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Abstract: Newly synthesized two kinds of achiral phenylacetylenes having a free-base- or a
zinc-porphyrin (1 and Zn1, respectively) were polymerized by using a chiral rhodium catalyst system,
Rh+(nbd)[(η6-C6H5)B–(C6H5)3] catalyst and (R)-(+)- or (S)-(–)-1-phenylethylamine ((R)- or (S)-PEA,
respectively) cocatalyst. Poly(1) and poly(Zn1) in THF showed a Cotton signal at the absorption
region of the porphyrin and the main chain in the circular dichroism (CD) spectra. This result suggests
that poly(1) and poly(Zn1) exist in a conformation with an excess of one-handed helix sense and
the porphyrin moiety arranged in chiral helical fashion. The one-handed helical structure of poly(1)
could be sustained in a mixture of THF/HMPA (10/2, v/v) due to stabilizing by stacking effect
of porphyrin moieties along the main chain. This is the first example about helix-sense-selective
polymerization by using Rh+(nbd)[(η6-C6H5)B–(C6H5)3] catalyst. Additionally, poly(Zn1) showed
about 10 times larger CD intensity in comparison with poly(1). This result suggests the regularity of
arrangement of the porphyrin in poly(Zn1) is higher compared with poly(1). Spatial arrangement of
porphyrins was achieved by utilizing a one-handed helical poly(phenylacetylenes) as a template.

Keywords: helix-sense-selective polymerization; conjugated polymer; poly(phenylacetylenes);
one-handed-helical polymer; porphyrin

1. Introduction

The synthesis of one-handed helical polyacetylenes has attracted much attention due to their
interesting applications such as chiral sensors, chiral catalysts, optical resolution, microelectronic
devices, organic magnetic materials, and so on [1–6]. The one-handed helical polymers are one of the
stereoregular polymers and are also useful as a template for spatially arranging functional groups
introduced in the side chain to create novel functional materials.

Porphyrin, which is a widely conjugated, large cyclic, and planar molecule, is attracting the
attention of many researchers in various fields because of its functions such as catalysis, molecular
recognition, fluorescence, energy transfer, and light-harvesting [7–10]. Porphyrin is also expected to
play an important role in realizing artificial photosynthesis [11,12]. Particularly, to realize efficient
light-harvesting systems, precise spatial arrangement of porphyrins is considered to be the key.
A number of studies on the synthesis, fluorescence, and electronic properties of polymer with porphyrin
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moieties as pendants have been reported [13–16], but there are few reports on polyacetylene [17]. The
challenge of the arrangement of functional molecules, such as porphyrins, remain of interest, utilizing
a rigid stereoregular polymer such as a one-handed helical polyacetylene as a template.

The synthetic methods of one-handed helical polyacetylenes are roughly classified into two
categories, i.e., asymmetric induced polymerization (AIP) and helix-sense-selective polymerization
(HSSP). AIP, in which chiral substituted acetylenes are used as a monomer, is a simple method to obtain
one-handed helical polyacetylenes [18–24]. However, the poly(substituted acetylenes) synthesized
by AIP have two chiral sources, i.e., chiral side groups and one-handed helical main chain to causes
which complicates the understanding of their chiral functions. HSSP is another method used to obtain
one-handed helical polyacetylenes in which achiral acetylene monomers and other chiral sources
such as initiators [25–28], additives [29–31], and a polymerization field [32–34] are used. The obtained
one-handed helical substituted polyacetylenes having no other chiral moieties in the side or end groups.

Previously, we have reported the HSSP of 4-dodecyloxy-3,5-bis(hydroxymethyl)phenylacetylene
(DoDHPA) by a chiral catalyst system, [Rh(nbd)Cl]2–(R)-(+)-1-phenylethylamine ((R)-PEA) [25].
The resulting polymer showed large Cotton effects in the CD spectrum attributed to one-handed
helical conformation in a solution which is kinetically stabilized by intramolecular hydrogen bonds.
Furthermore, HSSP is more valuable than AIP because it could synthesize right-handed or left-handed
helical polyacetylenes by using a catalytic amount of chiral substances.

