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Abstract: Viscoelasticity drag-reducing flow by polymer solution can reduce pumping energy of pipe
flow significantly. One of the simulation manners is direct numerical simulation (DNS). However,
the computational time is too long to accept in engineering. Turbulent model is a powerful tool to
solve engineering problems because of its fast computational ability. However, its precision is usually
low. To solve this problem, we introduce DNS to provide accurate data to construct a high-precision
turbulent model. A Reynolds stress model for viscoelastic polymer drag-reducing flow is established.
The rheological behavior of the drag-reducing flow is described by the Giesekus constitutive Equation.
Compared with the DNS data, mean velocity, mean conformation tensor, drag reduction, and stresses
are predicted accurately in low Reynolds numbers and Weissenberg numbers but worsen as the two
numbers increase. The computational time of the Reynolds stress model (RSM) is only 1/120,960 of
DNS, showing the advantage of computational speed.
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1. Introduction

Drag reduction (DR) phenomenon was first discovered by Toms [1]. He observed in his
experiment that the addition of a long-chain polymer (polymethyl methacrylate) in monochlorobenzene
dramatically reduced the turbulent skin friction by as high as 80%. The flow rate could be increased by
the addition of the polymer at constant pressure gradient. Then, he reported these results at the First
International Rheological Congress, so it is usually referred to as the “Toms Effect”. The polymers
that can reduce skin friction were later called drag-reducing agents (DRAs). The energy-saving effect
of DRAs attracts many applications. The first famous application for polymer drag reduction was
its use in the 48 inch diameter 800 mile length Alaska pipeline, carrying crude oil from the North
slope in Alaska to Valdez in the south of Alaska [2]. After injecting a concentrated solution of a
high-molecular-weight polymer downstream of pumping stations at homogeneous concentrations as
low as 1 ppm [3], crude throughput was increased by up to 30%. Polymer DRAs were also successfully
applied in other crude oil pipelines such as Iraq-Turkey, Bass Strait in Australia, Mumbai Offshore [4],
and North Sea Offshore [5], and in finished hydrocarbon product lines [6].

The drag-reducing flow induced by polymer solution usually appears viscoelastic. Direct
numerical simulation (DNS) can simulate this kind of viscoelastic turbulent flow in high precision [7–11].
More recent progresses are as follow. Dubief et al. [12] investigated the energetics of turbulence by
correlating the work done by polymers on the flow with turbulent structures. Polymers are found to
store and to release energy to the flow in a well-organized manner. Graham [13] proposed a tentative
unified description of rheological drag reduction based on his numerical observations. Thais et al. [14]
found that the spectra of its cross-flow component in viscoelastic flows exhibit a significantly higher
energy level at a large scale. Pereira et al. [15] studied the polymer–turbulence interactions from an
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energetic standpoint for a range of Weissenberg numbers and found a cyclic mechanism of energy
exchange between the polymers and turbulence that drives the flow through an oscillatory behavior.
They also addressed the numerical simulation of thermo-fluid characteristics of triangular jets [16].
However, DNS needs numerous storages of the computer because very dense mesh is required to
resolve small eddies in turbulent drag-reducing flow, such that computational time is too long to be
accepted in engineering. Turbulent model computes the turbulent flow very quickly. Compared with
DNS, turbulent model for viscoelastic drag-reducing flows develops slowly. There were zero-Equation
models established by Edwards et al. [17] and Azouz et al. [18]. One-Equation models and two-Equation
models were established by Durst et al. [19], and Hassid and Poreh [20–22]. Cruz et al. [23] and Pinho
et al. [24] considered elongation thickening of drag-reducing fluid based on Newtonian fluid turbulent
flow and derived a new low Reynolds number k-ε model for polymer drag-reducing flow. Elongation
thickening is a very important factor of drag reduction. Thus, Pinho’s work promoted the turbulent
model greatly, but the precision is still not high enough due to the complexity of viscoelastic turbulent
flow. Reynolds stress model (RSM) can simulate Newtonian turbulent flow in high precision, so that it
has potential advantages to deal with the complex viscoelastic turbulent flow with polymer additives.
If the RSM is established based on DNS data, the precision may be better.

