
,

(17)

where N accommodates the size effect as the protein-to-water ratio of partial molar volume, and
the Flory’s χ parameter, assumed independent of solute volume fraction, controls the energy barrier
in the mixing enthalpy term to ensure exclusion of proteins from the ice crystals. The free energy
of ice and liquid water fs` drives the phase transition based on the difference of local temperature
to the equlibrium freezing point Teq, which follows the Gibbs–Thompson effect. Here we assume
the interfacial curvature effect is negligible in the mesoscale model, and the equilibrium freezing
temperature, Teq = Teq(φc), follows the liquidus line. From the Gibbs–Helmholtz relation, the free
energy that describes the latent heat effect for the solid-liquid phase transition dynamics [29] can be
expressed as

fs`(T, φs`) = −T
∫ T

Teq

es`
T′2

dT′ +
T fs`(Teq, φs`)

Teq
, (18)

where the first term is the driving force for freezing as temperature is different from the reference point
Teq, whereas the 2nd term is often described by a double-well potential with free energy minima for
the the ice or liquid phases at T = Teq, written as

fs`(Teq, φs`) =
1
4

hs`Teq(1− φ2
s`)

2, (19)

where hs` is the energy barrier coefficient for the phase transition. The free energy has two minima at
φs` = −1 (liquid) and φs` = 1 (solid) at the equilibrium freezing temperature Teq.

From the internal energy and free energy above, the derivative of internal energy in Equation (10)
thus can be expanded and described by the following expression:

∂e
∂φs`

)
s,φc

=
∂ f

∂φs`

)
T,φc

=(1− φc)

[
− P′La

T − Teq

Teq
− Ths`

(
φs` − φ3

s`

) ]
+ RTχ′(φs`)G(φc).

(20)

Therefore, Equation (10) becomes

Dφs`
Dt

= Ms`

{
ξ2

s`∇
2φs` + (1− φc)

[
ρP′La

T − Teq

TTeq
+ ρhsl(φs` − φ3

s`)

]
− ρRχ′G

}
, (21)

where the transient evolution of the phase field φs` is now determined by the balance of diffusion,
latent heat, double-well potential, and the effect of freezing point depression at higher protein volume
fractions. The diffusion effect tends to smear out the interface, the double-well potential keeps
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the bulk phases separated, whereas the temperature difference along with the latent heat effect
provides a driving force for freezing. The increase of protein concentration at the interface suppresses
(slows down) the growth of ice crystals due to freezing point depression and the increase of local
viscosity at higher solute concentration. Similarly, the derivative of internal energy in Equation (11)
can be expanded as

∂e
∂φc

)
s,φs`

=
∂ f
∂φc

)
T,φs`
' RT

[
1
N
(1 + lnφc)− ln(1− φc)− 1 + χG′

]
, (22)

where the free energy difference between the ground states fc and fs` has been neglected. Therefore the
phase-field Equation (11) that governs the transient distribution of protein volume fraction reduces to

Dφc

Dt
= ∇ ·

{
Mc∇

[
ρR
(

lnφc

N
− ln(1− φc) + χG′

)
− ξ2

c∇2φc

]}
. (23)

The above Cahn–Hilliard type model recovers to a conserved, Fickian diffusion equation by
defining the mobility as

Mc =
D(φc, φs`, T)

ρR
φc(1− φc). (24)

The diffusivity D in liquid and crystal phases can be scaled (represented by tilde over a variable)
and interpolated as

D(φs`, φc, T) = D0D̃ ' D0

[
P(φs`)D̃`(φc, T) + (1− P)D̃s

]
, (25)

where D̃` is a concentration- and temperature-dependent protein diffusivity in liquid solution and D̃s

is a constant diffusivity in the crystal phase, and both are scaled by reference value D0. The subscripts s
and ` hereafter denote the solid and liquid phases, respectively. We assume D̃s � D̃` and the reference
diffusivity D0 = D`(φc → 0, T = T0).

