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Abstract: Flexible white organic light-emitting diodes (FWOLEDs) have considerable potential
to meet the rapidly growing requirements of display and lighting commercialization. To achieve
high-performance FWOLEDs, (i) the selection of effective flexible substrates, (ii) the use of transparent
conducting electrodes, (iii) the introduction of efficient device architectures, and iv) the exploitation
of advanced outcoupling techniques are necessary. In this review, recent state-of-the-art strategies to
develop FWOLEDs have been summarized. Firstly, the fundamental concepts of FWOLEDs have been
described. Then, the primary approaches to realize FWOLEDs have been introduced. Particularly, the
effects of flexible substrates, conducting electrodes, device architectures, and outcoupling techniques
in FWOLEDs have been comprehensively highlighted. Finally, issues and ways to further enhance
the performance of FWOLEDs have been briefly clarified.
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1. Introduction

Organic light-emitting diodes (OLEDs) are now entering the mainstream display and lighting
market thanks to their exceptional merits such as high efficiency, low power consumption, fast response,
and their outstanding compatibility with flexible substrates [1–5]. Since the first OLED invented by
Tang et al. in 1987 [6], the performance of OLEDs (e.g., external quantum efficiency (EQE), current
efficiency (CE), power efficiency (PE), luminance or brightness, lifetime, and voltage) have been
greatly enhanced [7–11]. Currently, it is believed that OLED technology will not only dominate the
next-generation displays, but also promises to be comparable to inorganic GaN-based LEDs in the field
of lighting. In addition, by dint of the reported concepts in OLEDs, many other related optoelectronic
techniques have been rapidly developed [12–15]. In particular, various types of LEDs are thriving such
as polymer LEDs [16–19], colloidal quantum-dot LEDs [20–23], perovskite LEDs [24–27], and colloidal
quantum-well LEDs [28–30]. Thus, the further enhancement of OLED technology is also beneficial to
the optoelectronic fields.

To render OLEDs more competitive than other display and lighting counterparts, flexible OLEDs
have steadily attracted both scientific and industrial interest owing to their unique merits, including
ultralight weight, small thickness, and suitability for roll-to-roll production [31–35]. Compared with
conventional OLEDs, which are mostly manufactured on rigid glass substrates, flexible OLEDs offer
the possibility of enduring vast mechanical deformation (e.g., rolling, stretching, rotating, curving,
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folding, twisting, or more complicated appearances) [36–40]. Therefore, flexible OLEDs can make our
life more artistic (e.g., flexible OLEDs can be designed to apply in bags, foldable phones, curved lamps,
and so on). In 1992, Heeger et al. took the first step to fabricate a flexible OLED with soluble conducting
polymers on a polyethylene terephthalate (PET) substrate [41]. In 1997, Forrest et al. established the
first flexible OLED with small-molecule organic materials [42]. Since then, a large amount of attention
has been paid to pursuing flexible OLEDs [43]. With excellent results, Lu et al. used an efficient
anode stack and a lens-based structure to unlock the full potential of a green OLED on flexible plastic,
achieving a maximum PE of 290 lm W−1 [44]. Nowadays, commercial flexible OLED smartphones
emerge in the market [45].

In general, white OLEDs (WOLEDs) are desirable to high-quality displays and solid-state
lighting [46–51]. By carefully designing a single molecule emitter, and using complementary-color,
three-color, or four-color emitters (e. g., blue/yellow, blue/green/red, blue/green/yellow/red), a great
number of WOLEDs have been constructed [52–56]. In the case of traditional WOLEDs based on glass
substrates, the PE has been increased from the initial value of 0.83 lm W−1 [57,58] to the current value
of 123 lm W−1 at 1000 cd m−2 (EQE: 54.6%) in the literature [59]. For other parameters of traditional
WOLEDs (e.g., lifetime [60,61], color rendering index (CRI) [62–66], correlated color temperature
(CCT) [67–69], luminance [70–72], and color stability [73–76]), they have also been demonstrated to
satisfy the demand of real commercialization. In terms of flexible WOLEDs (FWOLEDs), growing
efforts have been taken in recent years due to the booming demand for consumer electronics. In 2005,
Mikami et al. reported the first FWOLED with a PE of 4.3 lm W−1 [77]. Although the efficiency is
not high due to the use of fluorescent emitters, Mikami’s work starts the step towards FWOLEDs.
By employing phosphorescent or thermally activated delayed fluorescence (TADF) emitters, the
efficiency of FWOLEDs can be boosted [78–82]. This is because both phosphors and TADF materials
can realize a theoretical unity internal quantum efficiency (IQE) via the heavy-atom effect [83–87]
and small energy gap (∆EST) between triplet excited state (T1) and singlet excited state (S1) [88–92],
respectively. Hence, both singlet and triplet excitons will be harvested. Keeping these facts in mind,
the efficiency of FWOLEDs (e.g., a maximum EQE of 72.4% and PE of 168.5 lm W-2) can be as high
as that of traditional WOLEDs based on glass substrates [93]. In addition, the CRI, Commission
International de L’Eclairage (CIE) chromaticity coordinates and other parameters of FWOLEDs have
been step-by-step improved. Furthermore, apart from bottom-emitting FWOLEDs, top-emitting
FWOLEDs and transparent FWOLEDs have been demonstrated [94–96]. As a result, these structure
innovations provide FWOLEDs with the ability to meet the demand of various applications.

Herein, we will summarize recent state-of-the-art strategies to develop FWOLEDs. Firstly, we
will describe the fundamental concepts of flexible OLEDs. Then, we will introduce the main strategies
to realize FWOLEDs. Particularly, we will comprehensively highlight the effects of flexible substrates,
conducting electrodes, device architectures, and outcoupling techniques in FWOLEDs, which are
expected to give a deep understanding of developing FWOLEDs. Finally, we will briefly clarify issues
and ways to further enhance the performance of FWOLEDs.