In this paper, we report the synthesis and the helix-sense-selective polymerization of
a phenylacetylene having two hydroxylmethyl groups and a porphyrin moiety by a new chiral
rhodium catalyst system (Scheme 1). The spatial arrangement of porphyrins was achieved by utilizing
a one-handed helical poly(phenylacetylenes) as a template.
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Scheme 1. (a) Helix-sense-selective polymerization (HSSP) of monomers having porphyrin moiety; 

(b) schematic structures of poly(1) and poly(Zn1) synthesized by HSSP (the overhead view and the 

top view are represented using 7 and 3 repeating units, respectively, for simplicity). 
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A Rh+(nbd)[η6-C6H5)B–(C6H5)3] (nbd = 2,5-norbornadiene) catalyst was synthesized according to 
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Tokyo Chemical Industry Co. (Tokyo, Japan) and used without further purification. Triethylamine, 

Scheme 1. (a) Helix-sense-selective polymerization (HSSP) of monomers having porphyrin moiety;
(b) schematic structures of poly(1) and poly(Zn1) synthesized by HSSP (the overhead view and the top
view are represented using 7 and 3 repeating units, respectively, for simplicity).

2. Experimental Section

2.1. Materials

A Rh+(nbd)[η6-C6H5)B–(C6H5)3] (nbd = 2,5-norbornadiene) catalyst was synthesized according to
the method reported by Schrock et al. [35] (S)-(−)-or (R)-(+)-1-Phenylethylamine was purchased from
Tokyo Chemical Industry Co. (Tokyo, Japan) and used without further purification. Triethylamine,
CHCl3 and CH2Cl2 were distilled from CaH2 before use. 4-Hydroxy-3,5-bis(hydroxymethyl)
phenylacetylene was synthesized according to our previous report [36].
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2.2. Monomer Synthesis

2.2.1. Synthesis of 4-(4-((6,11,16-tri(4-n-octyloxyphenyl)porphynyl)benzyloxy)-3,5-bis(hydroxymethyl)
phenylacetylene(1)

The synthetic route of 1 is shown in Scheme 2.
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Scheme 2. Synthetic route of 1.

4-n-Octyloxybenzaldehyde(2)

4-hydroxybenzaldehyde (20.0 g, 164 mmol), potassium carbonate (45.3 g, 328 mmol), and potassium
iodide (27.2 g, 164 mmol) were taken in acetone (275 mL) and stirred at reflux temperature under a
nitrogen atmosphere for 2 h. 1-Bromooctane (31.4 mL, 180 mmol) was added dropwise to the above
hot reaction mixture. The solution was refluxed for additional 24 h under a nitrogen atmosphere.
After the reaction, the solution was cooled to room temperature. Then the volatile solvent, acetone,
was removed under a reduced pressure, and the reaction residue was poured into a large amount of
water (550 mL). The solution was extracted with dichloromethane, and the organic layer was washed
with 2% NaOH aq. (825 mL) and brine. Then the organic solution was dried over anhydrous Na2SO4

and concentrated to give a pale yellow oil as a crude product. It was further purified by silica gel
column chromatography (hexane:ethyl acetate = 9:1) to give the desired product as a yellow viscous
liquid. Rf = 0.33; Yield = 33.5 g (87.3%).

1H NMR (CDCl3, 400 MHz), δ: 9.85 (s, 1H, Ar–CHO), 7.80 (d, 2H, Ar–H), 6.97 (d, 2H, Ar–H), 4.01 (t,
2H, Ar–OCH2), 1.82–1.76 (quit, 2H, Ar–OCH2CH2CH2), 1.48–1.42 (quint, 2H, Ar–OCH2CH2CH2CH2),
1.37–1.22 (8H, aliphatic), 0.88 (t, 3H, –CH3).

5-(4-Methoxycarbonylphenyl)-10,15,20-tri(4-n-octyloxyphenyl)porphyrin(3)

A mixture of pyrrole (0.56 mL, 8.0 mmol), methyl terephthalaldehydate (328 mg, 2.0 mmol),
and 2 (1.43 mL, 6.0 mmol) in chloroform (800 mL) was stirred at room temperature under a nitrogen
atmosphere for 15 min. BF3·Et2O (0.1 mL) was added in one portion, and the reaction mixture was
stirring at room temperature for an additional 30 min. Triethylamine (0.2 mL, 1.43 mmol), and chloranil
(2.2 g, 9.0 mmol) were added, and the reaction mixture was shaded from the ambient light and further
stirred at reflux temperature for 1 h. It was cooled, chloroform was removed under vacuum, and the
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residue was purified by silica gel column chromatography (hexane:dichloromethane = 1:2) to give the
desired product as a purple solid. Rf = 0.50; Yield = 0.200 g (9.34%).

