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Abstract: Low-cost resorcinol formaldehyde (RF) organic aerogels were prepared by using resorcinol
and formaldehyde as precursors, and sodium hydroxide as a catalyst through a single-mode
microwave radiation-assisted sol-gel method and ambient temperature drying. Because of the
ring focusing and power-max technology, the fabrication procedure of carbon aerogels (CAs) are
much easier, faster, and cheaper than traditional methods. The RF aerogels were then pyrolysized
at 900 ◦C, and the KOH activation process was used to further dredge micropores in the carbon
aerogels. The CAs were characterized by X-ray diffraction (XRD), scanning electron microscopy
(SEM), nitrogen adsorption/desorption, and a series of electrochemical tests. The KOH activated
carbon aerogels with 3D-nano-network structure exhibited a high specific surface area of 2230 m2 g−1

with appropriate pore volumes of micro-, meso-, and macropores. The specific capacitance of CAs
activated by KOH measured in a two-electrode cell was 170 F g−1 at 0.5 A g−1 with excellent rate
capability and cycle stability in 6 M KOH electrolyte.
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1. Introduction

Supercapacitors, a unique class of electrical energy storage devices, have attracted tremendous
attention in recent years owing to their capability of delivering high power density and remarkable
cycling stability [1–4]. Various materials have been chosen to fabricate electrodes of supercapacitors,
such as conducting polymers, metallic oxides, and carbon-based electrode, each of them has both
advantages and drawbacks [5–7]. Porous carbon nanomaterials, with a hierarchical channel of pores,
high surface area, and stable mechanical properties, are attracting increasing interest due to their
potential applications in hydrogen storage and electrochemical capacitors [8–12].

Carbon aerogels, as one of the 3D porous carbon-based materials, has attracted widespread
interest because of their unique three-dimensional nano-network, high conductivity, and the possibility
of tailoring their structures to produce final materials that fit the requirements of a specific
application [13,14]. Hence, it has been used in various fields, such as catalysis, adsorption, and
energy storage [15]. The preparation of CA mainly includes three steps: gelation and curing reactions,
drying treatment, and the pyrolysis process [16]. Despite all the advantages, the main drawbacks of
this kind of carbonaceous material are that it is time-consuming, and has low specific capacitance
and high cost. By traditional methods, it takes at least three days to complete the so-gel process and
another several days for the aging procedure. Meanwhile, the supercritical-drying technique required
for the drying process is costly and energy consuming [17,18]. Many efforts have been tried to resolve
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these issues. For instance, Rasines and coworkers have fabricated a highly porous carbon composite
composed of N-doped aerogels and carbon black. It displays high surface area and a combined
micro/mesopore structure with a desalting capacity of 7.3 mg/g [19]. Chen and coworkers have
synthesized a novel porous carbon through facile hydrothermal method to prevent the unexpected
re-stacking. The surface area of this 3D graphene/porous CA can achieve 2211 m2 g−1 and the highest
capacity is up to 410 F g−1 at a current density of 0.5 A g−1 [20]. In order to shorten the synthesis
procedure, some researchers have introduced microwave-assisted technology to the heating or drying
process to make the fabrication much easier, faster, and cheaper [21–23].

In this report, we introduced a novel and simple method to prepare resorcinol-formaldehyde
aerogel using a ring focusing single-mode microwave synthesizer. Compared with a multi-mode
microwave, the single-mode microwave can make the reaction more accurate, easy to control, and
with better repeatability. With the help of ring focusing and power-max technology, the sol-gel process
is over 100 to 1000 times faster than traditional heating method. To optimize the specific area and pore
size distribution of CAs and make it more suitable as electrode material for supercapacitor, CAs were
activated, characterized and used as for supercapacitor application.

