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Abstract: Bio-waste derived nanocelluloses show excellent mechanical flexibility and self-aggregated
capability, which enable them to be good supporting substrates for the synthesis of electroactive
materials. Herein, we present a facile route for fabricating composite aerogels consisting of carbonized
nanocellulose fibers (CNF) and mixed-valent manganese oxide (MnOx), toward supercapacitor
applications. Mixed solutions of nanocellulose and manganese acetate with different ratios were
prepared and freeze-dried into hybrid aerogels. The hybrid aerogels were then transformed into
CNF/MnOx composites by a calcination process. The CNF membranes served as porous carbon
nano-reservoirs for MnOx and electrolyte. The CNF/MnOx composites also kept a 3D porous aerogel
structure with hierarchical pores, which enabled stable transport of both electrolyte ions and electrons
to the electrode surface, leading to low a charge-transfer impedance and good electrochemical
kinetics. The CNF/MnOx-based symmetric supercapacitor showed a satisfied energy density and
power density of 37.5 Wh kg−1 and 2.75 kW kg−1, respectively. All the above results demonstrate
the feasibility of using sustainable nanocellulose as a nanoscale carbon substrate for the synthesis of
hybrid composite electrodes toward renewable supercapacitor applications.
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1. Introduction

Parallel to the growing need for renewable energy supply, there is an increasing demand
for high-performance power sources with low-cost, lightweight, portable, and environmentally
friendly features. Supercapacitors have emerged as a promising candidate for electrochemical energy
storage because of their fast charge–discharge processes, providing a high energy density and a
reasonable power density [1]. Both the materials and the structures are the cruxes in developing
high-performance supercapacitors [2]. In terms of the materials, despite offering key performance
advantages, many components are often expensive and contain fluorine, sulfur, and cyanide groups,
which pose environmental hazards if discarded and disposed of using conventional landfill or
incineration methods. Also, the derived supercapacitors sometimes suffer from a low energy density.
Aiming at solving these problems, various categories of redox-reaction materials, including metal
oxides, conductive polymers, and hybrid materials, have been employed as electrodes to dramatically
improve the energy density. In regard to the structure, one key challenge is to achieve a high loading
of electroactive materials per unit area with good contact of the electrodes. As the appeal of hybrid
structures lies in the synergistic effects based on interfacial charge and energy transfer processes,
controlling the nature of the interface and maximizing the interfacial area become critical issues.
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There is no doubt that hybrid structures of different nanomaterials would extend the diversity
of micro- and macrostructures, with good integrated physical/chemical properties inherited from
the constituent structures [3]. Manganese oxide (MnOx, i.e., Mn atoms with multiple oxidation states
and phases) is an inexpensive pseudocapacitive material exhibiting high theoretical capacitance [4–6].
However, the small surface area and low conductivity of MnOx result in a poor charge−discharge rate
for high-power applications. The combination of pseudocapacitive materials with carbon materials
represents an important breakthrough for developing novel composite electrodes with improved
performance [7].

Carbon materials are currently the most popular electrode materials used in supercapacitors.
Among them, carbon nanotubes, graphene, and activated carbon have been investigated intensively
in recent years [8–10]. However, the high cost of carbon nanomaterials and the complex preparation
process (liquid phase deposition, electrodeposition, hydrothermal reaction, cyclic voltammetric anodic
deposition, etc.) limit the fast development of carbon/MnOx electrode materials [11–17]. From both
an availability and cost perspective, sustainable biochar and biochar nanomaterials are expected to
be exploited to replace nonrenewable carbon materials [18–22]. Currently, activated carbons derived
from biomass polymers have been identified as the most viable materials for supercapacitors [23–25].
A recent trend is the utilization of hierarchical porous graphitic carbons (HPGC), which combine the
macroporous cores, mesoporous walls and micropores, as excellent support for metal oxides [26–28].
HPGC shows great potential in energy storage because of their high surface areas as well as short
ion transport path [29,30]. However, most existing protocols rely heavily on nanocasting and soft
templating, which usually use specific materials and thus make their industrial application unfeasible.
Aiming at solving this problem, aerogels composed by nanocellulose have been considered as
precursors of HPGC [31,32]. As a novel nanomaterial synthesized by biomass resources, nanocellulose
was recognized as a sustainable building block for energy storage owning to its intrinsic structures
and performance, as well as its renewable and abundant raw resources [33]. A large number of
oxygen-containing functional groups on nanocellulose make them easier to decorate with electroactive
materials and to modify the physicochemical properties [34–39]. Therefore, nanocellulose-based
composite aerogel represents a versatile matrix to prepare lightweight hybrid materials [40–44].
Yang et al. have integrated spherical manganese dioxide nanoparticles and other kinds of active
nanomaterials with the cellulose nanocrystal (a type of nanocellulose) aerogels, and lightweight, highly
porous, and flexible hybrid aerogels for the development of supercapacitor materials [45]. Excellent
capacitance retention at high charge–discharge rates was achieved due to the high mass ratio of active
material to the total electrode mass, indicating the big potential of utilization of nanocellulose for high
performance supercapacitors.

