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Abstract: The effect on the gas transport properties of Matrimid®5218 of blending with the
polymer of intrinsic microporosity PIM-EA(H2)-TB was studied by pure and mixed gas permeation
measurements. Membranes of the two neat polymers and their 50/50 wt % blend were prepared by
solution casting from a dilute solution in dichloromethane. The pure gas permeability and diffusion
coefficients of H2, He, O2, N2, CO2 and CH4 were determined by the time lag method in a traditional
fixed volume gas permeation setup. Mixed gas permeability measurements with a 35/65 vol %
CO2/CH4 mixture and a 15/85 vol % CO2/N2 mixture were performed on a novel variable volume
setup with on-line mass spectrometric analysis of the permeate composition, with the unique feature
that it is also able to determine the mixed gas diffusion coefficients. It was found that the permeability
of Matrimid increased approximately 20-fold with the addition of 50 wt % PIM-EA(H2)-TB. Mixed
gas permeation measurements showed a slightly stronger pressure dependence for selectivity of
separation of the CO2/CH4 mixture as compared to the CO2/N2 mixture, particularly for both
the blended membrane and the pure PIM. The mixed gas selectivity was slightly higher than for
pure gases, and although N2 and CH4 diffusion coefficients strongly increase in the presence of
CO2, their solubility is dramatically reduced as a result of competitive sorption. A full analysis is
provided of the difference between the pure and mixed gas transport parameters of PIM-EA(H2)-TB,
Matrimid®5218 and their 50:50 wt % blend, including unique mixed gas diffusion coefficients.

Keywords: polymer blend; polymer of intrinsic microporosity; PIM-EA(H2)-TB; Tröger’s base
polymer; Matrimid; gas separation; mixed gas diffusion

1. Introduction

Significant progress has been made in the development of new polymers for the fabrication of
gas separation membranes. Polymers used for gas separation membranes can be either rubbers,
generally characterized by a relatively low selectivity but high permeability and thus enabling
a great productivity, or glassy polymers, characterized by low permeability but high gas-pair
selectivity and offering a good separation efficiency. This trade-off between permeability and
selectivity, first introduced [1], and updated by Robeson [2] and then by Pinnau et al. [3] is typical for
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polymeric membranes, and was theoretically explained by Freeman et al. [4]. An exceptional novel
class of so-called polymers of intrinsic microporosity (PIMs), introduced by Budd, McKeown and
co-workers [5], which combine an exceptionally high permeability with relatively high selectivities,
is responsible for the large upward shift of the upper bound in recent years. PIMs owe their exceptional
behaviour to extremely rigid [6] and highly contorted [7,8] polymer chains, which do not allow efficient
packing and is responsible for a high free volume in these materials.

While most high performing PIMs require complex and expensive synthetic procedures, the key
challenge to improve the competitiveness of membrane separations over other gas separation
techniques is the fabrication of inexpensive polymer membranes, having a good trade-off between
permeability and selectivity. Commercial polymers used for gas separation membranes generally have
a high selectivity, but low permeability. Matrimid®5218, a commercial amorphous glassy polyimide,
is one of those polymers, and improvements of its overall performance would necessarily require an
increase in its permeability. One option to improve the permeability of a polymer is by blending with
another polymer to combine synergistically the best properties of the two individual materials [9,10].
This is not an easy task, because due to only a very small gain in entropy, most polymers are not
miscible at the molecular level. Early studies on the miscibility of Matrimid®5218 were reported
by Grobelny et al. [11], and since then different polymers were blended with Matrimid, in order
to increase its separation performance [12–14]. The blend of Matrimid®5218 with polyethersulfone
(PES) yielded mechanically stable flat film [15] and hollow fiber [16] membranes for efficient CO2/N2

separation; its blend with polysulfone (PSf) enhanced the stability of Matrimid in CO2/CH4 binary
mixtures, due to the mitigation of CO2 plasticization [17]. While the CO2 and CH4 permeability
of polysulfone/Matrimid®5218 blend membranes increase with the polyimide content, there is an
optimum in the CO2/CH4 mixed gas selectivity ('30) for the blend with 20% of Matrimid [18].