2. Materials and Methods

2.1. Preparation of Carbon Aerogel

An organic precursor was synthesized by polycondensation of resorcinol (R) and formaldehyde
(F) using distilled water as solvent and sodium hydroxide as basification catalyst (C). The gel precursor
solution was prepared with the molar ration of R/F and R/C fixing at 0.5 and 500 respectively and the
mass fraction of the reactants (the total mass of resorcinol and formaldehyde) at 25 wt %. Resorcinol
(Aladdin, 99%) and catalyst were first dissolved in deionized water under magnetic stirring. After
that, formaldehyde (Aladdin, 37 wt % in water, stabilized by 10.7 wt % methanol) was added to the
mixture solution and stirred for an hour. Subsequently, 30 mL of precursor solution was poured
into a round-bottom flask and located in the unimode microwave cavity. The sol-gel reaction was
carried out under the single-mode microwave radiation at 85 ◦C and 100 W. The excess solvent in
the hydrogel was replaced by acetone for 2 days and then dried at ambient temperature to obtain
resorcinol/formaldehyde (RF) organic aerogels. At last, the organic aerogels were pyrolysised in argon
flow at 900 ◦C for 2 h to get the hierarchical porous carbon aerogel (CA). The synthetic process of CA
was shown in Scheme 1.
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Scheme 1. Schematic diagram of synthetic process of carbon aerogel (CA).

2.2. Activation of Carbon Aerogel

The KOH activation reaction was as follows: KOH and CA, with the mass ratio from 1:1 to 5:1
(mKOH:mCA), were ground adequately in an agate mortar. The resulting mixture was activated in the
nitrogen atmosphere at 800 ◦C for 2 h. After cooling, the products were thoroughly washed by 1M
HCl and deionized water to remove all soluble impurities and then dried at 120 ◦C to obtain activated
carbon aerogel. The final products were named as KOH-CA1, KOH-CA2, KOH-CA3, KOH-CA4, and
KOH-CA5, respectively.
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2.3. Materials Characterization

Field-emission scanning electron microscope (FESEM, JSM-6510, JEOL Ltd., Tokyo, Japan) and
X-ray powder diffraction (Rigaku D/max 2500/PC, Rigaku Corporation, Tokyo, Japan) were used to
identify the morphology and structure of the as-prepared materials. Nitrogen adsorption/desorption
isotherms and textural properties were determined at 77 K with a Specific Surface Area and Porosity
Analyzer (BELSORP-max, MicrotracBEL, Osaka, Japan).

The electrochemical performance at room temperature of the as-synthesized materials was
characterized in 6 M KOH alkaline electrolyte using a CHI660E electrochemical work-station (CHI660E,
Huakeputian Technology Co., Ltd., Beijing, China). The electrodes were prepared by pressing a
mixture of 85 wt % active material, 10 wt % conductive carbon black and 5 wt % PTFE onto a nickel
foam mesh current collector [24,25]. The mass of each electrode was about 5 mg. Cycle voltammetry
measurements (CV) and electrochemical impedance spectroscopy (EIS, Huakeputian Technology
Co., Ltd., Beijing, China) were performed in three electrodes test system while the galvanostatic
charge–discharge measurement (GCD, Huakeputian Technology Co., Ltd., Beijing, China) was carried
out using two-electrode cells. The specific capacitance (Csp in F g−1) can be calculated from the GCD
curve according to the equation [1,26]:

Csp =
I∆t

∆V × m
(1)

where I is the constant discharge current (A), ∆t is the discharge time (s), ∆V is the working voltage
window and m is the mass of the active material of each electrode.

3. Results and Discussion

3.1. XRD Analysis of CA

Figure 1 shows the XRD patterns of CA prepared with different radiation time. All the samples
exhibit a board reflection at 2θ = 23.5◦ and 43.8◦, which are correlated to the (002) and (100) diffraction
direction of graphite. It indicates that RF organic aerogel possesses a low degree of graphitization
during the carbonization [19,27,28]. The C-C bonds in the carbon aerogel contains both sp2 and sp3

hybrid, which results in an amorphous nature with local micro crystallites.
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Figure 1. X-ray diffraction patterns of CAs prepared in different radiation time.
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3.2. SEM Analysis of CA

The SEM micrographs of carbon aerogels (CAs) synthesized by single-mode microwave-assisted
polymerization are shown in Figure 2.
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Figure 2. SEM images of (a) 30 min-CA, (b) 40 min-CA, (c) 50 min-CA, and (d) 60 min-CA.