1H NMR (CDCl3, 400 MHz), δ: 8.97–8.68 (m, 8H, β–H), 8.44(d, 2H, Ar–H), 8.30 (d, 2H, Ar–H),
8.16–8.05 (m, 6H, Ar–H), 7.33–7.22 (m, 6H, Ar–H), 4.25 (t, 6H, –OC8H17), 4.11 (s, 3H, COOCH3), 1.99
(tt, 6H, –OC8H17), 1.70–1.56 (m, 30H, –OC8H17), 0.94 (t, 9H, –OC8H17).

5-(4-Bromomethylphenyl)-10,15,20-tri(4-n-octyloxyphenyl)porphyrin(5)

Compound 3 (366 mg, 0.346 mmol) was dissolved in dry THF (3.46 mL). Lithium aluminum
hydride (40.0 mg, 1.04 mmol) was added slowly to the reaction mixture at 0 ◦C. The reaction mixture
was stirred at room temperature under a nitrogen atmosphere for 30 min. The reaction mixture
was poured into 2N HCl (15 mL) at 0 ◦C. THF was removed under vacuum, and the residue was
washed with brine. The organic layer was dried over anhydrous Na2SO4 and condensed to get a
green solid crude product. The crude product was taken to the next step without further purification.
The crude 4 (267 mg, 0.259 mmol), carbon tetrabromide (292 mg, 0.880 mmol), and triphenylphosphin
in dichloromethane (3.63 mL) was stirred at room temperature under a nitrogen atmosphere for 60 min.
The reaction mixture was washed with saturated NaHCO3 aqueous and brine. The organic layer was
dried over anhydrous Na2SO4 and condensed to achieve a purple solid product. It was further purified
by silica gel column chromatography (hexane:dichloromethane = 2:3) to give the desired product as
purple solid. Rf = 0.47; Yield = 85.5 mg (30.2%).

1H NMR (CDCl3, 400 MHz), δ: 8.96–8.77 (m, 8H, β–H), 8.51(d, 2H, Ar–H), 8.27 (d, 2H, Ar–H),
8.15–8.08 (d, 6H, Ar–H), 7.32–7.21 (m, 6H, Ar–H), 4.97 (s, 2H, –CH2Br), 4.26 (t, 6H, –OC8H17), 1.99 (tt,
6H, –OC8H17), 1.66–1.22 (m, 30H, –OC8H17), 0.94 (t, 9H, –OC8H17).

4-(4-((6,11,16-Tri(4-n-octyloxyphenyl)porphynyl)benzyloxy)-3,5-bis(hydroxymethyl)phenylacetylene(1)

Compound 5 (210 mg, 0.183 mmol), potassium carbonate (37.9 mg, 0.274 mmol), 18-crown-6
(72.3 mg, 0.274 mmol), and 4-hydroxy-3,5-bis(hydroxymethyl)phenylacetylene36 (48.7 mg, 0.274 mmol)
in dry THF (1.83 mL) was stirred at 50 ◦C under a nitrogen atmosphere for 24 h. It was then cooled,
the THF was removed under vacuum, and the residue was washed with brine. The organic layer was
dried over anhydrous Na2SO4 and condensed to get a purple solid as product. It was further purified
by silica gel column chromatography (dichloromethane:ethyl acetate = 20:1) to give the desired product
as purple solid. Rf = 0.23; Yield = 80.0 mg (36.7%).

1H NMR (CDCl3, 400 MHz), δ: 8.95–8.74 (m, 8H, β–H), 8.26 (d, 2H, Ar–H), 8.15–8.05 (m, 6H,
Ar–H), 7.80 (d, 2H, Ar–H), 7.63 (s, 2H, Ar–H), 7.32–7.23 (m, 6H, Ar–H), 5.31 (s, 2H, –O–CH2–), 4.88 (d,
4H, –CH2OH), 4.25 (t, 6H, –OC8H17), 3.10 (s, 1H, C≡C–H), 1.98 (tt, 6H, –OC8H17), 1.69–1.31 (m, 30H,
–OC8H17), 0.92 (t, 9H, –OC8H17).

2.2.2. Synthesis of 4-(4-((6,11,16-tri(4-n-octyloxyphenyl)zincporphynyl)benzyloxy)-3,5-bis(hydroxymethyl)
phenylacetylene (Zn1)

The synthetic route of Zn1 is shown in Scheme 3.
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Compound 1 (18.3 mg, 0.0228 mmol) was dissolved in dichloromethane (2.60 mL) and methanol
(0.35 mL). Zinc acetate dihydrate (28.4 mg, 0.129 mmol) was added slowly to the reaction mixture.
The reaction mixture was stirred at room temperature under a nitrogen atmosphere for 3 h. The reaction
mixture was washed with brine. The organic layer was dried over anhydrous Na2SO4 and condensed
to get a purple solid preproduct. This was further purified by silica gel column chromatography
(dichloromethane:ethyl acetate = 10:1) to give the desired product as purple solid. Rf = 0.50;
Yield = 15.0 mg (77.8%).