2. Fundamental Concepts of FWOLEDs

2.1. Flexible Substrates

The biggest difference between conventional WOLEDs based on rigid glasses and FWOLEDs is
the use of flexible substrates [97–101]. To construct a FWOLED, a flexible substrate is first selected.
Then, the bottom electrode is patterned (electrode-I), as shown in Figure 1a. For different applications,
electrode-I should be accordingly adjusted (e.g., electrode-I is transparent for bottom-emitting and
transparent FWOLEDs but can be opague for top-emitting FWOLEDs). Subsequently, the first charge
injection and transport layer, emitting layers (EMLs), the second charge injection and transport layer
and the top electrode (electrode-II) are deposited. The role of charge injection and transport layers in
FWOLEDs is to facilitate holes or electrons to arrive at the EMLs [102–106], which is similar to that
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of conventional WOLEDs (Figure 1b). For electrode-II, opaque and transparent metals are usually
adopted for bottom-emitting FWOLEDs and top-emitting/transparent FWOLEDs, respectively. Unlike
conventional WOLEDs, the electrodes, charge injection and transport layers, and EMLs in FWOLEDs
will undergo mechanical deformation if the substrate is bent or stretched. As a consequence, current
leakage occurs more easily in FWOLEDs compared with that of conventional WOLEDs [107–111].
Hence, flexible electrodes should be well designed.
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Figure 1. Diagram of the device structure of flexible white organic light-emitting diodes (FWOLEDs)
(a) and conventional white organic light-emitting diodes (WOLEDs) based on rigid glass substrates (b).
CIL is the charge injection layer, EML is the emitting layer, and CTL is the charge transport layer.

So far, several types of flexible substrates have been reported (Table 1), such as metal foils, very
thin glass plastics, polydimethylsiloxane, rubber, and silk [112–116]. To be an excellent candidate
material for flexible substrates, some requirements should be satisfied including remarkable mechanical
deforming ability, smooth surface, good thermal durability, high oxygen and moisture blocking
capability, and effective transparency for bottom-emitting and transparent FWOLEDs [117–119].
Among flexible substrates, although metal foils can undergo high working temperatures, the relatively
heavy weight, rough surface, and insulating layers located between substrates and devices complicate
FWOLEDs. Additionally, the intrinsic opaque property of metal foils restricts the applications in
bottom-emitting and transparent FWOLEDs. In the case of thin glasses, despite good thermal durability,
the brittle and fragile characteristics hinder the further development of flexible glass substrates.
Therefore, considering the trade-off between cost and performance, plastics-based flexible substrates
have been aggressively explored, although thermal durability is not good enough. For example, PET,
polyethylene naphthalate (PEN), polyimide (PI), and polyethersulfone (PES) are the most widely
adopted flexible plastic substrates for LEDs [120–123].

Table 1. Summarized performances for the commonly used flexible substrates.

Substrates Thickness Weight Transparency Surface Flexibility Thermal Durability Cost

Metals Thin Heavy Poor Rough Good High High
Glasses Thin Moderate High Moderate Poor High High
Plastics From thin to thick Light High Smooth Good Low Low

2.2. Conducting Electrodes

For bottom-emitting and transparent FWOLEDs, electrode-I should be of outstanding optical
transparency (e.g., a transmittance of >90% in the visible regime), good electrical conductivity
(e.g., a sheet resistance of <20 Ω sq−1), and mechanical flexibility. To date, indium tin oxide
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(ITO) is the most commonly used electrode. However, the mechanical flexibility of ITO is not
satisfactory enough. Thus, a large number of efforts have been made to replace ITO with metal
nanowires or grids, carbon-based materials (e.g., graphene, carbon nanotubes, reduced graphene
oxide), conducting polymers, and so on [124–128]. In particular, the transmittance of graphene films
greatly rely on the crystal quality. As an excellent result, a transmittance of >97.7% can be achieved for
monolayer graphene [97]. In addition, because of the low sheet resistance, high transparency, high
flexibility, and the low temperature solution-processed fabrication processes, metal nanowires are
promising to be electrode-I [129]. Particularly, silver nanowire is the most broadly employed metal
nanowire, since it can form a high-quality ink by uniformly dispersing into ethanol. In addition,
silver nanowires can break the waveguide mode and the total internal reflection, enhancing the
outcoupling efficiency [130–132]. However, the cost and availability of silver means that it is not ideal
for widespread commercialization. As an alternative, attention has been paid to copper nanowires,
because cooper has a relatively low price and possesses high conductivity next to silver (e.g., copper is
1000 times more abundant and the cost is only 1% compared with silver) [133–136]. For metal grids,
silver and copper are also the most widely exploited elements. In addition, carbon-based materials have
been intensively investigated owing to the ease of fabrication and low cost. However, the resistance
of carbon-based materials is relatively high, presenting a challenge for the applications. In terms of
conducting polymers (e.g., the well-known poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate
(PEDOT:PSS)), the inherently limited conductivity is an obstacle for the further development [137].

On the other hand, in terms of top-emitting FWOLEDs, electrode-I should exhibit high reflectivity
when it is deposited on thin glass or plastic substrates. Owing to the high electrical conductivity and
reflectivity, silver has been extensively utilized as the anode in top-emitting devices [138]. However,
the work function of silver is very low (4.3 eV). Hence, interface modifying layers (e.g., molybdenum
oxide, 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), p-doping technique) are
usually introduced to reduce the hole barrier between the anode and hole transport layer, lowering
the voltages [139]. For metal foil based flexible substrates, the highly reflective distributed Bragg
reflector (DBR) has been reported to be a good candidate for the substrate insulating layer for
top-emitting OLEDs [140]. In addition, many composite electrodes have also been explored such as
an AuCl3-modied graphene electrode [141], silver-nanoparticles modified graphite electrode [142],
ZnO/Ag/ZnO nanofilm electrode [143], and so on [144–149].