2.3. Thermal Energy and Momentum Equations

From Equations (12)–(14), the rate of change of specific internal energy can be partitioned using
the P function and expressed as

De
Dt
' P

De`
Dt

+ (1− P)
Des

Dt
+
[

LaP′ + RTχ′G(φc)
]Dφs`

Dt
+ RTχG′(φc)

Dφc

Dt
, (26)

and with the Fourier law of conduction the thermal energy equation (Equation (6)) can be developed
and written as

ρcp
DT
Dt

= ∇ ·
(

kT∇T
)
− ρ
[

LaP′ + RTχ′G
]Dφs`

Dt
− ρRTχG′

Dφc

Dt
− Ω̇, (27)

where cp is specific heat, kT is thermal conductivity, and both are defined as phase φs` and temperature
dependent properties:

cp(T, φs`, φc) = cp0 c̃p ' cp0

[
P(φs`)c̃p`(T, φc) + (1− P)c̃ps(T)

]
, (28)

and

kT(T, φs`, φc) = kT0k̃T ' kT0

[
P(φs`)k̃T`(T, φc) + (1− P)k̃Ts(T)

]
. (29)
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Therefore the interpolation P function defined previously is applied here for the transition of
properties between solid and liquid phases. The corresponding reference values are defined as
cp0 = cp`(T → T0) and kT0 = kT`(T → T0) based on pure water. The volumetric heat sink Ω̇ drives
the overall freezing process for the simplified mesoscale model without considering actual heat transfer
surfaces or wall conditions. Here we apply a linear cooling model:

Ω̇ = ρcpβ f , (30)

with a constant cooling rate β f to represent a uniform influence on the mesoscale domain based
on cooling condition for the bulk environment. The parameter β f may be modified for multiscale
simulation that couples the representative local model with a full scale CFD simulation at the vial or
bottle level. In principle, directional cooling can also be applied to inspect the anisotropic growth of
ice crystals.

The fluid flow within the liquid domain or in the confined interstitial space between ice crystals
is primarily driven by the blowing mass flux due to density change upon freezing (or suction upon
melting). The continuity equation based on local mass conservation is coupled with the phase field φs`
and can be expressed as

∇ · v = −1
ρ

Dρ

Dt
' −1

ρ

∂ρ

∂φs`

Dφs`
Dt

, (31)

where v is velocity, ρ is density, and the material derivative D/Dt takes convective effect on the
evolution of the phase field into account. The local density is defined as

ρ(T, φs`, φc) = ρ0ρ̃ ' ρ0

{
φcρ̃c + (1− φc)

[
P(φs`)ρ̃`(T, φc) + (1− P)ρ̃s(T)

]}
, (32)

where the scaled density of ice crystals ρ̃s and supercooled water ρ̃` are temperature dependent, and
ρ0 = ρ`(φc → 0, T → T0). The Navier-Stokes momentum equation with Boussinesq approximation for
the buoyancy effect is given by

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p +∇ · σv + (ρ− ρ0)g, (33)

where g is gravity acceleration, and σv is the viscous stress for the assumed Newtonian fluid, written as

σv = η
(
∇v +∇vT

)
, (34)

where the dynamic viscosity η is defined as

η(T, φs`, φc) = η0η̃ ' η0

[
P(φs`)η̃`(T, φc) + (1− P)η̃s

]
, (35)

with an assumed constant viscosity for the crystal phase η̃s � η̃` and a reference value η0 = η`(φc →
0, T → T0). At the mesoscale, the buoyancy effect introduces a small updraft and shows tendency of
collective motion of ice crystals. Furthermore, in the proposed phase-field model, instead of elastic
solid material the ice crystals are treated as a highly viscous fluid with viscosity at least four orders of
magnitude higher than liquid viscosity. To further simplify the computation, the fluid flow is assumed
quasi-incompressible, so that the density variation is decoupled from pressure field except for the
phase change interface and Boussinesq approximation. The modified pressure that incorporates the
interfacial dynamics can be approximated by the pressure Poisson equation:

∇2 p ' ∇ ·
[
∇ · σv + (ρ− ρ0)g− ρv · ∇v

]
+

∂

∂t

(
∂ρ

∂φs`

Dφs`
Dt

)
, (36)
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where the last term is considered an additional contribution to pressure due the non-solenoidal
velocity field.

