Synthesis of bithiophene-based D-A₁-D-A₂ terpolymers with different A₂ moieties for polymer solar cells via direct arylation

Huang jinfeng, Lin Zhenkun, Feng Wenhuai, Wang Wen*

Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

* Correspondence: <u>wangwen@fjnu.edu.cn</u>

1.1 Synthesis of monomer (4,7-bis-(5-bromo-4-hexylthiophen-2-yl)-benzo[1,2,5]selenadiazole)

4, 7-dibromo-2, 1, 3-benzoselenadiazole was purchased from SunaTech Inc. The other reagents and starting materials were purchased from commercial sources. In the free-water and free-oxygen conditions, the solvent must be corresponding treatment with distillation and deoxidization.

4,7-bis-(5-bromo-4-hexylthiophen-2-yl)-benzo[1,2,5]selenadiazole

Compound (4, 7-dibromo-2,1,3-benzoselenadiazole) (0.76 g, 2.24 mmol), 2bromo-3-hexylthiophene (1.16 g, 4.68 mmol), catalyst Pd(OAc)₂ (5 mol%), tricyclohexylphosphonium tetrafluoroborate (10 mol%), K₂CO₃ (0.32 g, 2.34 mmol) and pivalic acid (0.18 g, 1.17 mmol) were transferred to single-neck bottle under an atmosphere of nitrogen. The blend solutions (DMAc (5 mL) /p-xylene (5 mL)) were added and the mixture was refluxed at 110 0 C for 48 h. After cooling to room temperature, the solvent was removed, and 0.39 g yellow solid was obtained in 25.8% yield by silica gel column chromatography. ¹H NMR (400 MHz, CDCl₃): δ_{ppm} 7.76 (d, 2H), 7.68 (d, 2H), 2.62 (m, 4H), 1.18-1.62 (m, 16H), 0.90-0.88 (m, 6H). Elemental analysis: Calcd for C₂₆H₃₀Br₂N₂S₂Se (%): C, 46.37, H, 4.49, N, 4.16. Found (%): C, 46.85, H, 4.28, N, 4.23. Mass (m/z) [M⁺]: Calcd for C₂₆H₃₀Br₂N₂S₂Se 673.43. Found 672.89.

1.2 GPC traces and ¹H NMR spectra for Polymers

Figure S1 GPC traces and ¹HNMR of P1

GP	C Re	sult	ts

	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	Mz+1
1		23.392	23.392	23.392	26729	42178	37747	65244	93482

Figure S2 GPC traces and ¹HNMR of P2

	GPC Results								
	Dist Name	Elution Volume (mI)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	Mz+1
1		15.898	15.898	15.898					
2		23.432	23.432	23.432	40523	62662	57013	97155	143904

Figure S3 GPC traces and ¹HNMR of P3

	GPC Results								
	Dist Name	Elution Volume (ml)	Retention Time (min)	Adjusted RT (min)	Mn	Mw	MP	Mz	Mz+1
1		22.917	22.917	22.917	42232	62171	48623	92234	132830

Figure S4 GPC traces and $^1\mathrm{HNMR}$ of P4

1.3 AFM 3D images and corresponding values of blend films

-20	ISO 25178				
-17.5	Height F	arameters			
- 15	Sq	2.62	nm		
- 12.5	Ssk	0.186			
-10	Sku	3.05			
-7.5	Sp	12.1	nm		
-5	Sv	8.52	nm		
-2.5	Sz	20.6	nm		
E ₀	Sa	2.09	nm		

Figure S5 P1:PC71BM blend film

ISO 25	5178	
Height F	Parameters	
Sq	11.3	nm
Ssk	-0.0813	
Sku	2.97	
Sp	35.4	nm
Sv	38.3	nm
Sz	73.7	nm
Sa	9.02	nm

Figure S6 P2:PC71BM blend film

	ISO 25178						
m	Height Parameters						
2.5	Sq	4.71	nm				
7.5 5	Ssk	0.250					
2.5 0	Sku	3.56					
7.5 5	Sp	18.9	nm				
2.5 0	Sv	18.3	nm				
.5	Sz	37.2	nm				
.5 -	Sa	3.68	nm				

Figure S8 P4:PC71BM blend film