In this paper, an RSM for viscoelastic drag-reducing flow is established based on DNS data.
The goal is to find a new modeling way to solve drag-reducing flows in engineering with fast
computation and good accuracy.

2. Governing Equations

2.1. Instantaneous Equations

Viscoelastic drag-reducing flow can be described by the following governing Equations [25].
(1) Continuity Equation:

∂ui
∂xi

= 0 (1)

(2) Momentum Equation:

∂ui
∂t

+ uk
∂ui
∂xk

= −
1
ρ

∂p
∂xi

+
µ

ρ
∂2ui

∂x2
k

+
1
λρ

∂cik
∂xk

(2)

(3) Giesekus constitutive Equation:

∂ci j

∂t
+
∂umci j

∂xm
− cmj

∂ui
∂xm
− cim

∂u j

∂xm
+

1
λ

[
−ηδi j + ci j +

α
η
(cim − ηδim)

(
cmj − ηδmj

)]
= 0 (3)

where ρ and λ are the density and the relaxation time of drag-reducing fluid respectively. α is the
mobility factor, which determines the extensional viscosity. p is pressure. ui (i = x, y, z) are the velocity
components in the x, y, z directions. ci j is the conformation tensor. µ is the zero-shear-rate viscosity
of solvent. η is the zero-shear-rate viscosity of drag-reducing polymer. We choose the following
dimensionless transformation: x∗i = xi/h, t∗ = t/(h/uτ), u+

i = ui/uτ, p+ = p/
(
ρu2

τ

)
, c+i j = ci j/η and

use the definition of Weissenberg number Weτ = ρλu2
τ/(µ+ η), the definition of frictional Reynolds

number Reτ = ρuτh/(µ+ η), and the ratio β = µ/(µ+ η). uτ is the frictional velocity (uτ =
√
τw/ρ,

τw is the wall shear stress). h is the half height of the channel, as shown in Figure 1. Using these
definitions, Equations (1)–(3) can be transformed to be the following dimensionless Equations:
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(4) Dimensionless continuity Equation:

∂u+
i

∂x∗i
= 0 (4)

(5) Dimensionless momentum Equation:
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+
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(5)

(6) Dimensionless Giesekus constitutive Equation:

∂c+i j
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+
∂u+
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+
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2.2. Time-Average Equations

Reynolds stress model focuses on the time-average effect of turbulent flow. Thus, instantaneous
variables in the above Equations can be considered as the summation of time-average variables and
fluctuation variables, that is, ϕ+ = ϕ+ + ϕ+′ (ϕ+ represents instantaneous variables (u+

i , p+, c+i j etc.);
superscripts “—” and “’” represent time-average variables and fluctuation variables respectively).
After this decomposition, time-average operations can be made for the instantaneous Equations to
obtain the following time-average Equations:

(1) Time-average momentum Equations:

∂u+
i

∂t∗
+ u+

k

∂u+
i
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β
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(7)

(2) Time-average constitutive Equations:
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Ci j

(8)

Equations (2)–(7) so that we can obtain the following fluctuation Equations.
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(3) Fluctuation Equations:
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Equation (9) can also be rewrote as:
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Equation (9) × u+′

j + Equation (10) × u+′

i and do the time average, we can obtain the following
Reynolds stress transport Equations.

(4) Reynolds stress transport Equations:
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(11)

All these Equations contain high-order moments Ai j, Bi j, Ci j, φi j, Ti j, εi j, Ei j, Fi j and u+′

i u+′

j . They
are new unknowns. Apparently, the number of unknowns exceeds the number of Equations, so that all
the high-order unknowns need to be modeled as functions of time-average variables.