2.4. Scaling and Computation

The system has two length scales involved, the physical domain size 2πL and the apparent
interfacial thickness Ws` for computing phase transition. This yields six characteristic time scales based
on solid-liquid phase transition, protein diffusion, thermal diffusion, viscous diffusion, convection,
and the assumed freezing rate. These time scales are estimated by the following expressions:

τs` =
1

ρ0hs`Ms`
, τφc =

L2

D0
, τT =

ρ0cp0L2

kT0
,

τvis =
ρ0L2

η0
, τconv =

L
U
∼ τφc ∼ τs`, and τf =

4T
β f

,
(37)

respectively, where U is the characteristic velocity and 4T represents the characteristic subcooled
temperature. All governing equations are scaled by length L and phase transition time τs`. The phase
field φs`, protein volume fraction φc, χ parameter, G and P functions are already normalized.
Temperature is scaled by the subcooled temperature as

T̃ = (T − T0)/4T, (38)

and pressure and stress are scaled by the viscous effect based on the reference viscosity. From length
scale L and time scale τs`, the resulting scaled phase-field equations reduce to

∂φs`

∂t̃
+ Peṽ·∇̃φs` = C2

h∇̃
2φs` +

Λs`(1− φc)P′(T̃ − T̃eq)(
1 +
4T
T0

T̃
)(

1 +
4T
T0

T̃eq

)
+ (1− φc)(φs` − φ3

s`)−
R

hs`
χ′G,

(39)

and

∂φc

∂t̃
+ Peṽ · ∇̃φc =

τs`
τφc

∇̃ ·
{

D̃
[

1− φc

N
+ φc + (φc − φ2

c )χG′′
]
∇̃φc

+ D̃(φc − φ2
c )G

′∇̃χ

}
− τs`

τφc

C2
h

hs`
R
∇̃ ·

{
D̃(φc − φ2

c )∇̃∇̃2φc

}
,

(40)

where the Peclet number Pe, phase-change number Λs`, and the Cahn–Hilliard number Ch are
defined as

Pe =
τφc or τs`

τconv
, Λs` =

La4T
hs`T2

0
, and Ch =

Ws`
L

. (41)

Specifically the Peclet number measures the convective to diffusive effects on the redistribution
of proteins, the phase-change number is the ratio of latent heat and interfacial energy, and the
Cahn–Hilliard number controls the characteristic interfacial thickness to the length scale.

Furthermore, the scaled thermal energy equation can be expressed as
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∂T̃
∂t̃

+Peṽ · ∇̃T̃ = Le∇̃ ·
(

k̃T
ρ̃c̃p
∇̃T̃
)

− 1
c̃pSte1

[
P′(φs`) + Ste2

(
T̃ +

T0

4T

)
χ′G

] (
∂φs`

∂t̃
+ Peṽ · ∇̃φs`

)
− Ste2

c̃pSte1

(
T̃ +

T0

4T

)
χG′

(
∂φc

∂t̃
+ Peṽ · ∇̃φc

)
− ˜̇Ω ,

(42)

where Peclet number Pe has been defined above, interfacial Lewis number Le measures the ratio
of interfacial evolution to thermal diffusion time scales, two Stefan numbers Ste1 and Ste2 compare
the sensible heat and partition effect to the latent heat, respectively, and ˜̇Ω is the scaled cooling rate,
defined as

Le =
τs`
τT

, Ste1 =
cp04T

La
, Ste2 =

R4T
La

, and ˜̇Ω =
τs`
τf

, (43)

respectively. The scaled continuity equation is

∇̃ · ṽ ' − 1
Peρ̃

∂ρ̃

∂φs`

(
∂φs`

∂t̃
+ Peṽ · ∇̃φs`

)
. (44)

The scaled Navier-Stokes momentum equation can be expressed as

1
Sc

∂ṽ
∂t̃

+Reṽ · ∇̃ṽ = −∇̃ p̃ + ∇̃ ·
[

η̃
(
∇̃v + ∇̃ṽT

) ]
− Grêg, (45)

where êg indicates the downward direction of gravity acceleration. The Schmidt number Sc compares
the phase transition to viscous time scales, Reynolds numberRe characterizes the inertial to viscous
effects and the local Grashof number Gr measures the buoyancy to viscous forces adjusted by the local
density, defined as

Sc =
τs`
τvis

, Re =
ρ0UL

η0
=

τvis

τconv
, and Gr =

ρ0L2g(1− ρ̃)

η0U
, (46)

respectively. The pressure can be obtained from the Poission equation (Equation (36)) and because of
the small Reynolds number, the nonlinear inertial effect can be neglected.