With their unique properties, starting with PIM-1 [19] that defined the 2008 Robeson upper
bound [2], numerous new PIMs with a wide range of different chemical structures [6,20–28] and
increasingly efficient gas separation performance, have moved the Robeson upper bounds further
for several gas pairs [3]. Despite their high permeability, the sophisticated synthesis and high costs
hinder PIMs from being the basis for large scale membrane production and industrial applications
at present [29]. In addition, for demanding separations, their modest selectivity needs improvement.
The idea underpinning the present work is to blend PIMs with a highly selective commercial polymer
such as Matrimid®5218, in order to tailor their permeability and selectivity. In the last few years,
the archetypal PIM-1 was blended with several other commercial polymers, especially with highly
selective polymers such as polysulfone [30] and polyimide [31] in order to increase its selectivity.
Blends of PIM-1 with polyphenylenesulfone (PPSU) and sulfonated polyphenylenesulfone (sPPSU)
exhibited similar permeability of the polysulfone but enhanced selectivity compared to the neat PIM-1,
with an additional anti-plasticization effect under mixture conditions [30]. Similarly, the blending
of carboxylated PIM-1 (cPIM-1) with the highly selective co-polyimide P84 demonstrated increased
selectivity with a simultaneous reduction of the permeability, as the amount of P84 was increased
in the blend [31]. The first blend of PIM-1 with Matrimid was made by Yong et al. and they also
studied the miscibility of Matrimid and Torlon with cPIM-1 [32–34]. Addition of a small quantity of
Matrimid in PIM-1 improved the O2/N2 separation performance, while a small amount of PIM-1 in
an excess of Matrimid enhanced the CO2/CH4 gas separation performance. Moreover, they used the
PIM-1/Matrimid blend to fabricate hollow fibers, demonstrating the greater versatility of the blend for
obtaining an ultrathin dense layer, potentially suitable for industrial use [35]. More recently, a novel
blend membrane of PIM-1 and a Tröger’s Base (TB) polymer showed lower pure gas permeability but
higher ideal selectivity than that of the pristine PIM-1 membrane [36].

In the present paper, we study the properties of a blend membrane based on the highly permeable
PIM-EA(H2)-TB [37–40] and the highly selective Matrimid®5218 (Figure 1). PIM-EA(H2)-TB is a
member of the new class of PIMs consisting of Tröger’s Base and ethanoanthracene (EA), forming
a particularly rigid polymer backbone. The equivalent polymer with methyl substituents on the
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two bridgehead positions of the ethanoanthracene unit, PIM-EA-TB, was shown to have a marked
size-sieving behaviour that favours the diffusion of gases with smaller kinetic diameters, and
surpasses the 2008 Robeson upper bound for the O2/N2, H2/CH4 and H2/CO2 gas pairs [8,41].
The PIM-EA(H2)-TB is highly selective, as the analogous PIM-EA-TB, and was recently used to
increase the hydrogen permeability of polybenzimidazole by blending [40].
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Figure 1. Structure, properties and membrane sample of PIM-EA(H2)-TB and Matrimid. Density from
Ref. [37] and [42], respectively.

The aim of this work to enhance the permeability of Matrimid by the addition of PIM-EA(H2)-TB,
and to find the desired combination of the high permeability of the PIM and the high selectivity
of the polyimide. Detailed analysis of the gas transport parameters under single and mixed gas
permeation conditions provides deep insight into the role of gas diffusivity and solubility in the overall
transport properties of the novel Matrimid®5218/PIM-EA(H2)-TB blend. In particular, a novel mixed
gas permeation setup with the unique possibility to determine the mixed gas diffusion coefficients
will provide unprecedented information on the coupling effect between CO2 and CH4 or CO2 and N2

during permeation of the respective mixtures in the neat polymers and the blend.

2. Materials and Methods

2.1. Materials

Matrimid®5218 was kindly supplied by Huntsman (Basel, Switzerland) and PIM-EA(H2)-TB
was prepared as described previously [37] and the purified polymer, isolated as a powder, was used
without any further treatment.

2.2. Preparation of Matrimid®5218/PIM-EA(H2)-TB Blend Membranes

The casting solutions of both pure polymers were prepared at a concentration of 2 wt % of the
polymer in dichloromethane (DCM). Homogenous solutions were obtained under magnetic stirring
overnight. The blend solution was prepared by mixing equal amounts of the two individual solutions.
The blend membrane containing 50 wt % of both Matrimid®5218 and PIM-EA(H2)-TB was prepared
pouring the appropriate amount of the blend solution into a metallic casting ring of 3 cm diameter,
placed on a Teflon® support. The solvent was evaporated at room temperature for 24 h, yielding
optically defect-free membranes Figure 1.