In this work, we aim to use forest waste-derived nanocellulose aerogel as the carbon nanomaterials
and the nano-reservoirs for pseudocapacitive materials. Our nanocellulose exhibits high aspect ratio
and can form strong entangled networks, resulting in self-standing and robust aerogels. Besides,
the surface of nanocellulose contains large amounts of hydroxyl groups, which is good for the
uniform integration of nanocellulose with the precursor of the active materials within the suspension.
In addition, the nanocellulose composite aerogels can be effectively converted to carbon aerogels,
which provides an efficient way for the integration of large amounts of electro-chemistry active
materials into the carbon network to improve the ability for charge storage. The as-generated
CNF/MnOx-based symmetric supercapacitor showed a satisfied energy density and power density.
We hope our work can stimulate interest in the development of a “green” carbon source from biomass
resources such as wood for advanced electrochemistry energy storage applications.
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2. Experimental Section

2.1. Preparation of Nanocellulose Suspension

Nanocellulose was extracted according to the method reported before [46]. Wood flour was first
subjected to mild chemical pretreatment using acidified sodium chlorite and KOH to remove the lignin
and hemicelluloses. After purification, the solution with 1 wt.% purified cellulose was ultrasonically
disintegrated using a JY99-IIDN ultrasonicator (Scientz Biotechnology Co., Ningbo, China) at 1200 W
for 20 min, resulting in a 1 wt.% nanocellulose suspension.

2.2. Preparation of CNF/MnOx Composite Aerogels

Typically, 0.1 g polyvinyl pyrrolidone (PVP) (Blue Season Technology Development Co. Ltd.,
Shanghai, China) and manganese acetate (Mn(OAc)2) (Komeo Chemical Reagent Development Center,
Tianjin, China) (0.02, 0.06, 0.10, and 0.14 g) were added in a 20 g nanocellulose suspension and
mechanically stirred for 1 h. The mixed solutions were frozen in a refrigerator at −18 ◦C for
24 h. Afterwards, they were subjected to freeze-drying using a Scientz-10N freeze dryer (Scientz
Biotechnology Co., Ltd., Ningbo, China). The resultant hybrid aerogels were calcinated in a nitrogen
atmosphere in an SK-G08123K tube furnace (Zhonghuan Experimental Furnace Co. Ltd., Tianjin
China). The temperature rose from room temperature to 850 ◦C; the heating rate was 3 ◦C min−1.
During the calcination process, the samples were kept at 270 ◦C for 1 h, 450 ◦C for 1 h, and 850 ◦C for
2 h, after the temperature dropped to room temperature. Finally, the CNF/MnOx composite aerogels
were obtained. The composite aerogels were denoted as CNF/MnOx-m, where m takes on the value
1, 2, 3, or 4, respectively. Determined by the thermogravimetric analysis (TGA), the mass fraction of
MnOx in the CNF/MnOx-m were calculated as ca. 6%, 18%, 30%, and 41%, respectively (Figure S1).

