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Abstract: The effect of hydration in corona layer on temperature responsiveness of polymer
micelles consisting of poly(N-vinyl pyrrolidone)-block-poly(n-octadecyl acrylate) (PVP-b-PODA)
was investigated. Small-angle X-ray scattering and dynamic light scattering showed two-step
shape change of PVP-b-PODA micelles around 45 and 65 ◦C with elevating temperature, although
only one-step shape change was observed at 45 ◦C in cooling process. In the first step, shape of
PVP-b-PODA micelles was changed from disk to ellipsoidal oblate at the melting temperature (Tm)
of PODA, although similar micelles consisting of another amphiphilic block copolymers containing
PODA simply changed from disk to sphere at the Tm with elevating temperature. PVP-b-PODA
micelles changed to spherical shape above 65 ◦C. Two-dimensional (2D) 1H-NMR showed the PVP
chains were perfectly dehydrated above 65 ◦C. Therefore, it was suggested that the appearance of
ellipsoidal shape between Tm of PODA and 65 ◦C was caused owing to shape memory effect of
pseudo network of corona layer due to robust hydration of PVP chains.
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1. Introduction

When amphiphilic block copolymers are dissolved in aqueous solution, they undergo
self-assembly into polymer micelles consisting of hydrophobic core and hydrated corona [1].
The polymer micelles have been expected to be drug carriers in drug delivery system (DDS) because
they can uptake hydrophobic drug compounds in their hydrophobic cores in aqueous solution [2–4].
For the DDS particles, stable retention of drug compounds is the critical issue to reduce side effects [5].
In order to control these properties, stimuli-responsive polymer micelles have been attracted much
attention [6–8].

As means for introducing stimuli-responsiveness to polymer micelles, it is preferable to use a
water-soluble polymer, which undergoes phase separation with water triggered by pH or temperature
change, such as poly(N-isopropyl acrylamide) [6–8] or a crystalline hydrophobic polymer [9–11].
Among them, we focus on introducing a crystalline hydrophobic polymer as a thermos-responsive
polymer because melting-crystallization transition should give sharp and large volume change at
the melting temperature. Especially, a hydrophobic polymer having octadecyl group as a crystalline
component is a good candidate for DDS particles because melting temperature is close to temperature
of inflammation, which is higher than general body temperature. When a crystalline hydrophobic
polymer is introduced to a polymer micelle, the shape of polymer micelles should be changed at the
melting temperature (Tm) due to a large change in volume fraction of hydrophobic core. Generally,
the shape of a polymer micelle containing a hydrophobic crystalline polymer should be changed
from disk to sphere at melting temperature in heating process [12]. However, if robust hydration is
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formed in a corona layer of polymer micelle, its effect on shape change of polymer micelle induced
by melting in hydrophobic core should not be negligible. Although the importance of hydration in
water-soluble polymers has been recognized, its effect on shape of polymer micelles has not been
well investigated. It has been well known that poly(N-vinyl pyrrolidone) (PVP) is strongly hydrated
in aqueous solution [13,14]. Therefore, it is expected that the influence of hydration in corona layer
appears in the temperature responsiveness of polymer micelles consisting of PVP as a hydrophilic
polymer and a crystalline hydrophobic polymer. Thus, the aims of this study were to investigate
effect of hydration in corona layer on temperature responsiveness of polymer micelles consisting of
PVP-block-poly(n-octadecyl acrylate) (PVP-b-PODA).

2. Materials and Methods

Reagents: n-Octadecylacrylate (ODA), N-vinyl-2-pyrrolidone (VP), 1-dodecanethiol, an
tetraoctylmethylammonium chloride were purchased from Tokyo Chemical Industry Co Ltd. (Tokyo,
Japan). 4,4′-Azobiscyanovaleic acid (ACVA) acetone, NaOH, and activated alumina were purchased
from Wako Pure Chemicals (Tokyo, Japan). ODA and VP were treated with aqueous NaOH solution
(5 wt %) and activated alumina, respectively, before used to remove inhibitors. The other reagents
were used as obtained.

Synthesis of chain transfer agent (CTA): CTA used for reversible addition fragmentation transfer
radical polymerization (RAFT) was synthesized following the method described literature [15].
1-Dodecanethiol (10.4 mL, 60.0 mmol), tetraoctylammonium chloride (0.974 g, 2.40 mmol), and acetone
(28.9 g, 497 mmol) were mixed in a three-necked round-bottom flask under dry N2 atmosphere.
The flask was cooled to 10 C. Then, aqueous NaOH solution (50%) was added dropwise to the flask for
more than 20 min, and stirred for 15 min.