2.3. Membranes Characterization

Chemical and morphological analysis of membranes were performed by scanning electron
microscopy (SEM) on a Phenom Pro X desktop SEM, equipped with backscattering detector
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(Phenom-World B.V., Eindhoven, The Netherlands) and infrared spectroscopy (FTIR) analyses on a
Spectrum Spotlight Chemical Imaging Instrument (PerkinElmer). Single gas permeation tests were
carried out at 25 ◦C and at a feed pressure of 1 bar, using a fixed-volume pressure increase instrument
(ESSR, Geestchacht, Germany), described elsewhere [43]. Permeability coefficients, P, and diffusion
coefficients, D, were determined by the time-lag method [44]. The simplest model of permeation
through dense polymeric films describes permeability as the product of diffusion coefficient and
solubility coefficient. Thus, the apparent solubility, S, was indirectly calculated as S = P/D. The ideal
selectivity is the ratio of permeability of two species, α(A/B) = PA/PB. Mixed gas permeation tests
were carried out using a custom made constant pressure/variable volume instrument, described
elsewhere [45,46], equipped with a quadrupole mass filter (HPR-20 QIC Benchtop residual gas
analysis system, Hiden Analytical). Measurements were carried out as a sequence of increasing
and subsequently decreasing pressure steps in the range from 1–6 bar(a).

3. Results and Discussion

3.1. Chemical and Morphological Characterization

The chemical interaction between Matrimid®5218 and PIM-EA(H2)-TB was studied by means
of FTIR-ATR. The IR-spectrum for neat Matrimid®5218, neat PIM-EA(H2)-TB and for the blend
were shown in Figure 2. The distinctive imide peaks of Matrimid®5218 appear at 1712 for C=O
stretching and at 1361 cm−1 for C–N stretching, these peaks are also found in the spectrum of the
blend. The characteristic peaks of PIM-EA(H2)-TB are the CH2 asymmetric stretch vibrations of the
ethanoanthracene (EA) unit at 2960 cm−1 and the scissoring vibrations at 1420 cm−1. The water peak
(3370 cm−1) in the neat PIM-EA(H2)-TB and in the blend demonstrate the relatively hydroscopic nature
of TB-PIMs [23]. The good compatibility of Matrimid®5218 and PIM-EA(H2)-TB was also deduced
from the high optical transparency of the film and high mechanical resistance. The cross-sectional SEM
image shows very few separate domains (less than 1% of the area) confirming the excellent miscibility
between PIM-EA(H2)-TB and Matrimid (Figure 2).
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Figure 2. (a) ATR-FTIR spectra of the Matrimid®5218/PIM-EA(H2)-TB blend and neat polymer
membranes, and (b) SEM cross-sectional image of the Matrimid®5218/PIM-EA(H2)-TB blend
membrane at a magnification of 8000× and 30,000× at an accelerating voltage of 10 kV.

3.2. Pure Gas Transport Properties

Single gas permeation measurements were carried out in the order He, H2, O2, N2, CH4 and CO2

at 25 ◦C on time-stabilized membranes [47]. Figure 3 shows a plot of the gas transport parameters
of 30 days aged PIM and blend membranes, and a >1 year aged Matrimid membrane as a function
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of the membrane composition. The quantitative values are reported in Table 1. The experimental
results highlight the different behaviour of Matrimid®5218 and PIM-EA(H2)-TB. For all gases, the pure
gas permeability (Figure 3a), diffusivity (Figure 3c) and solubility (Figure 3e) are all higher in the
Matrimid®5218/PIM-EA(H2)-TB blend than in neat Matrimid membrane, thanks to the higher free
volume of the PIM.
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Table 1. Experimental data of single gas permeation in the neat polymers and the
Matrimid®5218/PIM-EA(H2)-TB blend membrane.