In summary, the phase-field equations describe the transient evolution of the freezing front
and redistribution of solutes in the liquid solution, the thermal energy equation determines the
transient temperature distribution, and the continuity, momentum, and auxiliary pressure Poisson
equations govern the interplay of fluid flow with phase fields and thermal energy. These equations are
discretized and computed by our in-house Matlab codes with algorithms developed based on Fourier
spectral method [38]. The two-dimensional computational domain includes 1600 × 1600 uniform
collocation points and periodic boundary conditions. The built-in Matlab functions of fast Fourier
and inverse Fourier transforms are applied in the computation. The temporal discretization is based
on forward Euler scheme with a uniform and scaled time step 2 × 10−4 throughout the transient
process. A pseudo spectral scheme is applied to the nonlinear terms of the governing equations.
As the phase-field method naturally resolves deformation and coalescence of the crystals, there is no
inter/extrapolation or any smooth or adaptive schemes applied to the interface or spatial derivatives
in the computation. The initial conditions are based on predetermined nucleation sites and seeding
size, and a uniform supercooled temperature for the onset of crystaliztion. The model is not limited to
this simplified initial condition and can be further developed to incorporate various nucleation models.
A semi-implicit scheme is applied to spatial or spectral domain for variable transport coefficients
primarily associated with the 2nd-order derivatives [39]. The two-dimensional simulation results for
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the cases presented here are manageable by a conventional desktop computer with 16 gb ram, and for
each case the transient simulation can be completed overnight.

3. Material Properties

First, water expands upon freezing and due to a smaller mass density of ice crystals than liquid
solution, mass flux is generated at the freezing front toward the liquid side. We describe this effect by
incorporating the temperature-dependent densities for the supercooled water and ice crystals based
on the compiled dataset from the CRC Handbook [40], and formulated in terms of dimensional values
in MKS (meter, kilogram, second) units as

ρ`(T) ' ρ0 − 0.017(T − T0)
2, and ρs(T) ' 0.917ρ0 + 0.15(T0 − T). (47)

The sucrose density ρc is assumed a constant 1587 kg/m3.
Second, the specific heat of ice crystals is assumed independent of solute volume fraction due to

the strong exclusion effect, and decreases as temperature decreases, with data [40] correlated as

cps(T) ' cp0 + 8(T − T0). (48)

The specific heat of supercooled sucrose solution [8] is given by

cp`(T, φc) ' 4180
[
1− 0.953φc(1− 0.588φc) + 10−3(T − T0)

]
. (49)

Third, the thermal conductivity of ice crystals increases as temperature decreases [40], approximated by

kTs(T) ' kT0 + 0.013(T0 − T). (50)

The thermal conductivity of supercooled sucrose solution [8] is approximated by

kT`(T, φc) ' 0.58
[
1− 0.905φc(1− 0.588φc) + 2.6× 10−3(T − T0)

]
. (51)

Several reference properties at temperature T0 are denoted by the subscript 0 with test values
listed in Table 1.

Fourth, the dynamic viscosity of water increases when temperature decreases. The temperature-
dependent viscosity for the supercooled water can be correlated by the Vogel-Fulcher-Tamman (VTF)
model [41]:

η`(T) ' 4.442× 10−5 exp
(

2.288× 168.9
T − 168.9

)
, (52)

in which the prefactor 4.442× 10−5 is the viscosity at temperature 168.9 K (>Tg ' 136 K). Note that the
scaling factor for viscosity η0 (∼0.0018 Pa·s) is defined at the freezing temperature T0. At higher solute
concentration, the mobility or self diffusivity of solutes can be significantly reduced due to molecular
crowding effect and protein-protein interactions. Empirical model for the concentration-dependent
diffusivity in the supercooled regime is required for a specific protein of interest. However, due
to the lack of such data in the supercooled regime, here we compose the VTF model and the
concentration-dependent viscosity of sucrose solutions measured at T0 = 273.15 K [42]. With a
conversion from weight percentage to volume fraction, the viscosity is correlated as

η`(T, φc) = η`(T0, φc)η`(T) ' exp
(

6.3φc

1− 0.85φc

)
η`(T), (53)

where the exponential term follows the Mooney’s viscosity model. In the crystal domain we assume
ηs ' 104η0.
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Finally, the reference solute diffusivity D0 in sucrose solution at T0 is about 2.1× 10−10 [19],
from which the temperature and concentration dependency can be estimated by the proportionality to
temperature and viscosity based on the Stokes–Einstein relation and described as

D`(T, φc) '
D0 T η0

T0 η`(T, φc)
. (54)

In the crystal domain we assume Ds ' 10−4D0. The liquidus temperature that accommodates the
freezing-point depression effect is correlated from the sucrose-water phase diagram [43] as

Teq(φc) ' T0 − 55φ2
c . (55)

A summary of the parameters and dimensionless groups used for the test cases are listed in
Tables 1 and 2.