Synthesis of poly(N-vinyl pyrrolidone)-block-poly(n-octadecyl acrylate) (PVP-b-PODA):
the amphiphilic block copolymer of PVP-b-PODA was synthesized by sequential reversible
addition-fragmentation chain transfer (RAFT) radical polymerization technique of ODA and VP
as shown in Scheme 1. First, poly(n-octadecyl acrylate) (PODA) was synthesized by RAFT radical
polymerization using ACVA as an initiator and CTA. The number- and weight averaged molecular
weight (Mn and Mw) determined by 1H-NMR and size-exclusion chromatography (SEC) were 1.2× 104

and 1.3 × 104, respectively. Sequentially, VP was polymerized by RAFT radical polymerization
using the PODA as a macro-chain transfer agent. The number-averaged molecular weight (Mn) of
PVP-b-PODA determined by 1H-NMR and SEC were 3.4 × 104 and 4.3 × 104, respectively.
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in nano-pure water at 1.0 mg/mL. The aqueous solution was homogenized with ultra-sonic 
homogenizer for 5 minutes. The aqueous solution was left at room temperature for over 24h. 

Characterization: 1H-NMR measurements were performed by using a JEOL JNM ECP500 
spectrometer (Tokyo, Japan). SEC measurements were performed by using a Shodex GPC K-804 
column (eluent: chloroform, range of molar mass: 7000~300,000) combined with a JASCO (Tokyo, 
Japan) RI-4030 differential refractive index detector and a JASCO PU-2087 HPLC pump at a flow rate 
of 1 mL·min−1. 

Small-angle X-ray scattering (SAXS): SAXS measurements were performed at the BL-40B2 and 
BL-03XU beamlines of SPring-8, Japan [16]. A 30 cm × 30 cm imaging plate (R-AXIS VII, Rigaku, 
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Scheme 1. Synthesis of poly(N-vinyl pyrrolidone)-block-poly(n-octadecyl acrylate) (PVP-b-PODA) by
reversible addition-fragmentation chain transfer (RAFT) polymerization.

Preparation of PVP-b-PODA micelles: the obtained amphiphilic block copolymer was dissolved in
nano-pure water at 1.0 mg/mL. The aqueous solution was homogenized with ultra-sonic homogenizer
for 5 min. The aqueous solution was left at room temperature for over 24h.

Characterization: 1H-NMR measurements were performed by using a JEOL JNM ECP500
spectrometer (Tokyo, Japan). SEC measurements were performed by using a Shodex GPC K-804
column (eluent: chloroform, range of molar mass: 7000~300,000) combined with a JASCO (Tokyo,
Japan) RI-4030 differential refractive index detector and a JASCO PU-2087 HPLC pump at a flow rate
of 1 mL·min−1.

Small-angle X-ray scattering (SAXS): SAXS measurements were performed at the BL-40B2 and
BL-03XU beamlines of SPring-8, Japan [16]. A 30 cm× 30 cm imaging plate (R-AXIS VII, Rigaku, Japan)
was placed at a distance of 2 m from the sample position to cover a q range from 0.06 to 2.0 nm−1
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at λ = 1.0 nm. Here, q = (4π/λ)sin(θ/2), where θ is the scattering angle and λ is the wavelength
of the incident X-ray. A sample stage equipped with temperature controller was used. A sample
solution was packed in a quartz capillary with a light path length of 2.0 mm (Hilgenberg GmbH,
Malsfeld, Germany). The X-ray transmittance of the samples was measured with ion chambers located
in front of and behind the sample. A sample was placed in the sample stage, annealed at a desired
temperature for 10 min, and then exposed to the incident X-ray for 1min to obtain SAXS data with
high signal-to-noise ratio. The two-dimensional SAXS images obtained with an imaging plate were
converted into one dimensional scattering intensity versus q profiles by circular averaging. To obtain
excess scattering intensity I(q) at each q, scattering from the background were subtracted from the raw
scattering data after an appropriate correction of transmittance. The numerical analyses for SAXS data
were carried out self-made programs on Igor 7 software (Portland, OR, USA) [17,18].

Dynamic light scattering (DLS): DLS measurements were performed to determine hydrodynamic
radius (Rh) of PVP-b-PODA micelle by using a DLS-7000 of Otsuka Electric Co., Ltd. (Tokyo, Japan)
equipped with a temperature controller. A He-Ne laser (632.5 nm) was used as a light source.
PVP-b-PODA micelle solution was placed at a desired temperature for 10 min, and then DLS
measurements were performed at a scattering angle of 90◦. Since the autocorrelation function
decay monotonically at all temperature, Rhs of PVP-b-PODA micelles were determined by the
cumulant method.

2-dimensinal 1H-NMR spectroscopy: NOESY spectra of two-dimensional (2D) 1H-NMR for
PVP-b-PODA micelles in D2O containing small amount of H2O were recorded by using a JNM-ECP500
spectrometer of JEOL (Tokyo, Japan). The scans were accumulated 64 times.