Permeability (Barrer) Selectivity (Px/Py)

Membrane N2 CH4 O2 He H2 CO2 H2/N2 He/N2 O2/N2 CH4/N2 O2/CH4 CO2/CH4 CO2/N2
Matrimid 0.19 0.17 1.63 21.9 22.8 8.62 120 115 8.54 0.90 9.54 50.6 45.3

Blend 6.83 9.14 41.0 197 328 198 48.0 28.8 6.00 1.34 4.48 21.6 29.0
PIM-EA(H2)-TB 62.8 77.6 350 606 1630 1380 25.9 9.64 5.57 1.23 4.51 17.7 21.9

Diffusivity (10−12 m2/s) Diffusion selectivity (Dx/Dy)

Membrane N2 CH4 O2 He H2 CO2 H2/N2 He/N2 O2/N2 CH4/N2 O2/CH4 CO2/CH4 CO2/N2
Matrimid 0.21 0.04 1.23 0.28 5.74 0.17 33.6 7.69 1.31

Blend 1.09 0.30 6.04 900 403 1.73 370 826 5.54 0.28 19.9 5.71 1.59
PIM-EA(H2)-TB 9.6 2.36 47.9 2400 1790 11.2 187 251 5.01 0.25 20.3 4.72 1.17

Solubility (cm3(STP)/cm3 bar) Solubility selectivity (Sx/Sy)

Membrane N2 CH4 O2 He H2 CO2 H2/N2 He/N2 O2/N2 CH4/N2 O2/CH4 CO2/CH4 CO2/N2
Matrimid 0.67 3.49 0.99 22.9 1.49 5.24 0.28 6.58 34.4

Blend 4.70 22.6 5.08 0.16 0.61 85.7 0.13 0.03 1.08 4.81 0.22 3.79 18.2
PIM-EA(H2)-TB 4.93 24.6 5.47 0.19 0.68 92.5 0.14 0.04 1.11 5.00 0.22 3.76 18.8

1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1.

The gas permeability and diffusivity are greater for the neat PIM, while there is little difference
in solubility between the blend and the neat PIM. The effect of composition is largest for diffusivity,
which increases about two orders of magnitude from Matrimid to PIM, whereas the solubility increases
less than an order of magnitude. The time lag of H2 and He is too short to be measured accurately
in the relatively thin neat Matrimid®5218 membrane, and thus the related diffusion coefficient and
solubility of this membrane could not be determined. The combined effect of S and D is reflected in
an exceptionally high permeability of the neat PIM membrane, with an approximately three orders
of magnitude higher N2 and CH4 permeability compared to the Matrimid membrane. On the other
hand, the selectivity is generally higher in Matrimid®5218 (Figure 3b and Table 1), especially for
gas pairs with very different kinetic diameters, like H2/N2, He/N2, mainly as a result of the much
higher diffusion selectivity (Figure 3d). The O2/N2 selectivity is higher in Matrimid®5218 due to a
slightly higher diffusion selectivity and solubility selectivity, whereas the higher CO2/N2 selectivity in
Matrimid®5218 must be ascribed mainly to the higher solubility selectivity (Figure 3e).

The blend membrane with 50 wt% of each polymer exhibits intermediate properties with respect
to the two individual polymers, with a roughly linear trend in permeability on a logarithmic scale.
This trend suggests that the two polymers have good compatibility and form a homogeneous blend,
because Robeson [48] anticipated that that the permeability, Pb, of a homogeneous polymer blend can
be expressed as:

ln Pb = φ1 ln P1 + φ2 ln P2 (1)

where φ1 and φ2 are the volume fractions of the two polymers in the blend, and P1 and P2 are their
respective permeabilities. The minor deviations of the experimental data from linearity are likely due
to the use of the weight fraction (Figure 3) instead of volume fraction (Equation (1)). The volume
fraction of the PIM, which has a lower density than Matrimid®5218, is higher than the weight fraction.
To some extent, the nonlinearity may also be due to slight differences in the degree of physical ageing
in the three samples, typically observed for PIMs but less in common glassy polymers with lower
free volume.

3.3. Mixed Gas Transport Properties

3.3.1. Mixed Gas Permeability

The membrane performance for two relevant industrial separations was investigated via
mixed gas permeability measurements on the pristine Matrimid®5218, PIM-EA(H2)-TB and on the
Matrimid®5218/PIM-EA(H2)-TB blend (See Appendix A Table A1). Measurements were performed
from 1 to 6 bar(a) with two binary gas mixtures of CO2/CH4 (35:65 vol %) and CO2/N2 (15:85 vol %),
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in order to simulate the biomethane purification process from biogas and CO2 capture from flue gas,
respectively (Figure 4, Table 2).
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Figure 4. (a,c,e) Pressure dependence of CO2 and CH4 permeabilities and CO2/CH4 selectivity using
the binary mixture of CO2/CH4 (35:65 vol %) for neat polymers and Matrimid®5218/PIM-EA(H2)-TB
blend membranes. (b,d,f) Pressure dependence of CO2 and N2 permeabilities and CO2/N2 selectivity
in binary mixtures CO2/N2 (15:85 vol %); Closed symbols are used for the stepwise increase of the
pressure and open symbols for the subsequent stepwise decrease of the pressure.