The morphology of CAs displays a 3D-porous network structure formed by spherical
nanoparticles. There is a certain gap and channel among the particles which is conducive to the rapid
migration of electrolyte ion into the pores of carbon aerogel. This particular structure is suitable to
store and release energy and make the CAs a good candidate for electrode materials of supercapacitor.

3.3. Electrochemical Properties of CA

To screen the optimal synthesis duration for the CAs, the electrochemical performance of the CAs
prepared with different radiation durations was first assessed using a three-electrode test system with
Ag/AgCl as reference electrode and Pt as the counter electrode and the results are shown in Figure 3.

In Figure 3a, the as-prepared CAs display a CV curve similar to an ideal rectangular without
any redox peak (at a scan rate of 5 mV/s), which illustrates that all the samples demonstrate electric
double-layer capacitance and the electrical resistance is low. Figure 3b shows the charge/discharge
curves of 30 min-CA, 40 min-CA, 50 min-CA, and 60 min-CA at 0.5 A g−1. The GCD tests are carried
out using two-electrode cell in 6 M KOH. All the curves display nearly symmetrical isosceles triangles
and rapid responses of current–voltage. It indicates that the electrode materials have excellent coulomb
efficiency and electrochemical reversibility [1,29]. The 40 min-CA exhibits the smallest ohmic drop
with the longest charge and discharge time, which can be concluded that this sample has the lowest
equivalent series resistance [20,30] and the highest specific capacitance. (92 F g−1 at 0.5 A g−1).
Figure 3c shows the Nyquist plots of CAs prepared with different radiation times with the frequencies
ranging from 0.1 Hz to 100 kHz. All plots compose of a small arc in the high frequency region and a
straight line in the low frequency region. The semicircle at high frequency represents the interfacial
resistance, charge transfer resistance and the conductivity of electrodes. The bias line at low frequency
area reveals the diffusion resistance in the electrolyte [31–34]. The equivalent series resistance of the
40 min-CA is about 0.47 Ω, which is lower than the 30 min-CA (0.8 Ω), 50 min-CA (0.55 Ω), and
60 min-CA (0.79 Ω), indicating that the sample of 40 min-CA has the lowest interfacial charge-transfer
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resistance and the highest electrical conductivity. Combined with the results of CV and GCD, we
can come to the conclusion that the CA prepared by 40 min microwave radiation exhibits the best
electrochemical performance.Polymers 2019, 11, x FOR PEER REVIEW 5 of 12 
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(d) Specific capacitance of CAs at 0.5 A g−1.

3.4. XRD Analysis of Activated CA

To further optimize the pore structure and enhance the electrochemical properties of the carbon
aerogel, CA was activated by various proportion of solid potassium hydroxide. XRD patterns of CAs
activated by different alkali carbon ratio are shown in Figure 4.Polymers 2019, 11, x FOR PEER REVIEW 6 of 12 
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With the increasing of the content of KOH, the peak at 2θ = 23.5◦ remains almost identical while
the reflection of 43.8◦ (2θ) decreases progressively (from mKOH:mCA = 4:1). It is known that under high
temperature, the carbon framework is etched by the redox reactions of various potassium compounds
as chemical activator with carbon. Some graphite grains are consumed in these reactions, which may
improve the amorphous structure of the CAs. The hierarchical porous structure of the carbon aerogel
is created during this process [35,36].

3.5. SEM and BET Analysis of Activated CA

The SEM images of CAs activated by KOH are shown in Figure 5. As expected, after activation by
KOH at 800 ◦C, diameter of the aerogel particles greatly reduces, this leads to the dramatically increase
of the specific area. As a result, the contact area of carbon materials with the electrolyte ions enlarged
and the active sites increased.Polymers 2019, 11, x FOR PEER REVIEW 7 of 12 
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Figure 5. SEM images of (a) 40 min-CA, (b) KOH-CA1, (c) KOH-CA2, (d) KOH-CA3, (e) KOH-CA4,
and (f) KOH-CA5.