Table 1. Parameters, characteristic time scales, and reference properties for ice crystal and supercooled
water used in the test cases. Parameter N is approximated by sucrose in water solution.

Parameters/Characteristic Times/Reference Properties Value, SI

length scale L 10−5 m
computational domain 2πL× 2πL

interfacial thickness Ws` 10−6 m
reference freezing temperature T0 273.15 K

characteristic subcooled temperature4T 10 K
energy barrier coefficient hs` 0.1456 J/(kg ·K)

Flory’s parameters χs, χ` 2.5, 0.5
solute-to-water ratio of molar volume N ∼11.5

scaled time step h 2× 10−4

latent heat La 3.4× 105 J/kg
interfacial energy γs` 0.0375 J/m2

cooling rate β f 100 K/s
initial temperature T(t = 0) = T0 −4T 263.15 K
characteristic phase transition time τs` 0.4762 s

mass diffusion time τc 0.4762 s
convective time τconv 0.4762 s

freezing time τf 0.1 s
thermal diffusion time τT 9.86× 10−5 s
viscous diffusion time τvis 9.86× 10−5 s

density ρ0 999.8 kg/m3

specific heat cp0 2110 J/(kg ·K)
thermal conductivity kT0 2.14 W/(m ·K)

solute diffusivity D0 2.1× 10−10 m2/s
dynamic viscosity η0 1.8× 10−3 Pa · s

Table 2. Dimensionless groups with values based on parameters listed in Table 1.

Dimensionless Groups Value

Peclet number Pe 1.0
Reynolds numberRe 1.16× 10−4

phase-change number Λs` 312.88
Cahn–Hilliard number Ch 0.1

interfacial Lewis number Le 4830.6
Stefan number Ste1 0.0621
Stefan number Ste2 0.0136

uniform cooling rate ˜̇Ω 4.762
Schmidt number Sc 8620.8

local Grashof number Gr 25.92 (1− ρ̃)
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4. Results and Discussion

Figure 2 demonstrates the computational results at a scaled time instant t̃ = 1.5, showing the
fully coupled thermal fluid and phase transition dynamics driven by a supercooled temperature
T̃ = −1.0 initially, and then by a uniform volumetric cooling rate with β f = 100 K/s. The initial
volume fraction is set to φc = 0.05 in the liquid mixture and φc = 0 for the seeding crystals. The phase
field φs` (Figure 2a) has a sharp interface that clearly distinguishes the crystal domains from the
liquid mixture. The solute volume fraction φc (Figure 2b) shows that solutes are pushed away by
the interfaces as they grow into the liquid mixture. This is due to solute exclusion from the crystals,
and the solute concentration is further enhanced between close-approached crystals as the space is
confined. The small dark-blue spot near the center of each crystal implies the seeding site where φc = 0
initially. The narrow gap between ice/freeze concentrate interfaces further hinders diffusive mass
transport with lower mass diffusivity due to the increase of viscosity at higher solute concentration.
This is an additional influence on mass transfer due to temperature adjustment. As crystals approaches
each other, the moving interfaces slow down and flatten, which creates a narrow gap in between.
The slow down is due to higher local temperature from the exothermic effect upon freezing and the
freezing point depression as local concentration increases. The solutes are mostly trapped in the narrow
channels and the Plateau border areas between the interfaces. The temperature variation primarily due
to heat conduction is shown in Figure 2c and the distribution is relatively diffuse compared with the
phase and concentration fields. Near the freezing front the latent heat is released and this exothermic
effect increases the local temperature significantly. Although thermal diffusion is much faster than
mass transfer and phase transition, temperature variation over the computational domain is significant
and thus an isothermal assumption often applied in solidification process simulation is not suitable
here. The thermal convection effect is less important in the mesoscale regime due to relatively low
Reynolds number and small Peclet and Grashof numbers. Because of smaller mass density of crystal
phase than liquid solution, the volumetric flow rate (Figure 2d) creates a blowing mass flux from the
ice/freeze concentrate interface towards the liquid solution. The local flux slightly enhances the mass
transfer and the removal of latent heat.

