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Abstract: The startup and steady shear flow properties of an entangled, monodisperse polyethylene
liquid (C1000H2002) were investigated via virtual experimentation using nonequilibrium molecular
dynamics. The simulations revealed a multifaceted dynamical response of the liquid to the imposed
flow field in which entanglement loss leading to individual molecular rotation plays a dominant role
in dictating the bulk rheological response at intermediate and high shear rates. Under steady shear
conditions, four regimes of flow behavior were evident. In the linear viscoelastic regime (γ̇ < τ−1

d ),
orientation of the reptation tube network dictates the rheological response. Within the second
regime (τ−1

d < γ̇ < τ−1
R ), the tube segments begin to stretch mildly and the molecular entanglement

network begins to relax as flow strength increases; however, the dominant relaxation mechanism
in this region remains the orientation of the tube segments. In the third regime (τ−1

R < γ̇ < τ−1
e ),

molecular disentangling accelerates and tube stretching dominates the response. Additionally,
the rotation of molecules become a significant source of the overall dynamic response. In the
fourth regime (γ̇ > τ−1

e ), the entanglement network deteriorates such that some molecules become
almost completely unraveled, and molecular tumbling becomes the dominant relaxation mechanism.
The comparison of transient shear viscosity, η+, with the dynamic responses of key variables of the
tube model, including the tube segmental orientation, S, and tube stretch, λ, revealed that the stress
overshoot and undershoot in steady shear flow of entangled liquids are essentially originated and
dynamically controlled by the Sxy component of the tube orientation tensor, rather than the tube
stretch, over a wide range of flow strengths.

Keywords: entangled polymer melts; linear polymers; nonequilibrium molecular dynamics
simulations; steady and startup shear flows

1. Introduction

The study of flow properties of polymeric solutions and melts has a rich history of perplexing the
physicists and engineers who have endeavored to understand and model the many and varied physical
responses of these complex fluids to an imposed flow field. In particular, the description of fast flows of
macromolecular fluids has proven to be a difficult challenge. Although many continuum level theories
have proven capable of describing gross rheological data in the linear and weakly nonlinear viscoelastic
flow regimes (i.e., at low to intermediate values of the strain rate relative to a characteristic relaxation
time of the fluid), most of these have not been able to provide a quantitative description of the flow
properties of solutions and melts at high flow strength. There are many possible reasons one could cite
to explain this state of dysfunction, but the overall reason is abundantly clear: for polymeric fluids
experiencing strong flow conditions, all of the physical and dynamical phenomena occurring within
these materials have not been understood and accounted for in the prevailing mathematical models.
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Developing reliable mathematical models necessarily depends upon complementary
experimentation. A debilitating feature of rheological experimentation, however, is that these
seemingly simple experiments typically only provide bulk-scale measurements that have effectively
been averaged over macroscopic length and time scales. As a consequence, any dynamic behavior
that is of much shorter length and time scale than those of the measuring instrument are effectively
washed out of the system response, even though they contribute to the overall response. Therefore, for
much of the 20th century, rheologists had little in the way of small length and time scale information
to guide attempts at improved mathematical modeling.

The 21st century is proving to be a golden age of rheological discovery. New experimental
methods have been developed which are beginning to tap into small time and length scale phenomena
that have a dramatic impact on the bulk rheological response of a polymeric liquid, particularly under
conditions of strong flow. Furthermore, the present century has seen the rise of a new form of scientific
exploration; i.e., virtual experimentation. Advances in computational algorithms and efficiency have
led to a new paradigm in experimentation that, under the right circumstances, can lead to a powerful
new means to probe the small length and time scale phenomena that dominate the bulk rheological
responses of polymeric fluids under strong flow conditions.