Figure 6 shows the nitrogen adsorption/desorption isotherms and pore size distribution of CA
and KOH-CA3.
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It can be observed from Figure 6a that the CA displays a type I isotherm and that for the activated
carbon aerogel (KOH-CA3) is type IV. The ultra-fast adsorption increases at a low relative pressure
of the two samples demonstrates a large quantity of micropores [23,37]. The obvious hysteresis loop
ranging from 0.8–1.0 of KOH-CA3 indicates the presence of rich mesoporous [38], which can be further
proved by pore size distribution in Figure 6b. After activation, besides the enormous increase in
micropores, a moderate amount of meso/macroporous appears in KOH-CA3, which can provide the
ion transport channel and ion-buffering reservoir. The specific area and pore characteristics are listed
in Table 1. Compared with the 40 min-CA (596 m2 g−1 and 0.4025 cm3 g−1), the specific area and pore
volume of KOH-CA3 increase to 2230 m2 g−1 and 1.9770 cm3 g−1, respectively.

Table 1. Specific surface area and pore-structure characteristic of the 40 min-CA and KOH-CA3.

Sample SBET
(m2 g−1)

Vtotal
(cm3 g−1)

dm
(nm)

40min-CA 596 0.4025 2.70
KOH-CA3 2230 1.9770 6.98

3.6. Electrochemical Properties of Activated CA

The electrochemical performance of the activated carbon aerogel was further investigated.
Figure 7a–e shows the cyclic voltammetry (CV) curves of activation carbon aerogels at different
scanning rates. After activation, even at a scan rate of 100 mv/s, the CV curves of these samples
still reserve a near-ideal rectangular shape, indicating a typical double-layer capacitive behavior with
the absence of pseudo-capacitance and a good rate capability. Figure 7f displays the galvanostatic
charge/discharge curves of 40 min-CA and activated CAs. The linear behavior and symmetrical
curve in the potential window (0–1 V) are due to its high electrical conducting of its unique three
dimensionally nano-framework. The IR drop can be negligible of all the activated CAs, which
demonstrates the high-speed charge propagation of these as-prepared samples. As described in
Table 2, the highest capacity (170 F g−1 at 0.5 A g−1) of the activated CA appears at mKOH:mCA = 3:1,
which is much higher than the 40min-CA (92 F g−1 at 0.5 A g−1).
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Figure 7. (a–e) Cyclic voltammograms of CAs activated by different content of solid potassium
hydroxide in different scanning rates in 6 M KOH solution. (f) Galvanostatic charge–discharge curves
using a two-electrode cell at a current density of 0.5 A g−1.

Table 2. Specific capacitance of CAs activated by solid KOH.

Samples mCA:mKOH Specific Capacitance (F/g)

KOH-CA1 1:1 120
KOH-CA2 1:2 132
KOH-CA3 1:3 170
KOH-CA4 1:4 146
KOH-CA5 1:5 136

After activation, the equivalent series resistance (ESR) of the KOH-CA3 reduces to only 0.32 Ω
(in Figure 8). The cycling stability test of the 40 min-CA and KOH-CA3 are shown in Figure 9.
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After 1000 cycles, no noticeable decrease of the specific capacitance can be seen, indicating that
activation does not affect the stability of the carbon aerogel and both the two samples have good
cycling performance.

4. Conclusions

In summary, carbon aerogels with hierarchical porous structure and excellent electrochemical
performance have been prepared by carbonization and activation of resorcinol formaldehyde
(RF) organic aerogels. The low-cost RF organic aerogels were prepared by using resorcinol and
formaldehyde as precursors, sodium hydroxide as a catalyst through a single-mode microwave
radiation assisted sol-gel method and ambient temperature drying. The fabrication procedure of
carbon gel was much easier, faster, and cheaper due to the ring focusing and power-max technology.
The resulting carbon aerogel (KOH-CA3) exhibits an outstanding specific surface area of 2230 m2 g−1

and possessed a quantity high fraction of micropores and a moderate amount of mesoporous. The
specific capacitance tested in two-electrode cell and calculated from galvanostatic charge/discharge
curve was 170 F g−1 at 0.5 A g−1. The as-prepared CAs shows a good rate capability and ideal cycle
stability in 6 M KOH electrolyte.
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