2.3. Device Architectures

To guarantee the high-performance of FWOLEDs, effective device architectures are needed.
Owing to the effect of spin statistics, singlets and triplets will be formed with a ratio of 1:3 upon hole
meeting electrons [150–154]. For fluorophors, singlets rapidly decay with the prompt nanoseconds
fluorescence, while the radiative triplets decay is spin forbidden [155–158]. Thus, the maximum
IQE of fluorescent WOLEDs is only 25%. By selecting phosphors or TADF emitters, the IQE of
WOLEDs can be as high as 100% due to the harvest of both singlets and triplets [159–162]. According
to the employed emitters, WOLEDs can be classified into four types, i.e., fluorescent WOLEDs,
phosphorescent WOLEDs, TADF WOLEDs, and the so-called fluorescent/phosphorescent hybrid
WOLEDs [163–167].

After the selection of emitters, the manipulation of charge and exciton distribution is key to
achieve high performance [168–172]. This is because each process of charge injection, charge transport,
exciton generation, exciton recombination, exciton radiative or nonradiative decay, exciton diffusion,
exciton harvest, and energy transfer will affect the device performance [173–177]. As a matter of fact,
a great plenty of efficient device design concepts have been reported to manipulate the charge and
exciton distribution. For example, Zhu et al. designed a smart design of the emissive zone structure
to make full use of generated excitons, realizing a phosphorescent WOLED with >20% EQE [178].
Sun et al. used 4,4′-N,N′-dicarbazole-biphenyl (CBP) as the host and interlayer to harness all excitons,
demonstrating a hybrid WOLED with an EQE of 21.2% [179]. By precisely allocating excitons, TADF
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WOLEDs with >20% EQE have also been developed [180]. In particular, since a blue fluorescent emitter
cannot harvest triplets, the charge and exciton distribution should be carefully manipulated in hybrid
WOLEDs, otherwise exciton quenching will occur between fluorophors and phosphors [181–185].
To overcome these obstacles, the introduction of interlayer or the adoption of blue fluorophor with
high T1 is necessary [186–190]. By applying the efficient device architectures to FWOLEDs, high
performance can be expected.

2.4. Outcoupling Technologies

By virtue of phosphorescent or TADF emitters, the IQE of WOLEDs can be as high as 100%.
However, the EQE (ηext) is also decided by the outcoupling factor, which can be defined as [155,191]:

ηext = ηout · r · q · γ, (1)

where ηout is the outcoupling factor, r is the fraction of excitons that can potentially radiatively decay, q
is the photoluminescence quantum efficiency of the emitter, and γ is the charge balance. From this
equation, it is easily seen that the EQE is directly proportional to the outcoupling factor. In addition,
PE can be described as:

PE ∝
ηout · r · q · γ

U
, (2)

where U is the voltage. Therefore, the means of enhancing the light extractive efficiency is
crucial to the further improvement of EQE. Due to the wave-guiding effect, which results from
the mismatch of refractive index (n) among organic layers (n ≈ 1.6–1.76), transparent electrodes
(e.g., n ≈ 1.8–2.2 for ITO), glass substrate (n ≈ 1.5), and air (n ≈ 1.0), most photons generated by
exciton recombination are trapped via the total internal reflection at interfaces inside conventional
bottom-emitting OLEDs [192–194], as shown in Figure 2. According to classical ray optics theory
(i.e., Snell’s law), the substrate waveguide mode from the total internal reflection at the interface of
glass/air and the ITO/organic waveguide mode lead to the fact that the theoretical limit for the EQE
of conventional bottom-emitting OLEDs remains near 20%, as described by the below equation [195]:

ηout =
1

ξn2 , (3)

where n is the refractive index of organic material (e.g., taking the value of 1.6) and ξ is a constant
that depends on the dipole alignment and the geometry of the OLED device (e.g., taking the value
of 2), and the isotropic emission in the organic layer and perfectly reflecting cathode are assumed.
However, it is worth noting that the surface plasmon-polariton (SPP) mode associated with metallic
electrode/organic interface, which is not considered by Equation (2), is also an enormous optical
loss [196–198]. According to classical Snell’s law with refractive indexes of air, substrate, and organic
layer, the critical angle at the interface of different layers can be calculated by:

n1 × sinθ1 = n2 × sinθ2, (4)

where n1 and n2 are the refractive indexes of adjacent layers and θ1 and θ2 are the critical angle
at air/substrate and substrate/ITO interfaces, respectively. When the light is propagated from the
optically thinner medium to optically denser medium, the light will not be reflected at the interface.
Hence, θ1 and θ2 are independent of the ITO since its refractive index is higher than that of the organic
layer. Apart from the SPP mode (optical loss ≈10%), the generated light suffers from further three
modes: (i) the external mode (≈20%), where the light is emitted from OLEDs (0◦ ≤ θ < θ1); (ii) the
substrate mode (optical loss≈30%), where the light is trapped in the substrate at the glass/air interface
due to the total internal reflection and usually propagates to the edge of the glass (θ1 ≤ θ < θ2);
and (iii) the ITO/organic mode (optical loss ≈40%), where the light is trapped at the ITO/substrate
interface due to the total internal reflection and dissipated by the ITO, organic, and metal cathode
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layers (θ2 ≤ θ < 90◦). Particularly, if ITO is replaced with metallic electrodes (e.g., thin metal film,
metal nanowire or grid), the ITO/organic waveguide mode will be eliminated. In such case, the SPP
mode is a significant optical loss, especially for OLEDs with two metal electrodes since the SPP mode
exists at the anode/organic interface and the cathode/organic interface.
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external mode (0◦ ≤ θ < θ1), the substrate mode (θ1 ≤ θ < θ2), and the indium tin oxide (ITO)/organic
mode (θ2 ≤ θ < 90◦), respectively.

