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Abstract: In this study, a small amount of fluoroelastomer (FKM) was used as a nucleating agent to
prepare well-defined microporous PP foam by supercritical CO2. It was observed that solid FKM
was present as the nanoscale independent phase in PP matrix and the FKM could induce a mass
of CO2 aggregation, which significantly enhanced the diffusion rate of CO2 in PP. The resultant
PP/FKM foams exhibited much smaller cell size (~24 µm), and more than 16 times cell density
(3.2 × 108 cells/cm3) as well as a much more uniform cell size distribution. PP/FKM foams possessed
major concurrent enhancement in their tensile stress and compressive stress compared to neat PP
foam. We believe that the added FKM played a key role in enhancing the heterogeneous nucleation,
combined with the change of local strain in the multiple-phase system, which was responsible for the
considerably improved cell morphology of PP foaming. This work provides a deep understanding of
the scCO2 foaming behavior of PP in the presence of FKM.
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1. Introduction

As a widely investigated commercial polymer, polypropylene (PP) foam has numerous desirable
and beneficial properties, such as good chemical-resistance, outstanding mechanical properties, low
electrical conductivity, low cost and a unique porous honeycomb structure [1–4]. PP foams have
wide range of many industrial applications in the fields of packaging, aerospace, automobiles,
acoustic absorbent, dielectric materials, energy storage materials, thermal insulators, as well as
tissue engineering [1,2,5–9]. However, due to their very low melt strength and high crystallinity,
the fabrication of linear PP foams is not successful [10–13]. Consequently, the resultant neat PP foam
usually exhibits large cell diameter, low cell density, and poor mechanical properties.

To improve the melt strength, considerable efforts have been made to optimize the process
of PP foaming, enhance PP foam ability as well as improve cellular structure [12,14–19], such as
long-chain branching, crosslinking [11,16,20,21], polymer blending [12,22], and compounding [23,24].
In recent years, it was found that nano-materials such as carbon nanotubes, carbon nanofibers, and
graphene added in PP could enhance heterogeneous nucleation to increase cell density, reduce cell
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size, improve cell size uniformity, and at the same time reinforce the PP matrix [12,18,25–28]. But the
cost of these nanoparticles is expensive, so it is difficult to use them for the high-volume production of
PP foams [12]. Moreover, the foaming behavior of polymer is greatly influenced by the solubility of
CO2, which determines the cellular structure, expansion ratio, and crystallization parameters of the
resultant foams [29–31]. In addition, the use of scCO2 can decrease the melt viscosity of the polymer
owing to the strong plasticizing effect of the dissolved CO2 and thus improve the processability of
polymers [12,18,29,30,32].

Thermoplastic fluoroelastomer (FKM) possesses outstanding chemical-resistant, high melt point,
excellent weather resistance as well as flame retardant properties. In particular, good affinity and
solubility between fluorine compunds and carbon dioxide were found [33,34]. However, PP foaming
by scCO2 has not been investigated in the presence of FKM. Herein, a small amount of FKM was
applied as the nucleating agent to improve scCO2 foaming behavior of PP. The results showed that
enhanced heterogeneous nucleation and increased foaming ability were obtained in the presence
of FKM. The saturated mixed phases (PP/FKM/CO2) are like an “island model”, and the existence
of FKM can increase the number of the heterogeneous nucleation sites during the foaming process.
The obtained PP/FKM foam possessed large cell density, small cell size, uniform cell size distribution
as well as an excellent expansion ratio. In addition, the resultant PP/FKM foams endowed unusual
tensile and compressive strength across a wide foaming pressure range. Furthermore, the foaming
parameters of PP/FKM including saturation pressure and saturation time were also investigated in
this work.

2. Materials and Methods

2.1. Materials

Random polypropylene (Sep-540) with a density of 0.89 g/cm3 and a melt flow rate (MFR) of
7.0 g/10 min was purchased from LOTTE Chemical Co. (Jiaxing, China) Fluoroelastomer (FKM 246)
with a density of 1.86 g/cm3 was supplied by Sinopec Shanghai Chemical Co. (Shanghai, China). CO2

with a purity of 99.95% was used as a foaming agent.