The primary advantage of virtual experimentation of an atomistically detailed polymer chain over
experiment is that every chain within the sample can be examined individually, not simply the bulk
rheological or microstructural response. This allows much more detailed information to be gleaned
from the simulation with respect to the experiment, as statistically meaningful correlations can be
established via ensemble averaging of the dynamical behavior of each individual chain. Additionally,
simulations are readily amenable to topological analysis, extending equilibrium properties such as tube
diameter, primitive path length, and number of entanglements to nonequilibrium flow situations [1–7].
Certainly, bulk-averaged properties, such as the conformation and stress tensors, can still be calculated,
but also with the ability to examine the effects of short timescale individual chain dynamics upon them.
Ultimately, more and better information at the microscopic scale should lead to better rheological and
microstructural models of polymeric liquids under flow.

Recent evidence collected via virtual experimentation of monodisperse atomistic melts has
demonstrated that a flow-induced disentanglement of polymer macromolecules occurs at high strain
rates in steady shearing flow. This reduction in interchain constraints leads to the onset of individual
molecular retraction and rotation cycles, which occur within oriented tube-like structures composed
of the highly-extended surrounding chain molecules. Eventually, the tube network disintegrates as
the chains become effectively disentangled, allowing them to tumble with characteristic frequencies
similarly to corresponding macromolecules in dilute solution. This new phenomenon has been
observed via nonequilibrium molecular dynamics (NEMD) simulations of molten polyethylenes in
the unentangled and moderately-entangled molecular-weight regimes (i.e., polyethylenes ranging up
to C700H1402) [1–4,8–15]. This unexpected observation from atomistic simulations has already been
hypothesized to explain some of the difficulties that manifest in flow models for high strain-rate
flows [16–18].

In the present contribution, prior results of unentangled (liquids ranging in molecular weight
roughly up to C250H502), mildly entangled (C400H802), and moderately entangled (C700H1402)
polyethylene melts are extended to a highly entangled system, C1000H2002, thus completing the entire
suite of virtual experiments of flexible, monodisperse linear macromolecular fluids ranging from
unentangled alkane liquids to highly entangled polyethylene melts. Hence this publication presents
the final piece of the puzzle to those that preceded it, providing a full description of the rich, complex
dynamical behavior and the underlying physical mechanisms that give rise to it as macromolecular
chain length increases from several carbon units up to 1000. Moreover, this work extends prior studies
that were focused on steady-state dynamics to the transient response of these entangled liquids under
startup of shear conditions. The data and analysis presented in the remainder of this article will
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help enable physicists and engineers to develop new and improved models for the bulk rheological
behavior of these macromolecular fluids covering all the relevant length and time scales.

2. Simulation Methodology

Equilibrium and nonequilibrium molecular dynamics simulations of a monodisperse, linear,
C1000H2002 melt were performed in the NVT ensemble at a constant density of 0.766 g/cm3

(corresponding to a pressure of 1 atm) and constant temperature of 450 K. Four different rectangular
simulation cells were chosen for different shear rate ranges in order to minimize the computational
cost by optimizing the simulation box size and number of particles. Table 1 summarizes the cell sizes
in various directions as well as the number of particles and applicable Wi range. In the nonlinear
viscoelastic regime (Wi > 1), the box dimension in the flow direction (x) was larger than the dimensions
in the gradient (y) and neutral (z) directions to ensure minimal system size effects at high shear rates
where chains orient and stretch in the direction of flow. These dimensions were chosen based on the
same considerations in terms of the chain end-to-end distance at different Wi which were employed
for a shorter C700H1402 chain liquid in prior work [2]. The smallest simulation cell, containing 20,000
particles, was equilibrated for more than 8 times the longest relaxation (disengagement) time before
any data were gathered for analysis. The simulation cells containing 40,000 and 60,000 particles
were created by replicating the equilibrated small simulation cell respectively once and twice in the
x-direction, then equilibrated for one disengagement time. The longest cell was created by replicating
the equilibrated cell containing 60,000 particles, twice in the x-direction, and then equilibrated for
0.8 disengagement time. It should be mentioned that the transient data were obtained using only a
single independent initial equilibrium configuration to minimize the computational cost; however, this
configuration varied from one simulation cell size to another—see Table 1. Although ideally such data
should be collected using more than one independent initial configuration at each Wi, based on prior
experience, this has only a slight effect on the data presented in this work, considering the sufficiently
large number of particles in the simulation cells.