The Matrimid®5218 membrane showed very weak pressure-dependence of permeability and
selectivity for both gas pairs, CO2/CH4 and CO2/N2 in the given pressure range. It does not show
significant hysteresis between the pressure increase steps and the pressure decrease steps, which
means that neither substantial physical ageing, nor CO2 induced dilation of the polymer takes place.
On the other hand, for the Matrimid®5218/PIM-EA(H2)-TB blend and the neat PIM-EA(H2)-TB
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membranes, the CO2 permeability decreases as function of the feed pressure for both gas mixtures.
This is typical for polymers with distinct dual mode behaviour, which is indeed very common for
PIMs [49]. The N2 permeability decreases in a similar fashion as a function of pressure, and thus
the CO2/N2 selectivity is virtually constant in all three samples. In the blend and the pure PIM,
the methane permeability is slightly less pressure-dependent than that of CO2, and therefore the
CO2/CH4 selectivity decreases in these two membranes. The stronger effect of CO2 on methane than
on nitrogen is likely due to its higher concentration (35 vol %) in the CO2/CH4 mixture, compared
to 15 vol % in the CO2/N2 mixture. All membranes were aged for at least a month before the
measurements, so that further ageing during the experiments should not be expected. Only neat
PIM-EA(H2)-TB showed a slightly lower permeability in the pressure decrease steps, but the difference
was hardly more than the experimental error, so may not be necessarily attributed to physical ageing.
On the contrary, the Matrimid®5218/PIM-EA(H2)-TB blend showed weak hysteresis for CO2 and CH4,
with slightly higher permeability of both gases in the pressure decrease steps. This suggests a slight
dilatation of the polymer matrix and/or removal of trace amounts of residual solvent at elevated CO2

partial pressures.

Table 2. Comparison of the pure and mixed gas permeability of the neat Matrimid®5218,
PIM-EA(H2)-TB and their blend membrane as measured in the mixed gas setup. Feed gas: binary
mixture CO2/CH4 (35/65 vol %) and binary mixture CO2/N2 (15/85 vol %) at 1 bar.

Permeability (Barrer) Px/Py Selectivity (−)

CO2 CH4 N2 CO2/CH4 CO2/N2

Matrimid®5218
Pure gas 10.4 0.20 0.24 52 43.3

Mix (CO2/CH4) 10.5 0.19 - 55 -
Mix (CO2/N2) 11.3 - 0.23 - 49.1

Blend
Pure gas 198 9.1 6.83 21.66 28.99

Mix (CO2/CH4) 250 9.09 - 27.49 -
Mix (CO2/N2) 260 - 6.00 - 43.37

PIM-EA(H2)-TB
Pure gas 1391 62.6 53.1 22.22 26.20

Mix (CO2/CH4) 1527 76.1 - 20.07 -
Mix (CO2/N2) 1445 - 49.4 - 29.25

3.3.2. Mixed Gas Diffusion and Solubility

As described recently, a unique feature of our mixed gas permeation setup with on-line
mass-spectrometric analysis of the permeate composition is that it allows the determination of, not only,
the permeability but also the diffusion coefficients of the individual gases in the mixture [45,46].
The results for the three membranes are given in Table 3. The diffusion coefficient is determined by
a time lag method for gas mixtures [45], and the solubility is approximated indirectly as S = P/D.
The most obvious result for the blend and PIM membrane is that, while the CH4 and N2 permeability
change relatively little in the mixture (Table 2), their diffusion coefficients increase substantially and
since the change in diffusion coefficient of CO2 is much smaller, the diffusion selectivity decreases
significantly. The gas solubility shows exactly the opposite trend: the CH4 and N2 solubility decrease
in the presence of CO2. This provides clear evidence of competitive sorption by CO2 at the expense of
the less condensable gases.
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Table 3. Comparison of the pure and mixed gas diffusivity and solubility of the neat Matrimid®5218,
PIM-EA(H2)-TB, and their blend membrane as measured in the mixed gas setup. Feed gas: binary
mixture CO2/CH4 (35/65 vol %) and binary mixture CO2/N2 (15/85 vol %) at 1 bar.