3. Results and Discussion

Figure 1 shows temperature dependence of Rh of PVP-b-PODA micelles in heating and cooling
processes obtained from DLS measurements. The Rh of PVP-b-PODA micelles undergoes two-step
change in heating process, although it shows one-step change in cooling process. The temperature
of first-step Rh decrement in heating process was consistent with Tm of PODA. In addition, the
temperature of discontinuous Rh change in the cooling process agreed well with Tm of PODA.
Therefore, it can be considered that the discontinuous Rh changes of PVP-b-PODA micelles around
50 ◦C in heating and cooling process are caused owing to melting and crystallization of PODA,
respectively. On the other hand, the second-step of discontinuous Rh decrement observed only in
heating process is observed around 65 ◦C in spite of absence of phase transition around 65 ◦C. Therefore,
it is considered that PVP-b-PODA micelles take transient state from Tm of PODA to 65 ◦C in heating
process. In order to confirm the structural change of PVP-b-PODA micelles during heating process,
SAXS measurements were performed.
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Figure 2a,b show changes in the SAXS curves and the invariant Q of the PVP-b-PODA micelles,
respectively, with elevating temperature. Here, invariant Q is defined by the following equation:

invariant Q =
1

2π

∞∫
0

q2 I(q)dq (1)

where I(q) is scattering density at q and q is the magnitude of scattering vector defined by (4π/λ)sin(2θ).
Here, λ is the wave length of incident X-ray and 2θ is scattering angle. The SAXS curves and invariant
Q are classified into three stages indicating I (room temperature ~45 ◦C), II (48~62 ◦C), and III (>67 ◦C)
in Figure 2a. The SAXS curves are changed as the stage changes. This means the transitions of stages
are occurred due to transformation of PVP-b-PODA micelles. Since the transition temperatures from
stage I to II and stage II to III correspond to those of discontinuous Rh decrement shown in Figure 1, the
two-step Rh change of PVP-b-PODA micelles in heating process is related to transformation of micelles.
The SAXS curves in stage I shows q−2 dependence of I(q) in q < 0.1 nm−1. This means PVP-b-PODA
micelles form disk-like shape below 45 ◦C. The formation of disk-like shape should be caused by
crystallization of PODA in the hydrophobic core of PVP-b-PODA micelles. As mentioned above, the
temperature of first step change in heating process is caused due to melting of PODA. Therefore, the
melting of PODA in the hydrophobic core causes transformation of PVP-b-PODA micelles. In the
SAXS curves in stage II, a strong q dependence of I(q) in q < 0.2 nm−1 was observed. This suggests
that PVP-b-PODA micelles form an anisotropic shape in stage II. On the contrary, in SAXS curves in
stage III, I(q) in q < 0.2 nm−1 did not show q dependence. Therefore, PVP-b-PODA micelles should
form spherical shape in stage III. In order to elucidate the shape change of PVP-b-PODA micelles,
fitting analyses for these SAXS curves were carried out by using theoretical scattering functions for
model particles.
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Figure 2. Changes in small-angle X-ray scattering (SAXS) profiles (a) and Invarian Q (b) of PVP-b-PODA
micelles with elevating temperature.

Figure 3 shows the results of fitting analyses for typical SAXS curves in stages I, II and III. Table 1
summarizes the parameters yielding the best fitted results and the solid lines in Figure 3 are the best
fitted results. For the SAXS curve at 25 ◦C, the theoretical scattering curve calculated for a core-shell
disk given by the following equation [12,19] agreed well with the experimental SAXS curve:

I(q) ∝
∫ π

0
[(ρC − ρS)VCFC(q) + (ρS − ρ0)VSFS(q)]

2 sin βdβ (2)

Fi(q) =
[

sin
(

qti
2

cos β

)/( qti
2

cos β

)]
2J1(qR sin β)

qR sin β
(3)

Here, Fi(q) the scattering amplitude of i (I = C: core, S: shell, 0: solvent). The R, ρi, Vi and ti are disk
radius, the electron density, volume, and thickness of i (I = C: core, S:overall, 0:solvent), respectively. J1
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denotes the Bessel function of the first kind and of the order 1, and β is the angle between the axis of
symmetry of particle and the scattering vector q. By using tC/2 = 2.8 nm, we obtained the best fitted
result. On the other hand, for the SAXS profile at 60 ◦C, the scattering curve calculated for ellipsoidal
oblate given by the following equation is in good agreement:

Fi(q) = 3
sin(qri)− qri cos(qri)

(qri)
3 (4)

ri =
[(

ai
2 sin2 θ + bi

2 cos2 θ
)

sin2 ϕ + ai
2 cos2 ϕ

]1/2
(5)