Furthermore, the scaled density (Figure 3a) and liquid viscosity (Figure 3b) corresponding to
Figure 2 have taken local temperature and solute volume fraction into account. This is important for
describing reduced mobility of solutes at higher concentration and lower temperature. Again the
interfaces can be slowed down significantly due to higher solution viscosity, freezing point depression,
and higher local temperature due to the release of latent heat. Although the increase of temperature
slightly reduces the viscosity and enhances the mass diffusivity, the higher temperature lowers the
driving force for the phase transition significantly. From the velocity field (Figure 3c) one can observe
a tendency of collective upward motion of crystals. This is due to buoyant effect in addition to the
local mass flux. Finally, the vorticity field (Figure 3d) shows stronger circulation around the interstitial
liquid space, which correlates well with the phase transition and higher temperature region.

Figure 4 shows transient evolution of crystal-solution interfaces and freeze concentration between
these crystals. The total number and locations of nuclei and the onset temperature (T̃ = −1.0 or
dimensional temperature T = T0 − 10 K) of crystallization are predefined, same as in Figures 2 and 3.
The dynamic space confinement and freeze concentration are clearly resolved along with the fluid
flow surrounding crystals, and for the movement of the crystals. In principle, as cooling continues, the
non-equilibrium process may lead to fusion or coalescence of crystals. Solute exclusion from the crystal
phase is controlled by the Flory’s interaction parameter χ, which can be an empirical property from
experimental analysis. The topological structure of the growth of crystals is quite similar to those found
in bubble or foam materials. The drainage of the fluid within the thin film and the Plateau border area
is however not as significant as in foam materials, in which both the continuous and dispersed phases
have fluid-like behaviors. At t̃ = 0.5, the scaled temperature spans a wide range from−1.8 to−0.2, this
is because of the rapid cooling that competes with the release of latent heat. The raised temperature
between two nearby crystals is clearly observed, with decelerated phase transition. At t̃ = 2.5, highest
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local concentration increases about seven-fold within the narrow gap between crystals, with maximum
φc about 0.35. In principle, the concentration could further increase as cooling continues till T′g, but the
relevant physics involving strong protein-protein interactions are beyond the scope of this model.

Figure 2. Snapshots of the scaled simulation results at time instant t̃ = 1.5, showing (a) phase field φs`
that distinguishes the ice crystals (red) and liquid mixture (blue), (b) solute volume fraction φc due to
freeze concentration, (c) temperature distribution T̃ that shows the exothermic effect, and (d) positive
(freezing, or negative upon melting) volumetric flow rate ∇̃ · ṽ induced at the ice/freeze concentrate
interface due to density variation. Initial conditions are T̃ = −1.0 (or dimensional temperature
T0 − 10 K), φc = 0.05 (about 7.7 wt %), and a rapid cooling rate with β f = 100 K/s or volumetric heat
sink Ω̇ = ρcpβ f ' 2 × 108 J/m3·s, and the simulation has time scale τs` =0.4762 s, length scale 10 µm,
and domain size about 63× 63 µm.