In flexible OLEDs, the total internal reflection will also occur at interfaces due to the difference
of refractive index [199–201]. However, for the most popular plastic substrates, their refractive
index (e.g., ~1.65 for PET) is higher than that of glass. Hence, the external mode, substrate mode,
and ITO/organic mode are different from conventional OLEDs with glass substrates, although the
SPP mode remains unchanged [202]. By using plastic substrates, the ITO/organic mode emission
can be redistributed to the substrate mode. Ideally, this redistribution will completely occur if the
refractive index of flexible substrates is equal to that of ITO. Then, external outcoupling technologies
(e.g., scattering layers, microlens arrays) can be used to extract the substrate mode emission to the
external mode, enhancing the EQE. Aside from the external outcoupling technologies, many internal
outcoupling technologies (e.g., photonic crystals, microcavity structures, periodic diffraction gratings,
nanoimprinted quasi-random photonic structures) have also been reported [203–207].

3. Strategies to Achieve FWOLEDs

3.1. Basic Aspects of FWOLEDs

According to the above concepts, four factors are critical to the performance of FWOLEDs,
i.e., flexible substrates, conducting electrodes, device architectures and outcoupling techniques.
In particular, the substrates and electrodes in FWOLEDs are unlike conventional WOLEDs based on
glass substrates. Hence, many attempts have been made to resolve the issues regarding these two
factors, especially flexible electrodes. For the design of device structures in FWOLEDs, the concepts in
conventional WOLEDs can be used (i.e., the selection of phosphorescent or TADF emitters is essential
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to harvest the triplet excitons, and the management of charge and exciton distribution is key to the
performance). In the case of outcoupling techniques, many approaches in conventional WOLEDs can
be adopted for reference, particularly for the external outcoupling techniques. By carefully considering
the four factors, high-performance FWOLEDs can be expected. Given that conventional WOLEDs are
usually classified into four types according to the employed emitters (i.e., fluorescent, phosphorescent,
TADF, and hybrid WOLEDs) [208–217], FWOLEDs can also be simply assorted via these types. In the
following sections, the main strategies to develop various kinds of FWOLEDs have been highlighted
from the used substrates, electrodes, and device structures to outcoupling schemes.

3.2. FWOLEDs Based on Fluorescent Emitters

3.2.1. Fluorescent FWOLEDs with Indium-Zinc-Oxide Anode

At the initial stage of the development of FWOLEDs, fluorescent emitters were usually used,
leading to the waste of triplet excitons. In addition, only little attention has been paid to the outcoupling
techniques. Hence, the performance of FWOLEDs is not impressive. However, compared with
conventional fluorescent WOLEDs prepared on glasses, fluorescent FWOLEDs can exhibit higher
efficiency due to the high-refractive-index plastic substrate which eliminates the optical loss and
converts the anode/organic mode into the substrate mode. Significantly, such strategy makes a step
forward in the evolution of FWOLEDs.

In 2005, Mikami et al. realized the fluorescent bottom-emitting FWOLED [77]. The flexible
substrate was a heat-resistant (>200 ◦C) and high-refractive-index (n = 1.65) plastic base film
with a protective layer and a thin inorganic gas barrier. The anode was the transparent
indium-zinc-oxide (IZO), which was similar to ITO. As shown in Figure 3, the device structure
was IZO/PEDOT:PSS/EML/2-(4-Biphenylyl)-5-(4-tert-butylphenyl-1,3,4-oxadiazole) (Bu-PBD,
hole-blocking layer)/8-hydrooxyquinoline aluminum-salt (Alq3, electron transport layer)/LiF/Al
(cathode), where the EML was poly-(N-vinylcarbazole) (PVK): 1,1,4,4-tetraphenyl-1,3-butadiene (TPB):
nile red for a FWOLED with an EQE of 2%. To improve the efficiency, 0.23 wt % rubrene was codoped
into PVK, assisting the red emission. This was because the excitation energy could be transferred to
rubrene from Bu-PBD with a subsequent transfer to nile red. As a result, the FWOLED showed an EQE
and PE of 4.0% and 4.3 lm W−1 at 100 cd m−2, respectively. The efficiency was improved by a factor of
10–20% compared with that of normal glass (n = 1:52), since the IZO/organic mode was reduced by a
factor of 46% when the normal glass substrate was replaced with a high-refractive-index (n = 1:65)
plastic substrate. Therefore, the key features to enhance the efficiency could be summarized: (i) the
improvement of device engineering, and (ii) the utilization of high-refractive-index plastic substrate.
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3.2.2. Fluorescent FWOLEDs Using Modified ITO Anode

If transparent conductive oxides (e.g., IZO, ITO) are functioned as the electrode on plastic
substrates, the electrical conductivity may not be good enough. This is because plastics usually
have a low glass transition temperature and a soft shape, which prevents transparent conductive
oxides from being formed at high temperatures and making the surface smooth.

To enhance the electrical conductivity, Jou et al. built a FWOLED by utilizing effective
device structure on high glass-transition plastic substrate with a thin silicon dioxide (SiO2) pre-coat
and ITO deposited using radio frequency magnetron sputtering at elevated temperature [218].
More specifically, PES was used as the flexible substrate (Figure 4). SiO2, with the optimized
thickness of 15 nm, was introduced on top between the ITO and PES substrate, improving
the interfacial adhesion and enhancing resistance to the diffusion of moisture. Then, ITO was
obtained using radio frequency magnetron sputtering at 200 ◦C. After this, a WOLED structure
of N,N′-bis-(1-naphthy)-N,N′diphenyl-1,1′-biphenyl-4-4′-di-amine (NPB, 45 nm, an electron-blocking
and hole-transport layer)/EML (30 nm)/2,2′,2”-(1,3,5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole
(TPBi, 40 nm, a hole-blocking and electron-transport layer)/LiF (1 nm)/Al (150 nm) was
proposed, where the EML was 10,10′-di(biphen-4-yl)-9,9′-bianthracene (BANE): 0.05 wt % red dye
4-(dicyanomethylene)-2-methyl-6-(julolidin-4-ylethenyl)-4H-pyran (DCM2) in a single EML. As a
result, the FWOLED showed a PE of 6.5 lm W−1 at 800 cd m−2 and a maximum EQE of 3.2% with
a pure-white light with chromaticity coordinates (0.321, 0.339). The key features to realize such a
FWOLED could be summarized: (i) the appropriate sputtering temperature of 200 ◦C for ITO ensured
the pure-white emission and high electrical conductivity (e.g., the emission changes markedly from
pure-white to bluish-white for ITO sputtered at 200 ◦C or above, the ITO films sputtered at 200
◦C exhibited a much higher conductivity, more than two times that at room temperature); (ii) the
optimized thickness of SiO2 guaranteed that the ITO film deposited on PES showed a smooth surface
with a roughness of 1.4 ± 0.01 nm and a low resistivity of 3.9 × 10−4 Ω cm, enhancing the efficiency.
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3.2.3. Fluorescent FWOLEDs Exploiting a Four-Layer Graphene Anode