2.2. Sample Preparation

The PP pellets and FKM were dried at 60 ◦C for 4 h before they were used. A series of
mixtures with FKM contents of 0.5, 1.0, and 2.0 wt %, were prepared at 240 ◦C using a two-screw
extruder (Thermo Haake PolyDrive 7, Shanghai, China). The extruded strands were cooled in water
and pelletized with a strand cutter. PP/FKM sheets with a thickness of 1 mm were obtained by
hot-pressing under the conditions of 190 ◦C and 20 MPa. For comparison, a neat PP sheet was also
prepared. The samples were denoted as PP/FKM(0.5), PP/FKM(1.0), and PP/FKM(2.0), respectively.
The characteristic parameters of the mixtures are shown in Table 1.

Table 1. Characteristic parameters of neat PP and PP/FKM mixtures.

Samples PP PP/FKM(0.5) PP/FKM(1.0) PP/FKM(2.0)

Tm/◦C 165.4 165.9 166.4 167.3
XC/% 38.2 38.8 39.7 40.4

2.3. Foaming Process

PP sheet samples were placed in a high pressure autoclave, and the autoclave was pressurized
with CO2 using a plunger metering pump; the parameters of the foaming device have been described
in the previous literature [11,12,16,18,19,21]. The system was kept at the pre-set temperature and
pressure for 1 h. Then, the autoclave was vented in less than 10 s. Finally, the samples were removed
from the autoclave and cooled to room temperature.
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2.4. Sample Characterization

A differential scanning calorimeter (DSC, NETZSCH STA 449 F3 Jupiter, Shanghai, China) was
used to scan the melting transitions of the specimens in aluminum crucibles. The specimens were first
heated from 25 to 250 ◦C at 10 ◦C/min under an argon flow (20 mL/min), then cooled to 30 ◦C at
10 ◦C/min under an argon flow (20 mL/min), and again heated to 250 ◦C under the same conditions.
The first heating was performed to eliminate the thermal history of the specimens. The crystallization
parameters of the specimens were obtained from the software Proteus-6 (NETZSCH, Shanghai, China).
The crystallinities were calculated using Equation (1).

Xc(%) =
∆Hf
∆Hf0

×100 (1)

where ∆Hf is the melting enthalpy measured in the heating process, and ∆Hf0 is the theoretical
enthalpy of 100% crystalline PP, 207.1 J/g [35].

The micro-morphologies of the unfoamed and foamed specimens were observed using a scanning
electron microscope (SEM, Zeiss MERLIN Compact 14184, Shanghai, China). Samples were immersed
in liquid nitrogen for 2 min, then fractured, mounted on stubs, and sputter-coated with gold.

2.5. Morphological Observation of the Foams

Image Pro-Plus software 6.0 (Media Cybernetics, Rockvill, MD, USA) was used to analyze the
SEM images. The average cell size D of the cells in the micrographs was calculated using Equation (2).

D =
∑ dini

∑ ni
(2)

where ni is the number of cells with a perimeter-equivalent diameter of di. To ensure the accuracy of
the average cell size measurement, i is greater than 200.

The volume expansion ratio of each foam was calculated as the ratio of the density of the
solid PP, ρs, to the measured density of the foam, ρf. The foam density (ρf) was determined from
Archimedes’ law by weighing the PP foam in water with a sinker using an electronic analytical balance
(HANG-PING FA2104) and the foam density was calculated using Equation (3).

ρf =

(
a

a + b − c

)
ρw (3)

where a, b, and c are the weights of the specimen in air without the sinker, the totally immersed sinker,
and the specimen immersed in water with the sinker, respectively, and ρw is the density of water.

The volume expansion ratio (Vf) was calculated using Equation (4).

Vf =
ρs
ρf

(4)

where ρs and ρf are the density of un-foamed and foamed samples, respectively.
The porosity Pf is related to the density of the PP foam ρf and the un-foamed PP ρs, which was

calculated using Equation (5).