2.3. Preparation of Electrodes and Supercapacitors

The electrode was prepared by loading a slurry containing CNF/MnOx-m, poly(vinylidene
fluoride) (PVDF) (in N-methylpyrrolidone), and acetylene black (8:1:1 wt.%) on a nickel collector.
After the mixed materials were loaded, the electrode was pressed and dried in vacuum at 80 ◦C for
12 h. In the case of a three-electrode system, an Au-coated polyethylene terephthalate substrate was
used as a working electrode, a mercurous sulfate electrode as the reference electrode, and Pt wire as
the counter electrode. 1.0 M Na2SO4 solution was used as an electrolyte. A symmetric supercapacitor
was assembled using two pieces of 1.5 × 1.5 cm CNF/MnOx electrodes (the average weight of each
electrode was 2.0 mg), with 1.0 M LiPF6 ethylene carbonate/diethylene carbonate/ethyl-methyl
carbonate (EC/DEC/EMC) (1:1:1 v/v/v) electrolyte-soaked separator in between.

2.4. Characterizations

A JEM-2100 transmission electron microscope (TEM, JEOL Ltd., Tokyo, Japan) was used
for the TEM imaging. Scanning electron microscopy (SEM) images were taken on a Quanta200
microscope (FEI, Hillsboro, OR, USA), at an operating voltage of 15 kV. The surface chemical
composition was determined by an energy-dispersive X-ray (EDX) spectroscope connected to the
SEM. Nitrogen adsorption–desorption isotherm measurements were performed using a 3H-2000PM2
Brunauer-Emmett-Teller (BET) surface area analyzer (Micromeritics, Beishide Instrument-ST Ltd.,
Beijing, China). The samples were degassed at 300 ◦C under vacuum for 5 h before the measurements.
Specific surface area was calculated using the BET method. The total pore volume was determined at
a relative pressure of 0.98. Pore volume and pore-size distribution were calculated using a nonlocal
density functional theory (NLDFT) model based on the nitrogen adsorption branches of the isotherms.
X-ray photoelectron spectroscopy (XPS) was performed using a K-Alpha system (Thermo Fisher
Scientific, West Sussex, UK) operated at 14.0 kV and all binding energies were referenced to the C 1s
neutral carbon peak at 284.8 eV. X-ray diffraction (XRD) patterns were obtained using a D/max 2200
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X-ray diffractometer (Rigaku, Tokyo, Japan) with Ni-filtered CuKα (λ = 1.5406 Å) radiation at 40 kV
and 30 mA. Scattered radiation was detected in the range of 2θ = 10◦−80◦ at a scan rate of 4◦ min−1.

2.5. Electrochemical Measurements

Electrochemical measurements including cyclic voltammetry (CV) curves, galvanostatic
charge–discharge (GCD) curves, and electrochemical impedance spectroscopy (EIS) were conducted
on a CHI 660D electrochemical workstation (Chenhua Instrument Co., Shanghai, China) at room
temperature. The electrochemical performance of individual electrodes was investigated using
a three-electrode system prior to the fabrication of the supercapacitors. CV measurements were
performed at different scan rates (2–100 mV s−1), within a potential window of –0.5 to 0.5 V.
GCD measurements were performed with a constant current from 0.25–2 A g−1. EIS measurements
were conducted for the working electrode in a frequency range of 100 kHz to 0.01 Hz with alternating
current (AC) perturbation of 5 mV. The EIS data were analyzed using Nyquist plots, which represent
the imaginary part (Z′) and the real part (Z”) of impedance. The performance of the supercapacitors
was measured using a two-electrode method at scan rates of 5–100 mV s−1 within a potential window
of 0 to 3.5 V.

The specific capacitance (C, F g−1) was calculated from the corresponding GCD curves at different
current densities according to the equation:

C = I/[(dV/dt)m] =
I
m

dt
dV

(1)

where I(A) is the response current, m is the average mass of the electrode, and dt/dV is the inverse of
the slope of the discharge curve (V s−1).