3. Modeling of High-Order Moments of Fluctuations

Different from Newtonian turbulent flow, the above high-order moments of drag-reducing flow
are all related to viscoelasticity. The terms directly related to viscoelasticity (Ai j, Bi j, Ci j, Ei j, Fi j) do
not appear in the turbulent models of Newtonian flow, such that they are modeled for the first time.
The other terms (φi j, Ti j, εi j) have implicit and complex relations with viscoelasticity, such that the
modeling manner of these terms uses the same way of Newtonian flow. The modeling process is
as follows.

3.1. High-Order Moments Directly Related to Viscoelasticity

The additional turbulent diffusion terms introduced by viscoelasticity (Ai j, Ei j) and the correlation
of conformation tensor Bi j are much smaller than turbulent diffusion. Thus, they can be neglected.
To conform the physical process and consider the easy use of the model, Ci j is assumed to have relations
with Reynolds stress, mean strain rate, and so on. According to the positive definiteness of Reynolds
stress and nonpositive definiteness of mean strain rate, the dimensional form of Ci j can be expressed as:

Ci j
dim = ϕ1 fwλ

ρ

Tt
ui′u j′ + ϕ2

1
Tt

(
ci j − ηδi j

)
(12)
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where Ci j
dim = Ci jηuτ/h, fw = 1− exp(−y+/100), y+ is the dimensionless distance to the lower wall

of the channel, Tt (= (ν/ε)1/2) is Kolmogorov time scale calculated from Kolmogorov length scale

(
(
ν3/ε

)1/4
) and Kolmogorov velocity scale ((εν)1/4). ν (= µ/ρ) is kinetic viscosity of fluid.

Equation (8) is nondimensionalized using ε+ = ε/
(
u3
τ/h

)
, fluid density, viscosity, and frictional

velocity and combined with the definitions of Reτ, Weτ, and β. The model of Ci j is as follows:

Ci j = ϕ1 fw
Weτ

(1− β)
√
β/(Reτε+)

u+′

i u+′

j + ϕ2
1√

β/(Reτε+)

(
c+i j − δi j

) (13)

where ϕ1 = 0.05, ϕ2 = −0.01. From observations, Fi j and Ci j have the following simple relation:

Fi j = −
1− β
Weτ

Ci j (14)

3.2. High-Order Moments Indirectly Related to Viscoelasticity

For turbulent diffusion terms Ti j, Daly and Harlow’s model [26] is applied:

Ti j =
∂
∂x∗k

Cs
k+

ε+
u+′

k u+′

l

∂u+′

i u+′

j

∂x∗l

 (15)

where k+ and ε+ are dimensionless turbulent kinetic energy and energy dissipation rate. The model
parameter Cs is 0.22.

Turbulent dissipation term εi j and redistribution term φi j are modeled together:

− εi j + φi j = −
2
3
δi jε

+ + φ(1)i j + φ(2)i j (16)

where φ(1)i j = −C1
ε+
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(
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j −
2
3 k+δi j

)
, φ(2)i j = −C2
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2
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2
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,
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k
∂u+k
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+ u+′

i u+′

k
∂u+k
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)
. Shima [27] gave the expressions of coefficients:

C1 = 1 + 2.45A1/4
2 A3/4

{
1− exp

[
−(7A)2

]}{
1− exp

[
−(RT/60)2

]}
(17)

C2 = 0.7A (18)

C3 = 0.3A1/2 (19)

C4 = 0.65A(0.23C1 + C2 − 1) + 1.3A1/4
2 C3 (20)

where A = 1 − 9A2/8 + 9A3/8, A2 = ai ja ji, A3 = ai ja jkaki, ai j = u+′

i u+′

j /k+ − 2δi j/3, RT =

k+2/(ε+β/Reτ).
The above modeling introduces two new unknowns, k+ and ε+, which need be modeled. k+ can

be solved from the definition of turbulent kinetic energy (k+ = u+′

i u+′

i /2), where u+′

i u+′

i can be solved
from the Reynolds stress transport Equation (Equation (11)). ε+ can be solved from Shima’s model [27]:

∂ε+

∂t∗
+ u+

k
∂ε+

∂x∗k
= Cε1

ε+

k+
P−Cε2

ε+ε̃+

k+
+

∂
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(
Cε
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ε+
u+′

k u+′

l
∂ε+

∂x∗l
+

β

Reτ
∂ε+

∂x∗k

)
(21)

where ε̃+ = ε+ − 2 β
Reτ

[
∂(k+)1/2

∂x∗l

]2
, Cε1 = 1.44 + β1 + β2, Cε = 0.15, Cε2 = 1.92,
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β1 = 0.25Amin(λ′/2.5− 1, 0) − 1.4Amin(P/ε+ − 1, 0), β2 = 1.0Aλ′2max(λ′/2.5− 1, 0),

λ′ = min(λ∗, 4), λ∗ =
[
∂
∂x∗i

(
k+3/2

ε+

)
∂
∂x∗i

(
k+3/2

ε+

)]1/2
.

All the high-order moments are modeled to be the functions of time-average variables. Equations
(8)–(17) combined with Equations (4), (5), and (7) compose a Reynolds stress model.

4. Results and Discussion

The above Reynolds stress model was used to simulate the fully developed viscoelastic
drag-reducing channel flow. The computational domain is shown in Figure 1. Periodic boundary
conditions were imposed in both the streamwise (x-) and spanwise (z-) directions, while nonslip
boundary conditions were adopted for the top and bottom walls. Computational parameters were:
Reτ = 150, Weτ = 10, α = 0.001, β = 0.8.

The numerical method of DNS is a fractional step method. Adams–Bashforth scheme was
used to ensure the second-order accuracy of velocity. An implicit scheme was used for the pressure
term. Staggered grid was applied to avoid unphysical oscillations of pressure. A second-order finite
difference scheme was used for spatial discretization. Uniform mesh was used in the x and z directions
due to the periodic boundary condition. To capture small eddies near the walls, nonuniform mesh was
used in the y direction. Grid number was 64 × 64 × 64. Drag reduction is defined as:

DR% =
C f Dean −C f

C f Dean
× 100% (22)

where Cf is the calculated friction factor, CfDean is evaluated by Dean’s correlation [28], DR% is the
drag reduction.

Mean streamwise velocity, drag reduction, Reynolds stress, and fluctuation intensity were obtained
and compared with the results of DNS to validate the model. Bulk mean variables are listed in Table 1.
The results obtained by the turbulent model (RSM) agree well with the DNS results. The relative
deviations of mean streamwise velocity, Reynolds number, frictional factor, and drag reduction were
0.57%, 0.57%, 1.27%, and 9.3%. Thus, the prediction of the bulk mean variables by RSM is accurate.

Table 1. Comparison of bulk mean variables.

u+m Rem Cf DR%

Direct numerical simulation (DNS) 15.87 4762 0.0079 9.7%
Reynolds stress model (RSM) 15.96 4789 0.0078 10.6%

Figure 2 is the comparison of time-average streamwise velocity profiles between RSM and DNS. The
DNS results for Newtonian turbulent flow agree well with the typical distribution of viscous sublayer
(u+ = y+), buffer layer (u+ = 5 ln y+ − 3.05), and turbulent core region (u+ = 2.5 ln y+ + 5.5) [29],
showing that the fluid has achieved fully developed turbulent flow. The time-average velocity of RSM
coincides well with DNS in the viscous sublayer, is lower than DNS in the buffer layer, and is higher
than DNS in the turbulent core region. The mean deviation is only 9.1%, which is much lower than
previous turbulent models (as high as 30–50% or more). This indicates the established model can
predict the time-average streamwise velocity profile accurately. Fluctuation intensities are compared
in Figure 3. Predicted v+rms and w+