Pf(%) =

(
1 − ρs

ρf

)
×100 (5)

The cell density (N0) was calculated using Equation (6).

N0 =
( n

A

) 3
2 Vf (6)

where n and A are the number of cells in the SEM image and the area of the image (cm2), respectively.
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2.6. Mechanical Properties

The tensile strength of the un-foamed and foamed specimens was measured using a universal
testing machine (5943, Instron, Shanghai, China). The foams were cut into 2 mm × 4 mm × 25 mm
pieces. All the specimens were measured in accordance with ASTM D-638 at a room temperature
of 23 ◦C. The compression strength of the resultant foams was measured using an MTS universal
microtester (Jinan zhongchuang testing machine technology Co. LTD, Jinan, China) equipped with
a 50 N load cell. The side lengths of 6 mm of cubic specimens cut from the foamed samples were
employed for compression tests; the speed was 1 mm/min, and more than five data points were
measured for each sample under the same conditions.

3. Results and Discussion

3.1. Microscopic Structure of PP/FKM Blends

PP/FKM mixtures with various FKM contents were mixed by an extrusion system. To understand
the dispersion of FKM in the PP phase, we analyzed the SEM micrographs of PP/FKM samples.
Figure 1 shows the fractured surface images of the resultant neat PP and PP/FKM mixtures. It can be
easily seen that FKM has an excellent dispersion in PP matrix. The size of the formation dispersion
phase of FKM was about 250 nm in the PP phase and it could be clearly seen that the sizes of FKM
particles in PP matrix were all at the nanoscale level. According to the literature [33,34], the FKM
phase is still in a solid state at the foaming temperature (152 ◦C), so the FKM may play a role as the
nucleating agent in forming the cellular structure of PP during the foaming process.

Polymers 2019, 11, x FOR PEER REVIEW 4 of 12 

 

2.6. Mechanical Properties 

The tensile strength of the un-foamed and foamed specimens was measured using a universal 
testing machine (5943, Instron, Shanghai, China). The foams were cut into 2 mm × 4 mm × 25 mm 
pieces. All the specimens were measured in accordance with ASTM D-638 at a room temperature of 
23 °C. The compression strength of the resultant foams was measured using an MTS universal 
microtester (Jinan zhongchuang testing machine technology Co. LTD, Jinan, China) equipped with a 
50 N load cell. The side lengths of 6 mm of cubic specimens cut from the foamed samples were 
employed for compression tests; the speed was 1 mm/min, and more than five data points were 
measured for each sample under the same conditions. 

3. Results and Discussion 

3.1. Microscopic Structure of PP/FKM Blends 

PP/FKM mixtures with various FKM contents were mixed by an extrusion system. To 
understand the dispersion of FKM in the PP phase, we analyzed the SEM micrographs of PP/FKM 
samples. Figure 1 shows the fractured surface images of the resultant neat PP and PP/FKM mixtures. 
It can be easily seen that FKM has an excellent dispersion in PP matrix. The size of the formation 
dispersion phase of FKM was about 250 nm in the PP phase and it could be clearly seen that the sizes 
of FKM particles in PP matrix were all at the nanoscale level. According to the literature [33,34], the 
FKM phase is still in a solid state at the foaming temperature (152 °C), so the FKM may play a role as 
the nucleating agent in forming the cellular structure of PP during the foaming process. 

 
Figure 1. SEM images of fractured surfaces of (a) neat PP, (b) PP/FKM(0.5), (c) PP/FKM(1.0), and (d) 
PP/FKM(2.0) samples. 

3.2. Morphologies and Properties of PP/FKM Foams 

The cell morphologies of neat PP, PP/FKM(0.5), PP/FKM(1.0), and PP/FKM(2.0) foams prepared 
at 152 °C and 20 MPa are shown in Figure 2. The cell size declined as the loading of FKM increased 
to 1.0 wt %. Cracked and consolidated cells appeared, and the cell continuity was poor in the neat PP 
foam. The PP/FKM foams exhibited a different cellular structure with different FKM contents. The 

Figure 1. SEM images of fractured surfaces of (a) neat PP, (b) PP/FKM(0.5), (c) PP/FKM(1.0),
and (d) PP/FKM(2.0) samples.