The maximum specific energy density (Emax) and power density (Pmax) were calculated according
to the equations below:

Emax = 0.5CV2
max/3.6 (2)

Pmax = 3600Emax/t (3)

3. Results and Discussion

The preparation procedure of the 3D porous CNF/MnOx composite electrodes for supercapacitors
is illustrated in Figure 1. First, nanocellulose fibers were disintegrated from wood waste through
biorefinery steps. The resultant nanocelluloses exhibited fibrous structures with 2–20 nm widths
and lengths exceeding 1 µm (Figure 2a) [47]. Because of high aspect ratios and numerous hydroxyl
groups being exposed, the nanocellulose fibers are likely to intertwine together, which facilitates the
formation of the gel network, particularly for mass concentrations above 0.8 wt.% [48]. Subsequently,
the nanocellulose suspension was mixed with Mn(OAc)2 solutions containing different concentrations
of solute, and freeze-dried into freestanding hybrid aerogels with tailored shapes and sizes.
The obtained hybrid aerogels showed no significant differences in appearance compared with the
nanocellulose aerogels. After calcination at 850 ◦C in an argon atmosphere, the hybrid aerogels turned
into CNF/MnOx-m composite aerogels, and the colors changed into black (Figure 2b). The shape of the
composites was maintained but the volume shrunk by almost 40%. Thus, the bulk density increased
from 0.01 g cm−3 to 0.16 g cm−3. Meanwhile, the composites exhibited flexible and elastic features.
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Figure 1. Schematic illustration of the preparation procedure of 3D porous carbonized nanocellulose
fibers (CNF)/MnOx composite electrodes for supercapacitor applications.

SEM and high-resolution TEM were applied to investigate the microstructure of the CNF/MnOx

composite aerogels. The SEM images of the CNF aerogel in Figure 2c,d show the 3D porous structure
made of carbon nanofiber membranes. The CNF/MnOx composite aerogels also exhibit a similar
3D network structure (Figure 2e). The SEM-EDX elemental mapping images of C, Mn, and O atoms
evidently display the homogeneous distribution of MnOx nanoparticles on the surfaces of the CNF
membranes (Figure 2f–h). The high-resolution TEM image and the selected area electron diffraction
(SAED) cyclic pattern in Figure 2j further reveal the graphite carbon structure of the CNF membranes.
The MnOx nanoparticles that attached to the CNF membranes possess typical crystalline nanodomains
(Figure 2k). The CNF aerogel has a high BET surface area (SBET) value of 554.8 m2 g−1, whereas that of
CNF/MnOx-4 drops to 219.3 m2 g−1. The pore sizes of CNF/MnOx-4 were calculated 1.99–305.3 nm
from the pore-size distribution curves. The mesopore (2.0–58.0 nm) fraction and micropore (≤1.95 nm)
fraction were calculated as 80.25% and 31.50%, respectively (Figure 2l). The unique structural
characteristics of the composite are expected to benefit the absorption of electrolytes and provide
diffusion channels for electrolyte ions.

The XPS survey was performed to determine the surface chemical state of the CNF/MnOx

composite aerogels, and the spectra of the CNF/MnOx-4 are shown as representative examples. In the
wide-scan spectrum (Figure 3a), the composition elements only contain C, O, and Mn, whereby the
content of C is higher than the others, suggesting deep graphitization of CNF. This is also demonstrated
by the fitting curve of the C 1s profile that is related to C–C bonds (sp2 carbon) at a chemical shift of
284.5 eV (Figure 3c). Mn can assume multiple oxidation states (Mn2+, Mn3+, and Mn4+) and diverse
phases during both oxidation and reduction processes. There are two peaks of Mn 2p1/2 and Mn 2p3/2,
and the energy difference between these two peaks is 11.6 eV (Figure 3b). According to the fitting
curves of the O 1s profile (Figure 3d), the three deconvoluted peaks can be assigned to the chemical
bonds of Mn–O–Mn, Mn–O–H, and C–O at binding energies of 529.9, 531.4, and 532.7 eV, respectively.
All these indicate that two kinds of manganese oxides are generated during the calcination process.
The formation of a mixed-valent compound rather than single-phase MnOx is attributed to oxygen
deficiency during the calcination process.
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Figure 2. (a) Transmission electron microscope (TEM) image of nanocellulose fibers that extracted from
wood biomass using a high-intensity ultrasonic nanofibrillation combined with chemical pretreatments.
The inset in (a) shows the nanocellulose suspension. (b) Optical images of freeze-dried hybrid
aerogel and the composite aerogel CNF/MnOx-4. (c,d) Scanning electron microscope (SEM) and TEM
images exhibiting the 3D structure of CNF aerogel, which is made of carbon nanofiber membranes.
(e) SEM image showing the 3D porous structure of CNF/MnOx-4. (f–h) SEM-Energy-dispersive X-ray
(EDX) elemental mapping images show the electron probe microanalysis of C, Mn, and O elements,
demonstrating the successful synthesis of MnOx nanoparticles on the CNF membranes. (i) TEM image
showing the MnOx nanoparticles on CNF membranes. High-resolution TEM images showing (j)
the amorphous carbon structure of CNF membranes, and (k) the crystalline nano-domains of MnOx