1H NMR (CDCl3, 400 MHz)δ: 8.94–8.80 (m, 8H, β–H), 8.27 (d, 2H, Ar–H), 8.15–8.08 (m, 6H,
Ar–H), 7.83 (d, 2H, Ar–H), 7.65 (s, 2H, Ar–H), 7.32–7.25 (m, 6H, Ar–H), 5.09 (s, 2H, –O–CH2–), 4.92 (d,
4H, –CH2OH), 4.26 (t, 6H, –OC8H17), 3.11 (s, 1H, C≡C–H), 2.00 (tt, 6H, –OC8H17), 1.70–1.32 (m, 30H,
–OC8H17), 0.95 (t, 9H, –OC8H17).

2.3. Polymerization

A solution of Rh+(nbd)[η6-C6H5)B–(C6H5)3] (2.30 mg, 4.47 µmol) and (S)- or (R)-phenylethylamine
(PEA) (5.70 µL, 44.7 µmol) in THF (0.218 mL) was added to a solution of 1 (23.3 mg, 19.3 µmol) in THF
(0.174 mL). The reaction solution was stirred at room temperature for 24 h. The crude polymer was
purified by reprecipitation of the THF solution into a large amount of methanol and dried in vacuo to
give a purple solid. Zn1 was polymerized as the same procedure of 1. The yields, average molecular
weights, polydispersity, and color of the polymers are summarized in Table 1.

Table 1. Polymerization results of phenylacetylene having porphyrin moiety a.

Run Monomer Cocat. Yield (%) Mw
b (×104) Mw/Mn Color

1 1 (R)-PEA 89.5 4.16 1.42 purple
2 1 (S)-PEA 87.8 4.35 1.33 purple
3 Zn1 (R)-PEA 90.3 25.7 1.42 dark purple

a Polymerized in THF for 24 h at r.t. using Rh+(nbd)[B–(C6H5)4] as catalyst; [M] = 0.1 M, [M]/[cat.] = 50,
[cocat.]/[cat.] = 10. b Determined by GPC (THF, PSt standard).

2.4. Measurements

1H NMR spectra (400 MHz) were recorded on a FT-NMR 400MR spectrometer (Varian, Palo Alto,
CA, USA). Average molecular weights (Mn and Mw) and polydispersity ratio were determined
by gel-permeation chromatography on two Shodex columns (KF-807Lx2, eluent THF) in a liquid
chromatograph device (JASCO, Tokyo, Japan) equipped with UV detector (UV-2070) and calibrated
using polystyrene standards. CD/UV-vis spectra were recorded on a J-720WI spectropolarimeter
(JASCO, Tokyo, Japan) with a Peltier temperature control. Fluorescence emission spectra were recorded
on a FP-6500 spectrophotometer (JASCO, Tokyo, Japan).

3. Results and Discussions

Two kinds of monomers, 1 and Zn1 were synthesized with reference to the literature
methods (Schemes 2 and 3) [37–39]. No polymer was obtained when [Rh(nbd)Cl]2–(R)-PEA and
[Rh(nbd)Cl]2–Et3N catalysts, which were highly active for the polymerization of a wide range of
phenylacetylene derivatives, were applied for the polymerization of 1 at first. The monomer was
recovered quantitatively.

On the other hand, zwitterionic Rh complex, Rh+(nbd)[(η6-C6H5)B–(C6H5)3] was effective to
polymerize 1 and Zn1 to give corresponding polymers in good yields in the presence of (R)- or (S)-PEA
as a chiral cocatalyst, as shown in Table 1. It is assumed that the porphyrin moiety of monomer 1
deactivates the [Rh(nbd)Cl]2–amine catalyst because of its high coordination ability. In contrast, it is
considered that the zwitterionic Rh catalyst could polymerize 1 because the bulky tetraphenylborate
ligand could inhibit the approach of porphyrin to Rh center.
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Poly(1) and poly(Zn1) were purple and dark purple solids respectively with relatively high
molecular weights (weight-average molecular weights (Mw) 4 × 104 and 25.7 × 104, respectively).
The Mw of poly(Zn1) was about 6 times higher than that of poly(1). This result seems to be due to
a more rigid polymer structure of poly(Zn1) than that of poly(1). It seems that zinc-porphyrins in
poly(Zn1) interact more strongly between intramolecular side groups than free-base type porphyrins
in poly(1). This idea is also supported by the CD measurements and fluorescence measurements in the
following part of this paper.