rms are larger than DNS, while u+
rms is smaller than DNS. The peak

value positions of u+
rms v+rms, and w+

rms of RSM are basically the same as DNS.
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Cmij represents the mean conformation tensor c+i j . The four main components of the conformation
tensor, with subscripts 1, 2, 3 representing streamwise, wall-normal, and spanwise directions,
are compared in Figure 5. It shows that the four components agree well with DNS. The peak
value of Cm11 is 15% lower than the value in DNS. Cm12 of RSM coincides well with DNS. It determines
the value of viscoelastic stress, such that the deviation of viscoelastic stress is small in Figure 4.
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The RSM for the above case is basically verified. We further verify the RSM using the DNS results
in literature [30] at different Weissenberg numbers. Table 2 shows the bulk mean variables such as
drag reduction. It is apparent that the RSM can also simulate the drag-reducing flow accurately at
Weτ = 12.5 and 30, which correspond to low and medium drag reduction, respectively. Figures 6 and 7
show that the critical features (e.g., average velocity profile and Reynolds stress distribution) can be
simulated by the RSM in satisfied precision.

Table 2. Comparison of bulk mean variables with literature [30].

u+m Rem Cf DR%

DNS (Weτ = 12.5) [30] 16.13 4838 0.00769 12.1%
RSM (Weτ = 12.5) 16.10 4829 0.00772 11.9%

DNS (Weτ = 30) [30] 20.6 6180 0.00471 42.8%
RSM (Weτ = 30) 21.2 6373 0.00443 45.8%Polymers 2019, 11, 1659 9 of 12 
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RSM only concerns time-average variables so that it does not need to resolve the small eddies near
the walls like DNS. The complex and time-consuming numerical methods, such as numerous iterations
of pressure, can be avoided. Therefore, the computational time of RSM can be much smaller than that
of DNS. Table 3 verifies that RSM can largely save the computational time because the acceleration
ratio of computational time of DNS and RSM is as high as 120,960.

Table 3. Computational time.

DNS RSM Acceleration Ratio

604,800s 5s 120,960

To further examine the precision of the RSM at higher Reynolds numbers, it is compared with the
typical DNS results made by Housiadas et al. [31] in Table 4. The drag reduction of the RSM agrees
well with the DNS data in low (Reτ = 125) and medium (Reτ = 180) Reynolds numbers. The deviation
becomes larger at higher Reynolds number (Reτ = 395). The model was also used to predict the effect
of Weissenberg number at the higher Reynolds number (Table 5). Drag reduction increases with
increasing Weτ and tends to a stable value about more than 40%.

Table 4. Drag reduction (DR%) comparison with Housiadas’ results [31] at different Reτ.

Case DNS RSM Deviation

Reτ = 125, Weτ = 50, β = 0.9 29.8% 29.2% 2.0%

Reτ = 180, Weτ = 50, β = 0.9 29.9% 28.6% 4.3%

Reτ = 395, Weτ = 50, β = 0.9 29.6% 25.7% 13.2%

Table 5. DR% at different Weτ of the RSM for high Reτ.

Case DR%

Reτ = 395, Weτ = 25, β = 0.9 24.7%

Reτ = 395, Weτ = 50, β = 0.9 25.7%

Reτ = 395, Weτ = 100, β = 0.9 28.0%

Reτ = 395, Weτ = 150, β = 0.9 33.8%

Reτ = 395, Weτ = 200, β = 0.9 41.1%

Reτ = 395, Weτ = 250, β = 0.9 44.4%
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5. Conclusions

Through the discussions, it is apparent that the newly established Reynolds stress turbulent model
can predict bulk mean velocity and drag reduction accurately. The predictions of stresses and mean
conformation tensor are also good. The time-average streamwise velocity outside the viscous sublayer
is quite different from that in DNS. Streamwise fluctuation intensity is much smaller than that in DNS.
This is probably because the modeling of the redistribution term φi j is the same as that for Newtonian
fluid. This term may affect viscoelasticity and pressure in a complex way, which needs further study in
future to find a more accurate modeling manner. The acceleration ratio is as high as 120,960, showing
the extremely high speed of the new turbulent model of polymeric drag-reducing flow. The Reynolds
stress model appears to have good accuracy at lower Reynolds numbers compared with typical DNS
results. The model predictions significantly worsen as the Reynolds number and Weissenberg number
increase, limiting the applicability of the model up to modest levels of drag reduction. This suggests (in
association with the other limitations already stated before) that there is room for model improvement
in future work.
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