nanoparticles that attached on the supporting CNF membranes. The inset in (j) shows the selected area
electron diffraction (SAED) cyclic pattern of amorphous carbon structure. The inset in (k) shows the
SAED multi-sets of hexagonal spots of MnOx. (l) Pore size distribution of CNF/MnOx-4.
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Figure 3. (a) X-ray photoelectron spectroscopy (XPS) survey spectrum of CNF/MnOx-4. (b–d) XPS
high-resolution spectra of Mn 2p, C 1s, and O 1s.
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The phase structure of the CNF/MnOx composite aerogels was further analyzed from a
crystallographic perspective. Figure 4 shows the relevant XRD patterns. The wide amorphous peak in
the range of 2θ = 18–30◦ is ascribed to CNF. A small diffraction peak is observed at 2θ = 23.5◦, which
may be ascribed to the (002) lattice plane of highly graphitized carbon. The mixed crystals of Mn3O4

and MnO can be identified from the diffraction curves of the CNF/MnOx composites. The diffraction
peaks (101), (112), (103), (211), (220), (224), and (400) at 2θ = 18.02◦, 28.96◦, 32.42◦, 36.04◦, 44.36◦, 60.02◦,
and 64.66◦, respectively, agree well with the Mn3O4 (faceted single crystals) powder standard (JCPDS
18-0803). The appearance of diffraction peaks at (111), (200), (220), (311), and (222) at 2θ = 34.90◦, 40.54◦,
58.72◦, 70.18◦, and 73.80◦, respectively, agrees well with the MnO powder standard (JCPDS 07-0230).
A comparison of the peak intensities at 34.90◦, 40.54◦, and 58.72◦ that correspond to the lattice planes
(111), (200), and (220), respectively, suggests that the appearance of a MnO phase was related to an
increase of Mn(OAc)2 content. The limited supply of oxygen molecules cannot afford the oxidization
of total Mn2+ to Mn3+. Thus, both the XRD patterns of CNF/MnOx-3 and CNF/MnOx-4 display the
characteristic diffraction peaks of MnO and Mn3O4. Mixed-valent MnOx usually contains both donor
and acceptor sites in its microstructures as well as defects and mismatch induced by different phases,
which can enable a high charge-storage capacity.Polymers 2019, 11, 129  7 of 13 
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Figure 4. X-ray diffraction (XRD) patterns of CNF and CNF/MnOx composite aerogels.

The electrochemical performance of the CNF/MnOx electrodes was evaluated from the CV
measurements. All the CNF/MnOx composites exhibit symmetric quasi-rectangular CV shapes,
indicating a high reversible charge-storage capacity (Figure 5a). This is attributed to the successive
multiple surface redox reactions of MnOx, behaving with a charge-storage mechanism that is different
from that of most metal oxides. No obvious oxidation and deoxidization peaks are observed,
but orientation polarization is displayed. The hysteresis at a relative pressure between 0.4 and
0.5 confirms the existence of mesopores. At a high scan rate of 50 mV s−1, the CNF/MnOx electrodes
also exhibit quasi-rectangular CV shapes, and the symmetry is improved (Figure 5b). As the scan
rate is increased from 2 to 100 mV s−1, the response current improves and shows certain multiplying
power characteristic, and the orientation polarization subsides (Figure 5c). The amount of MnOx