Table 1. Details of the simulation cells: Lx, Ly, and Lz are box lengths in the x, y, and
z dimensions, respectively.

Wi Lx

(
Å
)

Ly and Lz

(
Å
)

Number of Particles

0–1.2 84.7 84.7 20,000
3.5–12 169.3 84.7 40,000
41–58 254.0 84.7 60,000

117–11,700 508.0 84.7 120,000

The Siepmann–Karaboni–Smit (SKS) united-atom potential model [19] was used to quantify
the energetic interactions between the atomistic components of the polyethylene liquid. This is the
same potential model employed in many other prior simulation studies [1–3,8,10–14,17,18,20–23] to
represent energetic interactions between either -CH3 for the end-groups of the chains or -CH2- groups
for interior carbon atoms along the chain backbone. (Please refer to one of the references cited above
for a detailed discussion of the SKS model equations and parameters.)

The NEMD equations of motion were used to perform the NEMD simulations, which were
maintained at a constant temperature of 450 K using a Nosé–Hoover thermostat [24–31]. The set of
evolution equations for the particle positions and momenta were integrated within the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) environment, which is implemented
using the p-SLLOD equations of motion [29–31]. (Note that for steady-state and startup shear flow
as considered herein the SLLOD and p-SLLOD algorithms are the same.) Boundary conditions were
periodic at all box surfaces with a deforming simulation cell in the x direction. The equations were
integrated using the reversible-Reference System Propagator Algorithm (r-RESPA) [32] with two
different time steps. The long time step was 4.70 fs, which was used for the slowly varying nonbonded
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Lennard-Jones interactions, and the short time step was 1.176 fs (one-fourth of the long time step) for
the rapidly varying forces including bond-bending, bond-stretching, and bond-torsional interactions.
The relaxation time of the thermostat was set equal to 100 times the long time step. These time steps
are longer than those used in many of the prior studies [1–4,8,11–14,17,18,21,22]; however, a series of
test simulations were performed at various Wi to ensure that the new (longer) time steps produced
statically equivalent results as the prior (shorter) time steps. Furthermore, these time steps have been
used successfully in recent NEMD studies of planar elongational flows of entangled polyethylene
melts [20,23]. Without this modification of the time steps, the simulations reported in this article would
have been computationally intractable.

A wide range of Weissenberg numbers was examined over the interval [0; 0.01, 11,700],
corresponding to the quiescent system and shear rates within the range 2.2 × 103s−1 ≤ .

γ ≤
2.2× 109s−1. The topological analysis was performed using the Z1 code developed by Kröger [5],
which reduces atomistic configurations to a primitive path network in which the chains are not allowed
to cross each other as the algorithm simultaneously minimizes the contour length of each polymer
molecule [6]. This method uses geometrical methods rather than dynamical algorithms to minimize
the contour lengths of primitive paths in the most computationally efficient manner. The code further
defines positions of kinks along the 3-dimensional primitive path of each chain, which are assumed to
be roughly proportional to the number of entanglements per chain. Results of the code can be used to
interpret other important reptative parameters, such as the effective tube diameter and entanglement
strand length. The Z1 code has been compared with other topological analysis techniques by Shanbhag
and Kröger [7].

3. Results and Discussion

3.1. Quiescent Properties

Equilibrium properties of the system can be calculated from the simulation results and compared
with the predictions of reptation theory. The ensemble average squared end-to-end distance,

〈
R2〉,

and radius of gyration,
〈

Rg
2〉, were calculated as 20,107 Å2 and 3353 Å2, respectively, directly from

the equilibrium simulation data. The theoretical fully extended chain end-to-end distance, |R|max,
for a C1000H2002 molecule is 1290.2 Å. These values may be used to approximate the Kuhn length
as =

〈
R2〉/|R|max = 15.58 Å, and the number of Kuhn segments as N =

〈
R2〉/b2 = 82.79 ≈ 83.