Diffusivity (10−12 m2 s−1) Dx/Dy Selectivity (−)

CO2 CH4 N2 CO2/CH4 CO2/N2

Matrimid®5218
Pure gas 0.35 0.05 0.28 7.04 1.24

Mix (CO2/CH4) 0.29 0.06 - 5.12 -
Mix (CO2/N2) 0.24 - 0.30 - 0.80

Blend
Pure gas 2.36 0.46 1.58 5.71 1.59

Mix (CO2/CH4) 2.10 0.66 - 3.18 -
Mix (CO2/N2) 1.40 - 2.11 - 0.61

PIM-EA(H2)-TB
Pure gas 10.7 2.31 9.22 4.63 1.16

Mix (CO2/CH4) 10.6 3.61 - 2.94 -
Mix (CO2/N2) 7.14 - 10.5 - 0.68

Solubility (cm3(STP) cm−3 bar−1) Sx/Sy Selectivity (−)
CO2 CH4 N2 CO2/CH4 CO2/N2

Matrimid®5218
Pure gas 22.2 3.00 0.64 7.39 34.8

Mix (CO2/CH4) 27.0 2.50 - 10.8 -
Mix (CO2/N2) 34.9 - 0.57 - 61.5

Blend
Pure gas 85.8 22.6 4.70 3.79 18.3

Mix (CO2/CH4) 89.2 10.3 - 8.66 -
Mix (CO2/N2) 138 - 1.94 - 71.0

PIM-EA(H2)-TB
Pure gas 97.5 20.3 4.32 4.80 22.3

Mix (CO2/CH4) 109 15.7 - 6.91 -
Mix (CO2/N2) 148 - 3.53 - 42.0

3.4. Robeson Plots and Comparison with Literature Blend-Data

The gas permeability data of neat Matrimid®5218, PIM-EA(H2)-TB, and the blended membrane
are plotted in the Robeson diagrams for CO2/N2, CO2/CH4, O2/N2 and H2/CH4 (Figure 5).
From Matrimid®5218 to the blend and to pure PIM-EA(H2)-TB, the diagrams show a strong increase in
the pure gas permeability, accompanied by a modest decrease in ideal selectivity, as a common trend
for all gas pairs. Literature data of pure Matrimid and other PIM/Matrimid blend membranes for
CO2/N2 and CO2/CH4 separation are plotted for reference. Most of the data of our samples lie inside
the data cloud near its top range. The cloud of Matrimid data derives from the different measurement
conditions, membrane preparation and conditioning.

Only the CO2/N2 selectivity of the neat PIM and the blend lie significantly higher than the
cloud and these samples are positioned much closer to the most recent upper bound than Matrimid.
Especially for CO2/N2, with PCO2 = 198 Barrer and αCO2/N2 = 29, the Matrimid®5218/PIM-
EA(H2)-TB blend presents a better trade-off between permeability and selectivity compared to
other Matrimid®5218/PIM (50:50) blends reported in the literature, such as PIM-1/Matrimid
(PCO2 = 155 Barrer; αCO2/N2 = 27) and cPIM-1/Matrimid (PCO2 = 145 Barrer; αCO2/N2 = 24) [32,34].
Of note is that the Matrimid permeability was increased approximately 20-fold by the addition of
50 wt % of PIM-EA(H2)-TB. This offers the potential for the preparation of asymmetric or thin film
composite membranes with much higher permeability, without compromising selectivity too much.
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4. Conclusions