Both polymers were soluble in toluene, chloroform, and THF and insoluble in hexane, diethyl
ether, methanol, and acetone.

The circular dichroism (CD) spectra of the poly(1) obtained using (R)-PEA and (S)-PEA as
cocatalyst are shown in Figure 1. The large positive and negative Cotton effects around 420 nm derived
from porphyrin moieties were observed for the polymers and both spectra were complete mirror images
each other (Figure 1a). In the UV-vis absorption spectra (Figure 1a, bottom), the polymers showed
a split Soret band due to porphyrin groups around 420 nm, indicating a highly regular face-to-face
arrangement of the porphyrin pendants [40]. These results indicate the porphyrin groups were
arranged in a chiral helical fashion along the polymer backbone. Poly(1) obtained using (R)-PEA and
(S)-PEA showed a positive and a negative exciton split CD signal at the Soret band, respectively. Poly (1)
synthesized using (R)-PEA showed the positive CD couplet, a cotton signal with positive-to-negative
pattern, ongoing from longer to short wavelength. Using the exciton chirality method [41–43], spatial
arrangement of porphyrin groups in the poly(1) obtained using (R)-PEA was proven to be regularly
arranged in right-handed helical sense. By using (R)-PEA or (S)-PEA, we could successfully adjust the
helix sense of porphyrin arrangement to right handed or left handed.

Polymers 2019, 11, 274 6 of 11 

 

is considered that the zwitterionic Rh catalyst could polymerize 1 because the bulky 

tetraphenylborate ligand could inhibit the approach of porphyrin to Rh center. 

Table 1. Polymerization results of phenylacetylene having porphyrin moiety a). 

Run Monomer Cocat. 
Yield  

(%) 

Mw b)  

(×104) 
Mw/Mn Color 

1 1 (R)-PEA 89.5 4.16 1.42 purple 

2 1 (S)-PEA 87.8 4.35 1.33 purple 

3 Zn1 (R)-PEA 90.3 25.7 1.42 dark purple 

a) Polymerized in THF for 24 h at r.t. using Rh+(nbd)[B–(C6H5)4] as catalyst; [M] = 0.1 M, [M]/[cat.] = 

50, [cocat.]/[cat.] = 10. b) Determined by GPC (THF, PSt standard). 

Poly(1) and poly(Zn1) were purple and dark purple solids respectively with relatively high 

molecular weights (weight-average molecular weights (Mw) 4 × 104 and 25.7 × 104, respectively). The 

Mw of poly(Zn1) was about 6 times higher than that of poly(1). This result seems to be due to a more 

rigid polymer structure of poly(Zn1) than that of poly(1). It seems that zinc-porphyrins in poly(Zn1) 

interact more strongly between intramolecular side groups than free-base type porphyrins in poly(1). 

This idea is also supported by the CD measurements and fluorescence measurements in the following 

part of this paper. 

Both polymers were soluble in toluene, chloroform, and THF and insoluble in hexane, diethyl 

ether, methanol, and acetone. 

The circular dichroism (CD) spectra of the poly(1) obtained using (R)-PEA and (S)-PEA as 

cocatalyst are shown in Figure 1. The large positive and negative Cotton effects around 420 nm 

derived from porphyrin moieties were observed for the polymers and both spectra were complete 

mirror images each other (Figure 1a). In the UV-vis absorption spectra (Figure 1a, bottom), the 

polymers showed a split Soret band due to porphyrin groups around 420 nm, indicating a highly 

regular face-to-face arrangement of the porphyrin pendants [40]. These results indicate the porphyrin 

groups were arranged in a chiral helical fashion along the polymer backbone. Poly(1) obtained using 

(R)-PEA and (S)-PEA showed a positive and a negative exciton split CD signal at the Soret band, 

respectively. Poly (1) synthesized using (R)-PEA showed the positive CD couplet, a cotton signal with 

positive-to-negative pattern, ongoing from longer to short wavelength. Using the exciton chirality 

method [41–43], spatial arrangement of porphyrin groups in the poly(1) obtained using (R)-PEA was 

proven to be regularly arranged in right-handed helical sense. By using (R)-PEA or (S)-PEA, we could 

successfully adjust the helix sense of porphyrin arrangement to right handed or left handed. 