Here, ai and bi are short and long semi-axis of i. When ai = bi, Equation (4) corresponds to the scattering
function of spherical particle. In this calculation, we used aC = 3.1 nm, which is slightly longer than
the tC/2. In addition, the electron density of shell at 60 ◦C is the same as that at 25 ◦C, although the
electron density of hydrophobic core is drastically decreased due to melting of PODA. Furthermore,
at 70 ◦C, the experimental SAXS curve agreed well with the theoretical scattering curve for core-shell
sphere with rC = 2.0 nm and rS = 5.5. Here, the electron density of core-shell at 70 ◦C is lower than
that at 60 ◦C. Therefore, PVP-b-PODA micelles transform from disk to sphere via ellipsoidal oblate
between Tm of PODA and 65 ◦C, although the shape of PVP-b-PODA micelles is directly changed from
sphere to disk owing to crystallization of PODA in the cooling process. It seems that the PVP-b-PODA
micelles memorize the shape formed at room temperature above Tm of PODA. In order to maintain the
anisotropy of shape against transformation to thermodynamically stable shape, it is necessary for the
PVP-b-PODA micelles to have a trick like a cross-liking in corona layer. It has been known that the PVP
strongly hydrates at ambient temperature and dehydrates around 70 ◦C. If pseudo network in corona
layer of PVP-b-PODA micelles is formed owing to robust hydration like a cross-linking, the shape
of PVP-b-PODA micelles formed below Tm of PODA should be memorized above the Tm. Actually,
we confirmed that poly(ethylene glycol)-block-PODA (PEG-b-PODA) micelles, in which hydration of
PEG is much weaker than that of PVP, shows one-step transformation from disk to sphere at Tm of
PODA in heating process (see Figure S1 in supporting information). Therefore, it is considered that the
shape change from disk to sphere via ellipsoidal oblate during the heating process is related to the
dehydration of PVP in the corona layer. In order to investigate the hydration of PVP in the corona layer,
two-dimensional 1H-NMR measurement was performed on the PVP-b-PODA micelles in deuterated
water containing small amount of H2O.
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core-shell disk, oblate, and sphere, respectively.
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Table 1. Models and adjustable parameters used in fitting analyses for SAXS profiles of
PVP-b-PODA micelles.

Temperature Shape Size ρC/e− nm−3 ρS/e− nm−3

25 ◦C Core-Shell Disk tC/2 = 2.8 nm, tS/2 = 5.9 nm 336 335.3

60 ◦C Core-Shell Oblate a = 3.1 nm, aS = 6.1 nm
b = 67.5 nm, bS = 70.5 nm 332 335.3

70 ◦C Core-Shell Sphere 332 334.5

aS: short semi-axis of overall micelle. bS: long semi-axis of overall micelle.

Figure 4 shows two-dimensional 1H-NMR NOESY spectra. The signals indicated with circles
in Figure 4 indicate that protons of H2O and PVP (denoted as b and c in Figure 4) are spatially close
each other. They appear when PVP chains are strongly hydrated [13,14]. They are clearly observed
at 25 and 60 ◦C, and disappear at 70 ◦C. This indicates that PVP chains in the corona layer are still
hydrated above Tm of PODA, and dehydrated at 70 ◦C. The temperature at which PVP chains were
dehydrated corresponds to that at which the PVP-b-PODA micelles transform from ellipsoidal oblate
to sphere. Therefore, it is considered that the shape memory phenomenon in PVP-b-PODA micelles in
the heating process is caused by the robust hydration of PVP in corona layer to form pseudo network.
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By summarizing the results as mentioned above, the molecular mechanism of two-step
shape change of PVP-b-PODA micelles in heating process is schematically illustrated in Figure 5.
The PVP-b-PODA forms disk-like micelles below Tm of PODA, because crystallization of PODA in the
hydrophobic core creates a flat interface between hydrophobic core and hydrated corona. When the
temperature rises above Tm of PODA, the PVP-b-PODA micelles tend to change into a spherical shape
according to the volume fraction of core and corona. However, the robustly hydrated network in PVP
corona prevents drastic change in the curvature of the interface, so that the PVP-b-PODA micelles
become ellipsoidal oblate in which disk-like shape below Tm of PODA is memorized. Finally, when
the PVP-b-PODA micelles are heated above 65 ◦C, the memory of disk-like shape is erased due to
dehydration of PVP and the PVP-b-PODA micelles change to spherical shape. On the contrary, during
the cooling process, the shape of PVP-b-PODA micelles is simply changed from sphere to disk as
shown in Figure 1. This suggests that the hydration network in the PVP corona layer can overcome
the change from the flat interface to the curved interface triggered by the melting of PODA, although
the change from curved interface to flat interface triggered by crystallization of PODA is superior to
effect of maintaining the shape of micelle by hydration network in PVP corona. The shape memory
effect by hydration network in the corona layer on polymer micelles has not been reported and it can
be expected to give a design guideline for creation novel stimuli-responsive polymer micelles.
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