also has a significant influence on the specific capacitance of CNF/MnOx composites (Figure 5d).
The specific capacitance of CNF/MnOx-1 is 35.9 F g−1, which is similar to that of pure CNF (34.8 F g−1).
The specific capacitances of CNF/MnOx-2 and CNF/MnOx-3 are twice and three times that of pure
CNF. Notably, CNF/MnOx-4 shows the highest specific capacitance (138.4 F g−1). The reduction
of specific capacitance at high scan rates is assumed to be caused by the limiting redox reaction of
MnOx and hysteresis of the charge–transfer coefficient. When the mass fraction of MnOx was further
increased, the specific capacitance started to decrease (Figure S2).
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Figure 5. Cyclic voltammetry (CV) curves of the CNF/MnOx electrodes at a scan rate of (a) 5 mV s−1

and (b) 50 mV s−1. (c) Changes of CV curves of CNF/MnOx-4 at scan rates from 2 to 100 mV s−1.
(d) Specific capacitance vs. scan rate.

The CNF/MnOx electrodes were evaluated by means of GCD measurements within −0.5 to 0.5 V.
The charge–discharge curves exhibit an almost triangular shape with a small internal resistance drop
(Figure 6a). The deviation of the charge–discharge curves from the linear voltage–time relationship
indicates a pseudocapacitive behavior. In aqueous electrolytes, the pseudo-capacitance of MnOx

comes from the intercalation and de-intercalation of protons and/or alkali ions, as well as redox
reactions. The ion intercalation and de-intercalation and redox reactions take place on the surface of
the MnOx under high-speed charge–discharge. The presence of the internal resistance drop at the
beginning of the discharge is usually associated with the equivalent series resistance phenomenon.
At the same current density, the CNF/MnOx-4 electrode shows superior performance to the others.
The discharge curves of the CNF/MnOx-4 electrode display a nearly linear response at different current
densities from 0.25 to 2.0 A g−1 with a corresponding discharge time of 300 s and 30 s, respectively
(Figure 6b). Figure 6c shows a typical GCD curve of a CNF/MnOx-4 electrode under continuous
operation for the first several cycles, which indicates ideal electrochemical reversibility and almost
symmetric charge–discharge properties. The specific capacitance can be calculated from the discharge
curves using Equation (1) and shows a downward tendency with the rise of current density (Figure 6d).
The Nyquist plot displays a typical diffusion-controlled Warburg capacitive behavior with a diagonal
line in the low-frequency region and a small depressed semicircle in the high-frequency region. From
the EIS results, the Nyquist plot shows an intercept at the real impedance (Z′) of 1.1 Ω (Figure 6e).
An elongated ‘semicircle’ can be attributed to the widely distributed pore sizes in the structure.
The relatively small serial resistance suggests a compact electrode system that ensures fast charge
transfer between electrolyte and electrodes. Figure 6f shows good electroconductivity of CNF/MnOx-4
electrode in a series circuit. From above all, CNF/MnOx-4 was selected as the optimal sample for
constructing a symmetric supercapacitor.
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Figure 6. Galvanostatic charge–discharge (GCD) curves of the electrode made of CNF/MnOx electrodes.
(a) Charge–discharge curves of CNF/MnOx electrodes in a three-electrode configuration measured at
a constant current of 0.5 A g−1. (b) Charge–discharge curves of CNF/MnOx-4 electrode at different
current densities. (c) GCD curves of CNF/MnOx-4 electrode at a constant current of 0.5 A g−1.
(d) Specific capacitance vs. current density of the CNF/MnOx-4 electrode. (e) Nyquist plot for
CNF/MnOx-4 electrode. (f) Optical image shows the electroconductivity of CNF/MnOx-4 electrode in
a serial circuit.