Entanglement network properties were evaluated using the Z1-code [5]. Specifically, the average
primitive chain contour length, 〈L〉 = 508.6 Å, was obtained based on this analysis. These basic
properties of the entangled liquid can be used in conjunction with reptation theory to estimate other
(theoretical) system properties. The ensemble average entanglement density is thereby estimated as

Z =
〈L〉
a

=
Nb2

a2 =
〈L〉2

〈R2〉 , (1)

where a is the tube diameter. From this expression, Z = 12.9 and a = 〈L〉/Z =
〈

R2〉1/2/Z1/2 = 39.5 Å.
All of these values are in good agreement with the values estimated for C400H802 and C700H1402

molecules in prior work [2,3,18]. The entanglement molecular weight for polyethylene at 443 K of
Me = 1150 g/mol was reported by Fetters, et al. [33], which can be used to estimate an experimental
entanglement density of Z = M/Me = 12.9, and tube diameter a =

〈
R2〉1/2/Z1/2 = 40.6 Å. These

values are in excellent agreement with the simulation results.
The diffusivity of the liquid can be evaluated from the slope of the chain center-of-mass

mean-squared displacement (MSD) versus time. According to its definition, DG is 1/6 of this slope at
long times:

DG = lim
t→∞

1
6t
〈(RG(t + τ)− RG(τ))

2〉, (2)
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where RG(t) is the position of the chain center of mass at time t. Using this method, the diffusivity of
C1000H2002 is calculated as 1.28× 10−12 m2/s. Note that this value makes it possible to calculate a key
model parameter of the theory, the friction coefficient, ξ [34],

DG =
kBT a2

3N2ξb2 , (3)

where kB is the Boltzmann constant and T is the absolute temperature.
According to reptation theory, the Rouse and disengagement timescales are governed by the

expressions [34]

τR =
ξN2b2

3π2kBT
, (4)

τd =
1

π2
ξN3b4

kBT a2 . (5)

Substituting ξ from Equation (3) into Equation (4), τd can be expressed as a function of DG:

τd =
1

3π2
R2

DG
. (6)

Hence, the theoretical value of the disengagement time (i.e., according to the equations of reptation
theory after DG has been estimated from the simulations) is calculated as 5305 ns. Note that from
Equations (1), (4) and (5), the ratio τd/τR = 3Z, which leads to a theoretical Rouse time of 137 ns.

The entanglement time is governed by the reptation-based Equation [3]

τe =
π

36
R2

DGZ3 , (7)

which gives a value of 6.4 ns. This is very close to the values calculated for the C400H802 and C700H1402

liquids (5.1 ns and 6.4 ns, respectively). These values are consistent with theoretical arguments
suggesting that the entanglement time is independent of the molecular weight of the polymeric liquid.

The characteristic relaxation times can also be estimated directly from the equilibrium simulation
results using the characteristic breaks in the segmental mean-square displacement (MSD) plot versus
time [34]. The segmental MSD is defined as φ(t) = 〈(rn(t + τ)− rn(τ))

2〉, where rn is the position
vector of the n-th monomer (i.e., the n-th -CH2- unit). In order to minimize chain-end effects, only
the 500 monomers in the middle of each chain were included in these calculations. The details of the
calculations are explained in prior publications [2,3]. Figure 1 displays these plots for very short times
(a) and long times (b). As shown in the figure, the disengagement, Rouse, and entanglement times
turn out to be, respectively, 5834 ns, 194 ns, and 2.7 ns. Both the Rouse and disengagement times are
mildly overpredicted as compared to the theoretical values. Also, the ratio τd/3τR = 10, which is
smaller than the expected theoretical value of Z = 12.9; this suggests that the Rouse time is significantly
overpredicted by this method. On the other hand, τe is underpredicted compared to the theoretical
value; however, it is in good agreement with the entanglement times calculated for the C400H802 and
C700H1402 melts using the same method.