3.2. Morphologies and Properties of PP/FKM Foams

The cell morphologies of neat PP, PP/FKM(0.5), PP/FKM(1.0), and PP/FKM(2.0) foams prepared
at 152 ◦C and 20 MPa are shown in Figure 2. The cell size declined as the loading of FKM increased to
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1.0 wt %. Cracked and consolidated cells appeared, and the cell continuity was poor in the neat PP
foam. The PP/FKM foams exhibited a different cellular structure with different FKM contents. The cell
size distributions of different foams are shown in Figure 2. PP/FKM foams possessed narrower cell
distributions than those of the neat PP foam. In particular, PP/FKM(1.0) and PP/FKM(2.0) foams
exhibited much more uniform cell size distribution. Moreover, increased porosities were obtained as the
loading of FKM increasing, which indicated a much better foaming ability of PP. These results implied
that the enhanced diffusion rate and increased solubility of CO2 were obtained in the presence of FKM,
resulting in a large porosity, which was also found in the previous studies on fluorinated ethylene
propylene copolymer (FEP) foaming by scCO2 [35,36]. Furthermore, the independent solid-state
FKM phase in the PP matrix may significantly increase the heterogeneous nucleation site in the
foaming process.
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Figure 2. SEM images and cell size distributions of foams (a) neat PP, (b) PP/FKM(0.5), (c) PP/FKM(1.0),
and (d) PP/FKM(2.0), all prepared at 152 ◦C and 20 MPa.

The average cell diameter and cell density of the cellular structure of the neat PP and PP/FKM(0.5),
PP/FKM(1.0), and PP/FKM(2.0) foams are summarized in Figure 3a. The cell size of PP foams
decreased from 65 to 23 µm as the loading of FKM increased from 0 to 1.0 wt % and the cell density
increased significantly compared to neat PP foam, by more than 16 times. The foam density and
expansion ratio of foamed samples are shown in Figure 3b. The foam density declined as the content of
FKM increased from 0 to 2.0 wt %, in agreement with the results in Figure 2. The existence of FKM led
to a higher diffusion rate and solubility of CO2 in the melt PP matrix, and enough CO2 could support
cell growth for a long time [35,36]. According to “Heterogeneous Nucleation Theory”, the formed
nanoscale solid FKM phase in the PP matrix can act as the nucleating agent; it is vividly shown in
Figure 4. It is known that foaming is a rapid process for cells growing in a few seconds, which depends
on the thermophysical and rheological properties of PP/CO2 mixtures, and this process is related to the
change of temperature, pressure, and local stress, etc. In the multiple phase system, the existence of the
FKM phase induces a mass of CO2 aggregation, which is similar to an “island”. During the process of
release pressure, it was easy to cause the change of local stress around the “island”, and induce a large
number of nucleation sites, which greatly increased the nucleation rate. Furthermore, a large number
of cell sites, caused by heterogeneous nucleation, competed for the limited CO2, which restricted
the cell growth [37]. Additionally, the suitable foaming conditions of FKM were about 230 ◦C and
30 MPa [35]. A small amount of CO2 might dissolve into the FKM phase in the saturation process, so it
might also enhance the foaming ability of PP/FKM samples.
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The mechanical properties of the resultant PP foam are the important evaluation parameters for
potential industrial applications. The tensile stress-strain and compressive stress-strain curves of neat
PP and PP/FKM foams are shown in Figure 5. The PP/FKM foams possess excellent stress and strain
compared to neat PP foam. The tensile stress increased to more than 15 MPa and the tensile strain
of PP/FKM foam reached 110%. The compressive strength results showed that PP/FKM exhibited
higher stress than neat PP foam. The obtained outstanding mechanical properties were ascribed to
the well-defined cellular structure and high continuous polygonal cell morphology of PP/FKM(1.0)
foam [10,12,18,19]. All these clear results signified the key role of FKM in preparing fine PP foam with
excellent mechanical properties, which indicated promising engineering applications.
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3.3. Effects of Foaming Pressure on the Foaming Behavior of PP/FKM(1.0)