Wavelength (nm)

-1

0

3

0
280 400 500

1

[
]x

1
0

-4


x
1
0

-4

(l
m

o
l-1

cm
-1

)
(d

e
g

cm
2

d
m

o
l-1

)

600

using (R)-PEA

using (S)-PEA

Wavelength (nm)

-1

0

2.0

0
280 400 500

0.9

[
]x

1
0

-5


x
1
0

-5

(l
m

o
l-1

c
m

-1
)

(d
e
g

c
m

2
d
m

o
l-1

)

600 700

using (R)-PEA

using (S)-PEA

using (R)-PEA
using (S)-PEA

(a) (b)
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Figure 1. (a) CD and UV-vis spectra of poly(1) in THF at 20 ◦C; (b) enlargement of the CD and UV-vis
spectra in (a) for Y-axis.

In Figure 2, CD spectra of the poly(Zn1) using (R)-PEA compared with poly(1) are shown. The CD
intensity of poly(Zn1) was about 10 times larger than that of poly(1), which suggests that the regularity
of the porphyrin arrangement of poly(Zn1) is much higher than that of poly(1).

Furthermore, the broad Cotton signals due to the one-handed helical backbone of polyacetylenes
in the range of 350–500 nm were confirmed in the enlargement of the CD spectra (Figure 1(b)).
Judging from these results, HSSP of 1 was achieved by using Rh+(nbd)[(η6-C6H5)B–(C6H5)3]–(R)-
or (S)-PEA. To the best of our knowledge, this is the first report about HSSP using a
Rh+(nbd)[(η6-C6H5)B–(C6H5)3] catalyst.

To investigate the stability of the helical structure stabilized with intramolecular hydrogen bonds,
the CD spectra of poly(1) in mixed solvents of THF/HMPA with various ratios were measured
(Figure 3). When the polar solvent, HMPA, was added until 10/1 and 10/2 of the volume ratio of
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THF/HMPA, the intensity of the Cotton signal weakened to 91% and 64% of that of the original
respectively. This suggests that the helical structure was partially deformed by the polar solvent
cleaving the intramolecular hydrogen bond. This idea was verified by IR measurements in THF/HMPA
solution (Figure S1, Supplementary Materials). In the case of one-handed helical poly(DoDHPA) [25]
reported previously, which has a dodecyloxy groups at para position instead of the porphyrin groups,
the Cotton signals completely disappeared in 10:1 (v/v) of THF/HMPA (Figure S2, Supplementary
Materials). In other words, the one-handed helical structure of poly(1) was more stable than that of
poly(DoDHPA). Therefore, it seems that the one-handed helical structure of poly(1) is stabilized by the
stacking of porphyrin along the main chain.
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The fluorescence spectra of poly(1) and poly(Zn1) together with that of each monomer are shown
in Figure 4. The UV-vis spectra of 1, poly(1), Zn1, and poly(Zn1) are available in Supplementary
Materials (Figures S3 and S4). The fluorescence spectra of both 1 and poly(1) with excitation at
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420 nm showed a similar fluorescence band at 655 nm. On the other hand, Zn1 showed a fluorescence
band at 600 nm, whereas strong quenching was observed in the fluorescence spectra of poly(Zn1).
The concentration dependence of the fluorescence quenching of poly(Zn1) was also investigated
(Figure 5). The fluorescence quenching of poly(Zn1) showed no concentration dependence, and
fluorescence intensity was almost same in the range from 0.5 to 0.05 µM. Therefore it is assumed that
porphyrin moieties of poly(Zn1) strongly interact between side groups in a polymer chain.
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4. Conclusions

Helix-sense-selective polymerization of two kinds of achiral phenylacetylenes having a free-base-
or a zinc-porphyrin (1 and Zn1, respectively) and two hydroxymethyl groups was achieved by using a
chiral rhodium catalyst system, Rh+(nbd)[(η6-C6H5)B–(C6H5)3] catalyst and (R)-(+)- or (S)-(−)-PEA,
cocatalyst. This is the first example of HSSP of acetylenes using a Rh+(nbd)[(η6-C6H5)B–(C6H5)3]
catalyst. Poly(Zn1) showed a CD intensity approximately ten times larger in comparison with poly(1).
This result suggests the regularity of arrangement of the porphyrin in poly(Zn1) is higher compared
with poly(1). The spatial arrangement of porphyrins was achieved by utilizing a one-handed helical
poly(phenylacetylenes) as a template.
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