Another robust method for direct calculation of the disengagement time from the simulation
data is to fit a sum of exponential functions to the autocorrelation function of the chain end-to-end

unit vector, 〈ui(τ)·ui(τ + t)〉 =
p
∑

i=1
ci exp(−t/τi), where the longest value of τi is considered as the

disengagement time. p is the minimum number of exponential terms (5 in this case) that results in the
best fit (i.e., the closest coefficient of determination, R-squared, to unity, using a nonlinear least-squares
method), and ci are fitting constants of order unity. The disengagement time, based on this method,
is calculated to be 5270 ns, which agrees very well with the theoretical prediction (5305 ns).
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Figure 1. Short (a) and long (b) timescale segmental MSD versus time of the (500) centermost chain
atomic units.

Figure 2 displays a log-log plot of the Rouse and disengagement times versus chain length
(number of monomers per chain), as well as their relevant power-law fitting and exponents. The data
for the C400H802 and C700H1402 liquids were obtained from prior work [2,3]. These plots show that the
power-law exponents for the disengagement time calculated from either the theoretical method or the
fitting method are about 3.3± 0.1, in good agreement with experimental measurements for entangled
polymers. This suggests that all physical phenomena, including contour length fluctuations (CLF),
constraint release (CR), and of course reptation, are captured well by the simulations under quiescent
conditions. One may expect a power-law exponent of 3.0 for the theoretical values of the disengagement
time based on reptation model predictions alone; however, it should be noted that although Equations
(3)–(5) were used for calculation of the theoretical characteristic times, the diffusivity (or equivalently
the friction coefficient) was calculated from the simulation results and consequently includes all
important physical phenomena, as explained earlier. In fact, the power-law exponent for the diffusivity
itself is −2.3, in excellent agreement with experimentally observed values [34,35]. The same analysis
is valid for the power-law exponent of the theoretical Rouse time, which scales as N2.2

m rather than
the theoretical exponent of 2, which again should be attributed to CLF and CR effects [2]. Table 2
summarizes the results of the calculations for the equilibrium characteristic relaxation times of the
C1000H2002 melt obtained from the theoretical and MSD methods. In the rest of this chapter, we use
the values τd = 5270 ns (exponential method), τR = 137 ns (theoretical method), and τe = 6.4 ns
(theoretical method) for the characteristic time scales of the C1000H2002 liquid (unless otherwise noted).
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Figure 2. Characteristic timescales as functions of molecular length. Power-law exponents agree well
with experimental observations.

Table 2. The three relaxation times for the C1000H2002 melt calculated according to reptation theory and
segmental mean-square displacement (MSD) data.

Relaxation Time Theory MSD

τe (ns) 6.4 2.7
τR (ns) 137 194
τd (ns) 5305 5834

3.2. Steady Shear Flow Properties

3.2.1. Steady-State Structural and Topological Properties

The steady-state microstructural and topological properties of a C1000H2002 melt undergoing
simple shear flow are qualitatively very similar to those of the C400H802 and C700H1402 liquids, which
were discussed in detail in prior publications [2–4,18]. These results are presented concisely herein;
interested readers can refer to the cited references for more comprehensive discussions. Overall,
steady-state shear properties of the C1000H2002 melt exhibit four distinct regions of behavior (

.
γ < τ−1

d ,
τ−1

d <
.
γ < τ−1

R , τ−1
R <

.
γ < τ−1

e , τ−1
e <

.
γ), as noted previously for the C700H1402 liquid [2].