To replace the most widely used ITO anode, lots of attention has been paid to the graphene anode.
This is because graphene is a flexible two-dimensional sheet of sp2-hybridized carbon atoms, which
can lower the cost and overcome the brittle issue of ITO. Before 2012, the OLEDs based on graphene
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anodes usually showed poor performance, since graphene films have a low work function (~4.4 eV)
and high sheet resistance (>300 Ω sq−1) [219,220].

To overcome this problem, Han et al. developed a fluorescent FWOLED based on a four-layer
graphene anode with a high work function (5.95 eV) and a low sheet resistance (~30 Ω sq−1) [221].
The key features of such modified graphene anode could be summarized: (i) graphene films were
p-doped with HNO3 or AuCl3, decreasing the sheet resistance; (ii) a work function gradient from
the graphene to the overlying organic layer was created by using conducting polymer compositions
to modify the surface (i.e., a self-organized gradient hole injection layer composed of PEDOT:PSS
and tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7-octenesulphonic acid copolymer, one of the
perfluorinated ionomers (PFI)), which enabled holes to be injected easily into the organic layer. Then,
by using a flexible PET substrate and an efficient device architecture, a FWOLED was constructed with
the EML of the dopants (skyblue-emitting 4,4′-bis[2-{4-(N,N-diphenylamino)phenyl}vinyl] (DPAVBi)
and orange-red-emitting 5,6,11,12-tetraphenylnaphthacene (rubrene)) doping into separate layers in
the 2-(tertbutyl)-9,10-bis(2′-naphthyl)anthracene (TBADN) host, as shown in Figure 5. As a result, the
first FWOLED based on a graphene anode was developed with a maximum CE of 16.3 cd A−1, which
was higher than that of the ITO-based WOLED (10.9 cd A−1).
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Figure 5. (a) Device structure of FWOLED with a graphene anode. (b) FWOLED lighting device with a
graphene anode on a 5 cm × 5 cm polyethylene terephthalate (PET) substrate [221]. Copyright (2012)
with permission from Springer Nature.

3.3. FWOLEDs Based on Hybrid Emitters

Unlike bottom-emitting FWOLEDs, the light of top-emitting FWOLEDs is emitted from the top
side. Hence, top-emitting FWOLEDs can be fabricated on opaque substrates (e.g., metal foils), in
addition to thin glass and plastics. A main challenge of developing high-performance FWOLEDs is
how to reduce the effect of microcavity, which is induced by the two electrodes. Especially, top-emitting
FWOLEDs with high CRI are hardly achieved. To eliminate the microcavity effect, the top electrode
should be as transparent as possible.

In 2011, Ji et al. used a dielectric/metal/dielectric multilayer as the top electrode, realizing
the first top-emitting FWOLED with a maximum CE of 8.66 cd A−1 and CRI of 84 [222].
The key features for this FWOLED was the use of a conductive transparent cathode (i.e.,
MoO3 (40 nm)/ Ag (17 nm)/MoO3 (40 nm)) to suppress the reflection of the metal layer and
achieve a selective high transparent effect. The average transmittance of MoO3 (40 nm)/Ag
(17 nm)/MoO3 (40 nm) in visible range was >84%, which was similar to ITO, as shown in
Figure 6. In addition, the sheet resistance of MoO3 (40 nm)/Ag (17 nm)/MoO3 (40 nm) was
very low (i.e., 11 Ω sq−1). By using the flexible PET substrate, the device structure was Al
(100 nm)/ MoO3 (1.5 nm)/4, 4′, 4”-tris(3-methylphenyl-phenylamino)-tripheny-lamine (m-MTDATA,
30 nm)/NPB (10 nm)/4,4′-bis(2,2′-diphenylethenyl)-1,1′-biphenyl (DPVBi, 15 nm)/CBP (3 nm)/CBP:
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bis(2-(2-fluorophenyl)-1,3-benzothiazolato-N,C2′)iridium acetylacetonate [(F-BT)2Ir(acac)] (7 nm)/4,
7-diphenyl -1, 10-phenanthroline (Bphen, 30 nm)/LiF (1 nm)/Al (1 nm)/Ag (1 nm)/MoO3 (40 nm)/Ag
(17 nm)/MoO3 (40 nm), where Al/MoO3, m-MTDATA, NPB, DPVBi, CBP: (F-BT)2Ir(acac), Bphen, and
LiF/Al/Ag/M/A/M were the anode, hole injection layer, hole transport layer, blue fluorescent EML,
orange phosphorescent EML, electron transport layer, and cathode, respectively. The Al was used as
the anode replacing the common Ag because Al film had larger phase shift on reflection than that of
Ag, while the neat CBP was introduced to separate blue and orange EMLs to avoid Dexter energy
transfer between the two emitters. As a result, a top-emitting FWOLED was organized. Later, Ji et al.
also demonstrated that the multilayer electrode (Alq3/Ag)2 was promising for FWOLEDs [223].
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3.4. FWOLEDs Based on Phosphorescent Emitters

3.4.1. Phosphorescent FWOLEDs Employing a Single-Layer Graphene Anode

When electrons meet holes in OLEDs, singlet excitons and triplet excitons can be generated with
the ratio of 1:3. To develop high-efficiency FWOLEDs, all generated excitons should be harvested.
Hence, phosphorescent or TADF emitters are generally required, since they can harvest the triplet
excitons. With the design of advanced device architecture, the maximum IQE of phosphorescent or
TADF OLEDs will be unity. In addition, effective outcoupling technologies are needed to further
enhance the efficiency. As a matter of fact, almost all reported high-performance FWOLEDs were
established via the combination of phosphorescent/TADF emitters and outcoupling technologies.