Figure 6 shows the effects of different saturation pressures on the cell morphologies of
PP/FKM(1.0) samples at 152 ◦C. All the specimens foamed regardless of the pressures (15, 20,
and 25 MPa). However, there was large difference between the cellular structures of neat PP foams
prepared at different pressures. There were non-foaming regions and non-uniform cell size in the
neat PP foam prepared at 15 MPa and this was caused by insufficient swelling of CO2. The resultant
PP/FKM(1.0) foams exhibited good cellular structures at different saturation pressures.
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The cell diameter and cell density of neat PP and PP/FKM(1.0) foams are summarized in Figure 7.
It can be seen that the PP/FKM(1.0) foams showed small average cell size and high cell density.
In addition, the cells of PP/FKM(1.0) foams almost all exhibited good continuity at different pressures,
which indicated good mechanical properties. In general, cell size increased as the pressure increased
for the enhanced expansion force of CO2 against the cell wall. We believe that the existence of the
nanoscale FKM phase increased the solubility of CO2 around the FKM “island” in the PP matrix,
improving the foaming ability of PP/FKM.
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saturation pressures.

3.4. Effects of Saturation Time on the Foaming Behavior of PP/FKM(1.0)

From the previous discussion, the porosities of PP/FKM foams increased as the loading of FKM
increased and we ascribed it to the increased solubility of CO2 in the PP matrix. It is known that
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the solubility of CO2 is also affected by the saturation time. Consequently, the influence of different
saturation times on the cellular structures of PP/FKM(1.0) foams was also studied. It could be seen
that the foaming ability of PP/FKM(1.0) was significantly enhanced as the saturation time increased,
as shown in Figure 8. Some non-foamed regions could be clearly seen in Figure 8a. The reason was that
the melt PP matrix was not fully swelled by CO2 in 30 min, so it was inclined to form a non-uniform
distribution of cell size. More CO2 dissolved into PP as the saturation time increased, which improved
the foaming ability of PP. As CO2 continually dissolved into the melt PP, the increased expansion force
of CO2 further supported the cell growth, resulting in a larger cell size.
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Figure 9 summarizes the parameters of the cellular structure of PP/FKM(1.0) foams as a function
of saturation time. The cell size increased and the cell density decreased as the saturation time
increased from 30 to 120 min. The foam density of resultant PP/FKM(1.0) foams showed the declining
phenomenon as the saturation time increased, which indicated an increasing porosity and expansion
ratio of the foams. These results signified that the solubility of CO2 was further increased as the
saturation time increased, and a large amount of CO2 supported cell growth. The changes of the tensile
stress and compressive stress of the foams prepared at different saturation times are shown in Figure 10.
It is observed that the mechanical properties decrease as the saturation time increases. A well-defined
cellular structure with uniform cell size distribution and good cell continuity, often exhibited good
elasticity during the tensile and compressive process, resulted in unusual properties [38,39]. These
results are consistent with the conclusion in the previous studies [7,10,12,38,39].
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Figure 10. (a) Tensile stress and (b) compressive stress of PP/FKM foams prepared at different
saturation times (30 min, 60 min, 90 min, and 120 min).

4. Conclusions

In this study, microcellular PP foam with fine cellular structure was fabricated in the presence
of FKM by scCO2 foaming. It was found that the nanoscale solid FKM phase induced a mass of
CO2 aggregation, which was similar to the “island model”, and the FKM could greatly enhance
the heterogeneous nucleation as the nucleation agent during the foaming process. The resultant
PP/FKM foams exhibited smaller cell size, and more than 16 times higher cell density compared to
neat PP foam. PP/FKM foams possessed a higher tensile and compressive stress compared to neat
PP foam. The results also showed that FKM significantly improved the cell morphology parameters
of PP/FKM foams in a large foaming pressure window. Finally, the obtained PP foams with various
performance parameters could be easily controlled by changing the FKM content, foaming temperature
and saturation time.
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