Figure 7a is the schematic illustration of the CNF/MnOx-4-based symmetric supercapacitor.
Figure 7b shows a series of rate-dependent CV curves of the CNF/MnOx-4-based symmetric
supercapacitor in the voltage range of 0–3.5 V. The CV measurements were conducted at a scan
rate of 5, 10, 20, 50, and 100 mV s−1. Similar to the results measured in a three-electrode configuration,
the assembled supercapacitor exhibited quasi-rectangular CV curves. Moreover, even at a high
scan rate of 100 mV s−1, the CV curves remain symmetrical, suggesting good reversibility of the
electrochemical processes. From the EIS results, the Nyquist plot shows an intercept at Z′ of 4.6 Ω
(Figure 7c). Furthermore, the low-frequency region of the impedance curves shows a nearly straight
sloping line, suggesting a good capacitive performance of the electrode. The calculated specific
capacitances at different scan rates are present in Figure 7d. The CNF/MnOx-4-based symmetric
supercapacitor shows specific capacitances from 269.7 F g−1 to 108.6 F g−1 as the scan rate rises from
5 to 100 mV s−1. The specific capacitances represent an 80% retention of the initial capacitance after
1000 cycles of charging–discharging at 2 A g−1 (Figure 7e).
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As noted from the CV and GCD studies, high energy density and power density are expected
for such a supercapacitor assembly. Energy density and power density of the CNF/MnOx-based
symmetric supercapacitor are calculated from the GCD profiles and are illustrated in a Ragone
plot (Figure 7f). A maximum energy density of 37.5 Wh kg−1 can be stored at a power density of
2.75 kW kg−1, under the same charge–discharge condition at a voltage of 3.5 V. From the Ragone plot,
the performance of our supercapacitor can compare with or superior to those of CNT/MnO2-based
supercapacitors and graphene/MnO2-based supercapacitors [49–55] (e.g., 3D MnO2/grapheme [49],
graphene/CNT/MnO2 [51], graphene/MnO2/CNT supercapacitors [52]).

The satisfied performance of our supercapacitor is mainly contributed to the synergistic effects of
material chemistry and structure on the electrochemistry performance of CNF/MnOx-based electrodes,
which are summarized and ascribed in the following aspects: (1) The mixture of nanocellulose
suspension and Mn(OAc)2 solution is uniform and homogeneous, which prevents the aggregation
of MnOx colloids. (2) The CNF membranes are fabricated as the carbon aerogel carriers for MnOx

and nanoreservoirs for electrolytes. (3) A large number of research data have concluded that the
electrical properties of carbon/MnOx composite depend on the mass fraction of MnOx. When the
mass fraction of MnOx is less than 70%, the electrical properties increase with the increase of the
mass of MnOx. In this experiment, the optimal MnOx loading is just half of the best, indicating a
high utilization efficiency of MnOx. (4) The web-like conductive percolating structure facilitates the
diffusion path of electrolytes and reduces the charge-transfer impedance. Electrons can easily travel
through the diffusion path and can be picked up by MnO4

− ions at other locations. (5) The high
electrical conductivity and low charge-transfer resistance improve the kinetics significantly and are
favorable to overcome the kinetic limitations at high-current operation. (6) The integrated structure
contains the essential components (electrodes, spacer, and electrolyte) of an electrochemical device,
paving the way for designing a variety of energy-storage devices [43].

4. Conclusions

Freestanding CNF/MnOx composite aerogels were facilely synthesized by freeze-drying an
aqueous dispersion of nanocellulose and Mn(OAc)2, followed by a calcination process. Despite the
straightforward and inexpensive preparation, the shaped composites showed 3D porous structures
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with hierarchical pores, which benefit the transportation of both electrolyte ions and electrons.
The composites exhibit quasi-rectangular CV curves, pseudocapacitive behavior, and small impedance.
When used in a supercapacitor, the as-prepared CNF/MnOx-based symmetric supercapacitor showed
a specific capacitance of 269.7 F g−1 and possessed an energy density as high as 37.5 Wh kg−1, as well
as a power density of 2.75 kW kg−1. Meanwhile, the supercapacitor displayed cyclic stability with
capacitance retention of 80% after 1000 charge−discharge cycles at 2 A g−1. The approach is therefore
highly promising in terms of both cost efficiency and scale-up for the development of renewable
energy-storage devices toward sustainability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/1/129/s1,
Figure S1: TGA curves of CNF/MnOx composite aerogels, Figure S2: CV curves of the CNF/MnOx electrodes at
scan rate of (a) 5 mV s−1 and (b) 50 mV s−1.
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