In 2013, Li et al. reported high-efficiency FWOLEDs by using a phosphorescent device
structure and effective outcoupling technology (Figure 7), yielding an EQE of external quantum
efficiency >45% at 10,000 cd m−2 (CRI = 85) and a PE of 80 lm W−1 at 3,000 cd m−2 [224]. In this
work, single-layer graphene was used as the flexible transparent anode, which was different from
Han’s FWOLED with four-layer graphene anode [221]. Since multiple-layer graphene required
multiple graphene transfers (higher cost) and suffered from light absorption (each additional
layer of graphene absorbs ~3% of light across the spectrum), the use of single-layer graphene
would solve these issues. To ensure that holes could be efficiently injected into EML, a p-type
chemical doping was performed by soaking the graphene sample in 1 mg ml−1 triethyloxonium
hexachloroantimonate/dichloroethene solution, producing a charge transfer complex, leading to
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an increased work function (5.1 eV), an improved carrier density (2 × 1013 cm−2), and a decreased
sheet resistance (<200 Ω/square). Furthermore, PEDOT:PSS/MoO3 was utilized as the interface layer
to enhance the work function of the graphene anode to 6.7 eV, which was lower than the highest
occupied molecular orbital (HOMO) of the CBP based EML (6.1 eV), remarkably enhancing the hole
injection. Therefore, the key feature for Li’s FWOLED was the highly efficient hole injection from
single-layer graphene to light-emitting layers, eliminating the efficiency roll-off due to carrier trapping,
charge imbalance, and exciton quenching at the anode/organic interface. With a flexible PET substrate,
the configuration was single-layer graphene anode/PEDOT:PSS/MoO3/CBP: MoO3 (hole injection
layer)/CBP/CBP: bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) [Ir(ppy)2(acac)]:
bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) iridium (III) [Ir(MDQ)2(acac), red EML]/CBP:
Ir(ppy)2(acac) (green EML)/CBP: Bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (Firpic,
blue EML)/TPBi (electron transport layer)/LiF/Al (cathode). Then, the outcoupling method
including substrates and lenses made of high index glass (n = 1.80) was used to further enhance the
efficiency, achieving a maximum EQE of 51% and a PE of 90 lm W−1 at 1,000 cd m −2. As a result, a
high-performance FWOLED was developed.
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3.4.2. Phosphorescent FWOLEDs Utilizing a Simplified Outcoupling Approach

For Li’s FWOLED [224], the efficiency of the FWOLED was comparable to general lighting.
However, the improvement in optical outcoupling that relied on high refractive index substrates was
unfavorable to low cost mass production. Furthermore, half sphere lens are usually only suitable for
small-area devices, which are not practical for large-area applications. Therefore, a simplified, low-cost
but effective outcoupling approach with suitability for large-area applications is beneficial to free the
light trapped by the substrate of FWOLEDs.

In 2014, Liu et al. realized a FWOLED with an outcoupling film that was fabricated by
dispersing SiO2 (n = ~1.5, average particle sizes of 1.5 µm) into SU-8 matrix with a concentration
of 15%, exhibiting a maximum forward-viewing PE of 101.3 lm W−1 [225]. Furthermore, the
device exhibited excellent color stability with a CIE variation of (0.004, 0.005) when the luminance
increased from 100 to 10000 cd m−2. As shown in Figure 8, with the 120 µm PEN substrate, the
device configuration was ITO (170 nm)/MeO-TPD: F4-TCNQ (100 nm, 4%)/NPB (15 nm)/TCTA
(5 nm)/TCTA: Ir(dmppy)2(dpp) (1 nm, 20%)/TCTA: FIrpic (4 nm, 7%)/26DCzPPy: FIrpic (4 nm,
20%)/26DCzPPy: Ir(dmppy)2(dpp) (1 nm, 20%)/TmPyPB (50 nm)/LiF (1 nm)/Al (200 nm), where
ITO was an anode, F4-TCNQ was tetrafluoro-tetracyanoqinodimethane, doped into N, N, N′,N′-
tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), TCTA is 4,4′,4”-tri(9-carbazoyl) triphenylamine
(an exciton/electron blocking layer and a host of orange/blue emitters), Ir(dmppy)2(dpp) was
Bis(2-phenyl-4,5-dimethylpyridinato)[2-(biphenyl-3-yl)pyridinato] iridium(III) (an orange emitter),
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FIrpic was a blue emitter, 26DCzPPy was 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (a host of
orange/blue emitters), TmPyPB was 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene, LiF was an electron
injection layer and Al was a cathode. For this structure, the main exciton generation zone was
located at the TCTA/26DCzPPy interface, which was effectively broadened via the double blue EML.
In addition, to stabilize the color, enhance the efficiency, and to reduce the efficiency roll-off, some
device strategies were adopted, i.e., the optimized EML thickness, the orange EMLs designed to
surround blue EMLs for harvesting the unused excitons, the charge transport layers of TCTA and
TmPyPB having high S1 and T1 to confine singlets and triplets in the EML, and the reduction of charge
mobility associated with host-dopant energy level difference. To further enhance the performance of
FWOLEDs, an outcoupling approach was proposed by simply dispersing SiO2 into SU-8 matrix to
fabricate scattering films, extracting the light trapped by the substrate. Therefore, the key features
for the high performance could be summarized: (i) a multifunctional carrier- and exciton-confining
structure was designed to guarantee the high efficiency and stable color; (ii) a simplified, low-cost but
effective outcoupling approach with suitability for large-area applications was used to free the light
trapped by the substrate.
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3.4.3. Phosphorescent FWOLEDs Having Plastic with Embedded Ag Network Anode

In Liu’s work [225], the efficiency of the FWOLED was demonstrated to exceed 100 lm W−1.
However, in addition to the limited bendability, the use of an ITO anode cannot avoid the ITO/organic
waveguide mode due to the high refractive index of ITO. As a result, optical loss may limit the further
enhanced efficiency of such a FWOLED. To unlock the potential efficiency, high-quality transparent
conductive electrodes with superior stretchability and roll-to-roll manufacturing compatibility to
replace ITO is required, apart from the feasible outcoupling technologies. Based on this strategy,
FWOLEDs are expected to possess much higher efficiency.