In Figure 5 we demonstrate a case with five times more nucleation sites (25 seeds in the
computational domain) and lower initial protein volume fraction (φc = 0.02), but under the same
cooling condition and onset temperature of crystallization. By arranging higher seeding density
presumable on the left-hand side of the domain and with the same seeding size, the growth of crystals
is relatively uneven as expected. At the early stage t̃ = 0.5 we observe a greatly increased temperature
because of the larger amount of phase transition that happens simultaneously so that the released latent
heat can not be removed efficiently. On the 3rd row, as many crystals grow spontaneously the collective
updraft appears due to the buoyant effect, which also induces a locally sinking flow on the right-hand
side of the domain that has more liquid solution and less crystals. At the later stage t̃ = 2.8, although
freeze concentration in the interstitial space would suppress freezing, many crystals still coalesce with
surrounding crystals. This creates several spots that have almost sixfold increase of solute volume
fraction. Coalescence creates spotty areas with solutes trapped inside. Overall, the crystal phase grows
faster around high-density nucleation sites, but such growth is limited by the large amount of latent
heat released, whereas the loosely seeding site has more room for the crystals to grow in the later stage,
showing an interesting growth pattern, solute composition, temperature map, and the surrounding
fluid flows. All these effects, along with the initial conditions determine the growth of ice crystals and
the degree of freeze concentration. We observe that the onset temperature of crystallization is relatively
less important because even the initial temperature is near the homogeneous nucleation temperature
about −40 ◦C, the amount of sensible heat cp∆T is about an order of magnitude smaller than the latent
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heat to be released. Therefore, without rapid cooling the sensible heat itself is insufficient to grow
the crystals. The onset temperature may have influence on the sporadic precipitation or growth of
dendritic microstructure, which will be investigated in future works.

In summary, freezing is a complicated exothermic process and the design and control of the
process has a large parameter space. This preliminary and qualitative investigation has demonstrated
a few important mechanisms involved in the freezing process. Dynamic freeze concentration due
to volume exclusion and space confinement effect is demonstrated for a mesoscale system with
domain size about tens of microns. Within the interstitial space between ice crystals, the increase
of solute concentration suppresses the freezing point, reduces the solute mobility, and hinders the
coalescence or further growth of ice crystals. Parameter and sensitivity tests with experimental
validation are important for future investigation so that a lab-scale model can be further developed.
The theoretical framework for a binary solution can be further extended to multiple components
including co-solutes, and for a system under directional cooling or cooling from multiple heat transfer
surfaces. Multiscale modeling, precision measurement of the transport properties especially in the
supercooled regime, and the quantitative analysis of process dynamics for a larger scale experiment
with configuration such as a vial, bag, or bottle that has volume from a few milliliters to tens of liters
are all important for industrial applications. Finally the dimensionless groups list in Table 1 can be a
reference for the design-of-experiment (DoE) approach for developing operation parameters or new
manufacturing strategies to mitigate freeze concentration and enhance the quality of biologic products.

Figure 3. Computational results in addition to Figure 2 at time instant t̃ = 1.5: (a) local density ρ̃

adjusted by temperature and solute concentration, (b) dimensional liquid viscosity µ` (unit Pa s, a
dimensional value here for convenience), which is raised by higher solute concentration and lower
supercooled temperature, (c) scaled velocity ṽ for the fluid flow driven by interfacial blowing and the
gravity effect, and (d) scaled vorticity field corresponding to the velocity field.
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Figure 4. Transient results of solute volume fraction (A, 1st row), temperature (B, 2nd row), and scaled
velocity vectors (C, 3rd row) at the corresponding time instants t̃ = 0.01, 0.5, and 2.5. Parameters and
initial conditions are the same as in Figures 2 and 3, where the results at t̃ = 1.5 have been provided.

Figure 5. Transient results of solute volume fraction (1st row), temperature (2nd row), and velocity
vectors, volumetric flow rate, and liquid viscosity on the 3rd row at time instants t̃ = 0.5, 1.8, and 2.8,
respectively. Initial conditions T̃ = −1.0 and φc = 0.02 (about 3.1 wt %), and an assumed cooling rate
with β f = 100 K/s.
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5. Conclusions

Freeze concentration is an important aspect of the freezing process in manufacturing of
biopharmaceutical products. Freeze concentration alters the solution composition in which
pharmaceutical proteins have been stabilized, often destabilizing the proteins. The freeze concentration
affects ice crystal growth, which can also influence protein stability. We initiated a theoretical analysis
on the dynamic evolution of ice crystals, crystal-crystal interactions, and the interplay of thermal,
mass, and momentum transport phenomena with the dynamics of freeze concentration. The model is
based on an asymmetric binary solution with thermophysical properties in the supercooled regime.
A priori specified nucleation sites and a global and rapid cooling are applied to the computational
domain. We found that the phase transition and freeze-concentration effect are largely controlled by
the pattern of initial seeding and thermal transport. Other competing effects including mass diffusion,
density variation, interstitial fluid flows, and the significantly increased local viscosity also play roles
at different stages of the freezing process. The phase-field approach provides a great opportunity to
model and investigate these process details.
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