The pure and mixed gas permeation measurements of neat polymer of intrinsic microporosity
PIM-EA(H2)-TB, Matrimid®5218 and their 50/50 wt % blend demonstrated that the permeability
of Matrimid®5218 can be increased dramatically by the addition of the PIM whilst maintaining a
reasonably high selectivity. Mixed gas permeation experiments reveal a comparable CO2 permeability
and a slightly higher selectivity than the ideal one for the CO2/CH4 and CO2/N2 gas pairs,
and addition of the PIM moves the performance of Matrimid®5218 closer to the Robeson upper bound
for these gas pairs. Interestingly, in spite of the slightly higher mixed gas permselectivity, the mixed
gas diffusion selectivity is significantly lower than the ideal diffusion selectivity. This indicates that the
presence of CO2 favours the diffusion of the slower gases N2 and CH4, but that the effect of competitive
sorption, which reduces their solubility, dominates the overall performance of the membranes.
All membranes show a moderate to weak decrease in either the permeability or the selectivity
for the CO2/CH4 and CO2/N2 gas pairs with increasing pressure, typical for dual mode sorption
behaviour. The very strong effect of PIM-EA(H2)-TB offers the possibility to tailor the permeability
of Matrimid®5218 over a wide range and opens perspectives for making high permeability thin film
composite membranes with the mechanical resistance of Matrimid and PIM-like permeabilities.
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Appendix A. Mixed Gas Permeation Data

Table A1. Mixed gas permeabilities and selectivity for Matrimid, Matrimid®5218/PIM-EA(H2)-TB
blend and PIM-EA(H2)-TB membranes using the binary mixture CO2/CH4 (35/65) vol % and the
binary mixture CO2/N2 (15/85) vol %.

M
at

ri
m

id

Pressure P, (Barrer) Selectivity (−) Pressure P, (Barrer) Selectivity (−)

(bar(a)) CH4 CO2 CO2/CH4 (bar(a)) N2 CO2 CO2/N2

1 0.19 10.5 55.7 1 0.23 11.3 48.5
2 0.18 10.0 55.6 2 0.22 11.0 49.8
3 0.18 10.3 56.7 3 0.22 10.8 49.3
4 0.18 10.1 55.3 4 0.22 10.7 49.3
5 0.18 9.9 54.0 5 0.22 10.4 48.0
6 0.18 9.8 53.6 6 0.22 10.8 49.4

5.5 0.18 9.9 54.3 5.5 0.22 10.9 49.5
4.5 0.18 10.1 55.3 4.5 0.22 10.5 47.3
3.5 0.18 10.3 56.3 3.5 0.23 10.7 47.1
2.5 0.19 10.6 57.2 2.5 0.23 10.8 47.7
1.5 0.19 10.4 54.4 1.5 0.23 11.0 48.3
1 0.19 10.6 55.2 1 0.23 11.1 48.5

M
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id
®

52
18

/P
IM

-E
A

(H
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bl
en

d Pressure P, (Barrer) Selectivity (−) Pressure P, (Barrer) Selectivity (−)

(bar(a)) CH4 CO2 CO2/CH4 (bar(a)) N2 CO2 CO2/N2

1 9.09 250 27.5 1 6.0 260 43.5
2 8.59 231 26.8 2 5.4 246 45.3
3 8.29 217 26.2 3 5.2 236 45.0
4 8.09 210 25.9 4 5.0 225 45.6
5 8.08 200 24.8 5 4.7 219 46.6
6 7.91 212 26.8 6 4.6 217 47.0

5.5 8.16 215 26.4 5.5 4.7 219 46.7
4.5 8.46 213 25.2 4.5 4.9 224 45.2
3.5 8.70 226 26.0 3.5 5.2 233 45.3
2.5 9.09 240 26.4 2.5 5.4 244 45.2
1.5 9.48 257 27.1 1.5 5.7 258 45.0
1 9.46 263 27.8 1 5.8 265 45.5

PI
M

-E
A

(H
2)

-T
B

Pressure P, (Barrer) Selectivity (−) Pressure P, (Barrer) Selectivity (−)

(bar(a)) CH4 CO2 CO2/CH4 (bar(a)) N2 CO2 CO2/N2

1 75.7 1540 20.3 1 49.6 1410 28.4
2 73.4 1430 19.5 2 47.1 1350 28.7
3 73.7 1430 19.4 3 44.8 1320 29.4
4 73.4 1370 18.7 4 43.4 1280 29.5
5 72.6 1320 18.2 5 42.0 1230 29.4
6 72.1 1270 17.6 6 41.1 1200 29.2

5.5 72.2 1290 17.8 5.5 41.6 1230 29.5
4.5 71.6 1340 18.8 4.5 43.7 1260 28.8
3.5 71.6 1390 19.4 3.5 44.9 1290 28.8
2.5 71.1 1460 20.6 2.5 46.1 1340 29.1
1.5 71.1 1430 20.2 1.5 47.7 1410 29.5
1 69.5 1460 21.0 1 48.6 1430 29.4
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