Polymers 2019, 11, 384 13 of 28

By combining a transparent conductor on plastic with embedded silver networks as the anode
and an outcoupling structure simultaneously extracting light in waveguide and substrate modes and
reducing the surface plasmonic losses, Tang et al. presented a FWOLED showing a maximum EQE
of 49% and PE of 118.1 lm W−1 [226]. For the flexible OLEDs using this new anode, only a small
decrease in efficiency (19%) after 1000 bending cycles occurred. In addition, the new anode exhibited
a low surface roughness to avert electrical short circuits and a lower sheet resistance in comparison
with ITO at a given transparency. As shown in Figure 9, with the PET substrate, the device structure
was the new anode/PEDOT:PSS/di[4-(N,N-ditolylamino)phenyl]cyclohexane (TAPC, 45 nm,hole
transport layer)/N,N′-Dicarbazolyl-3,5-benzene (mCP): 8 wt % FIrpic (19 nm, blue EML)/mCP:
6 wt % iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate (PO-01, 1 nm, yellow
EML)/TPBi (40 nm, electron transport layer)/LiF (1 nm)/Al (100 nm). The key features for the high
light extraction efficiency were: (i) the well matched refractive index of plastic with embedded Ag
networks (n = 1.49) to PEDOT:PSS (n = 1.46) and organic layers (n = 1.75), eliminating the photon
flux trapped in the ITO/organic waveguide mode, enhancing the light from organic EMLs into the
substrate; (ii) a light outcoupling structure by nanoimprinting the PEDOT:PSS layer with deterministic
aperiodic nanostructures to promote the extraction of light originally trapped in the organic waveguide
mode into the plastic substrate; and (iii) a microlens array applied to the plastic substrate to extract
light from the substrate to the air. Therefore, a high-efficiency FWOLED has been developed. With the
similar device architecture and a new metal-dielectric composite electrode, Tang et al. also reported a
highly efficient FWOLED without outcoupling structure, exhibiting a maximum EQE of 47.2% and PE
of 112.4 lm W−1 [227].
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anode. (b) Photograph of a large-area FWOLED (50 mm × 50 mm). Inset: the magnified image
taken with an optical microscope (scale bar = 3.00 µm) [226]. Copyright (2014) with permission from
American Chemical Society.

3.4.4. Transparent Phosphorescent FWOLEDs Possessing Plastic with Embedded Ag Grid Anode

The motivation for using metal-dielectric composite electrodes is that they are effective in terms
of mechanical flexibility, electrical conductivity, optical transparency, and large-area film uniformity.
Particularly, plastic with embedded Ag grid anodes can minimize the microcavity effect in OLEDs,
which is favorable for high color quality. Another significant application for FWOLEDs is the
development of transparent devices. However, it is challenging to realize the high-performance
transparent FWOLEDs, considering three crucial aspects are required to be simultaneously addressed,
i.e., transparent electrodes, device architectures, and outcoupling methods.

To unlock the great potential of transparent FWOLEDs, Tang et al. recently reported a device
that could collectively reduce ohmic losses and release the trapped photons, achieving a maximum
EQE of 72.4% and PE of 168.5 lm W−1 with a CRI of 84.5 [93]. For the bottom transparent electrode,
an embedded silver grid with hexagonal structure on a PET substrate was employed, then 80 nm
PEDOT:PSS was spin-coated onto this PET to promote hole injection into an organic stack with triple
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electrophosphorescent EMLs, as shown in Figure 10. Such metal-dielectric composite electrodes were
excellent alternatives due to their high performance in terms of efficiency and mild angular dependence
on emission spectra. In addition, the sheet resistance of this electrode was only 4.7 Ω sq−1, improving
the electrical behaviors due to the reduced ohmic loss. On the other hand, the top transparent electrode
was composed of 1 nm LiF electron-injection layer/1.5 nm Al seeding layer/15 nm Ag conductive
layer/70 nm NPB optical coupling layer. Therefore, these two transparent electrodes ensured that the
white emission could be emitted from both sides. With regards device architecture, an efficient organic
emitter with negligible energy loss during electron-photon conversion was designed, i.e., the bottom
electrode/PEDOT:PSS/TAPC (50 nm) as the hole transport layer/TCTA (5 nm) as the electron blocking
layer/mCP: 6 wt % Ir(MDQ)2(acac) (7 nm) for red emission/mCP: 8 wt % Ir(ppy)2(acac) (3.5 nm)
for green emission/mCP: 8 wt % FIrpic (5.5 nm) for blue emission/TmPyPB (60 nm) as the electron
transport/hole blocking layer/the top electrode. To further increase the efficiency, an outcoupling
approach was used to suppress the substrate mode by employing an additional external moth-eye
structure. Therefore, a highly efficient transparent FWOLED was presented (the maximum PE/EQE
were 103.9 lm W−1/43.7% and 64.6 lm W−1/28.7% for the bottom and top side, respectively). The key
feature of this transparent FWOLED was the integration of bioinspired moth-eye nanostructures into
the transparent electrodes, which enabled the broadband angle independent outcoupling enhancement
of the waveguide light and suppressed the surface plasmonic loss at the metal/dielectric interface
with no impact on electrical properties.
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From the development of FWOLEDs, it can be easily noted that the innovation of flexible
electrodes is a hot topic, which is expected to replace the well-known ITO electrode. In fact, significant
progress has been made on flexible electrodes. Apart from the above mentioned flexible electrodes,
many efficient electrodes have also been reported. For example, Koo et al. developed a bottom-emitting
FWOLED by using a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for
60 s, obtaining a maximum EQE of 5.85% [228]. Chen et al. reported a FWOLED by modifying the
graphene anode surface with PSS to improve the air-stability/hole-injection ability and reduce the
leakage current, achieving a maximum PE of 128.2 lm W−1 and EQE of 99.5% [229]. In brief, the
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future target for flexible electrodes is that they should have outstanding optical transparency/electrical
conductivity/mechanical flexibility and be accessible to large-scale manufacturing with low cost.

4. Summary and Outlook

Since FWOLEDs are not only compatible with the technology of conventional WOLEDs based
on rigid glass substrates but also undergo remarkable mechanical deformation, these excellent
characteristics mean that FWOLEDs are very promising for next-generation displays and lighting.
Nowadays, the efficiency of state-of-the-art FWOLEDs is comparable to that of the best traditional
WOLEDs based on glass substrate and ITO anode. In this review, we have mainly focused on
recent advances in FWOLEDs. Particularly, we have emphasized representative FWOLEDs based on
fluorescent, hybrid, and phosphorescent emitters. The detailed performances for FWOLEDs have been
described in Table 2.

Table 2. Summarized performances for representative FWOLEDs.

WOLEDs a Year b Von
c

(v)
EQEmax/1000

d

(%)
PEmax/1000

e

(lm W−1)
CEmax/1000

f

(cd A−1)
CIE g CRI h

Ref. [77] 2005 4.7 4.0/- 4.3/- 11.3/- (0.33, 0.33) -
Ref. [218] 2010 4.0 3.2/- 6.5/- -/- (0.32, 0.34) -
Ref. [221] 2012 ~2.8 -/- -/- 16.3/- (0.32, 0.42) -
Ref. [222] 2011 ~4.4 -/- -/- 8.66/- (0.43, 0.39) 84
Ref. [224] 2013 - 51/- 90/90 120/- - 85
Ref. [225] 2014 3.1 -/- 101.3/58.2 96.8/79.1 (0.32, 0.47) 52
Ref. [226] 2014 - 49/46.3 118.1/106 -/121.5 - -
Ref. [93] 2018 - 72.4/69.4 168.5/142.5 -/- - 84.5
a Representative FWOLEDs. b The year for the reported FWOLEDs. c Turn-on voltage. d Peak external quantum
efficiency (EQE)/EQE at 1000 cd m−2. e Peak power efficiency (PE)/PE at 1000 cd m−2. f Peak current efficiency
(CE)/CE at 1000 cd m−2. g Commission International de L’Eclairage (CIE) coordinates at ~1000 cd m−2. h Peak
color rendering index (CRI).

After about 14 years of development, the performance of FWOLEDs has been enhanced
step-by-step. In particular, their performance has been greatly boosted by the combination of
phosphorescent device architectures and efficient outcoupling technologies. With the evolution of
flexible transparent electrodes, the performance of FWOLEDs has been further improved. Although
negligible attention has been paid to FWOLEDs based on TADF emitters thus far, it can be easily
predicted that such types of FWOLEDs will show high performance via effective device architectures
due to the 100% triplet-harvesting efficiency of TADF emitters, which is similar to phosphors [230–232].
To date, there are still many challenges hindering the development of commercial productions such
as the efficiency, efficiency roll-off, angular color stability, cost, and particularly operational stability.
For the issue of efficiency, since the theoretical efficiency limit of WOLEDs is 248 lm W−1, there is
much room for FWOLEDs to be enhanced [233]. According to Equation (1), the EQE is determined
by four factors. For the outcoupling schemes, although several effective methods have been reported
to enhance the efficiency of FWOLEDs, there is still a long way to go regarding compatibility
with large-area productions and stabilizing the angular colors [234–236]. To design good device
architectures, the charge and exciton distribution should be carefully manipulated, which is beneficial
to efficiency, efficiency roll-off, color stability, and lifetime [237–240].

For the issue of lifetime, it is a key factor in determining whether FWOLEDs can meet the demands
of commercialization. Generally, a lifetime of≥10,000 h at≥1000 cd m−2 is required for the commercial
applications of WOLEDs. However, it is worth pointing out that the working stability of FWOLEDs has
been negligibly reported, which may be attributed to the short lifetime of FWOLEDs. For example, 5.2
h at an initial luminance of 1000 cd m−2 was obtained in Liu’s FWOLEDs [225]. One of the reasons for
the poor lifetime is that it is still a huge obstacle to realize stable phosphorescent WOLEDs, since blue
phosphors easily suffer chemical degradation during device operation. However, blue phosphors are
required for the reported highly efficient FWOLEDs [93,224–226]. To alleviate this difficulty, the use of
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hybrid or TADF device structures may be helpful [241–243]. Another strategy to prolong the lifetime is
the introduction of advanced flexible encapsulation techniques, since OLEDs are sensitive to moisture
and oxygen. By reducing the water vapor transmission rate of the encapsulation (e.g., multilayers
fabricated by Al2O3 and rapid SiO2 atomic layer deposition [244] and organic-inorganic multilayer
structures [245]) to the ideal encapsulating barriers (10−6 g/m2/day) [246], much longer lifetime can
be expected. To make FWOLEDs more competitive, researchers should pay more attention to lifetime.
After solving the mentioned issues, the prospect for mass production of FWOLEDs will be bright, and
the proposed solutions are also beneficial to the related optoelectronic fields (e.g., display, lighting,
laser, solar cell, photodetector, thin film transistor, and sensor) [247–251].
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