The probability distribution functions (PDFs) of the normalized end-to-end distance and the chain
size (measured in terms of ensemble averages of chain end-to-end distance and six times the radius of
gyration, respectively) are displayed for various values of Wi in Figure 3a,b. In the linear viscoelastic
regime (Wi ≤ 1), the PDFs are Gaussian and remain essentially unchanged from the quiescent state.
The ensemble averages of the squared end-to-end distance and (6 times the) radius of gyration also
remain constant and almost equal to each other in this regime. This suggests that the flow is too weak
to significantly perturb the global molecular sizes. Keep in mind that the timescale of the flow is
larger than the disengagement time (i.e.,

.
γ < τ−1

d ), implying that the constituent macromolecules have
ample time for diffusive action to maintain their quiescent configurational properties even though
the overall tube network begins to orient along a preferred direction in the shear plane relative to the
direction of flow. Note that the ratio 〈R2〉/〈R2

g〉 approaches the theoretical value of 6 for long flexible
Gaussian chains.
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Figure 3c displays the ensemble average orientation angle, 〈θ〉, as a function of Wi. 〈θ〉 is
calculated as the angle between the principal eigenvector of the ensemble average of the unit end-to-end
vector dyadic product, 〈uiui〉, and the flow (x) direction. The orientation angle decreases from the
zero-shear-rate limit of 45◦ (not shown in the figure) to about 30◦ at Wi = 1. Finally, the tube stretch
is shown as a function of Wi in Figure 3d. The tube stretch is defined as the ratio λ = 〈L〉/L0, where
L0 is the quiescent primitive path length. Both 〈L〉 and L0 are calculated using the Z1 code. No chain
stretch is observed in the linear viscoelastic region, as expected.

As the flow enters the weakly nonlinear regime, τ−1
d <

.
γ < τ−1

R (or equivalantly 1 < Wi ≤ 38),
the orientation angle drops dramatically to values smaller than 5◦ and plateaus around 1–2◦ at higher
Wi. The PDF of the end-to-end distance begins deviating from the equilibrium Gaussian distribution
by developing a tail at higher values of |R|/|R|max, indicating that a portion of the macromolecules
have become partially extended by the applied flow. Notably, the PDF peak is still approximately
at the same location as the equilibrium distribution, which suggests that the overall conformation
of a significant number of chains has not yet been perturbed. The growth of molecular size and the
deviation from Gaussian behavior can also be inferred from Figure 3b, especially for Wi > 10 where
〈R2〉 and 6〈R2

g〉 begin to diverge. (Note that there is no theory which indicates these two quantities are
equivalent under flow conditions.) Interestingly, the tube network also begins to extend moderately
in in this shear-rate region (Figure 3d). This is an important observation because it contradicts the
common notion of tube-based models that no stretching occurs for

.
γ < τ−1

R . Quantitatively, Figure 3d
indicates that tubes are stretched about 16% at

.
γ ∼ τ−1

R , which is not negligible although just a fraction
of the maximum theoretical tube stretch, λmax = 2.77.
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vs. Wi (b), ensemble average chain orientation angle with respect to the flow direction vs Wi (c), and
tube stretch vs Wi (d).
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The third shear-rate regime of dynamical behavior is the range τ−1
R <

.
γ < τ−1

e (approximately
40 ≤Wi < 800). Within this region, vorticity excursions start playing an important role in the system
properties. Brownian fluctuations caused by the vorticity of the shear field lead to random excursions
of the chain ends outside of the confining tubes; some of these excursions, especially those with
shear-plane projections that possess negative orientation angles relative to the flow direction, induce
rotation and retraction quasi-periodic tumbling cycles of the individual molecules at moderate and
high shear rates similar to those observed in previous work [2,3,8,14,18,22]. A typical cycle begins as a
chain molecule stretches and aligns in the flow direction (see Figure 4c). At this point, due to the flow
vorticity, chain ends fold backward along the spine of the molecule and slide toward the middle of
the chain until the molecule collapses into a compressed configuration. Then the orientation of the
chain flips as the chain ends cross and the molecule unravels until it adopts a stretched conformation
again that concludes a half cycle. At the lower end of this range (Wi = 40 to 100), the cycle is very
irregular, almost chaotic. Here, the macromolecules will reside in the compressed state for a long
period of time (see Figure 4a). Under this condition, the chain ends, which are typically very close to
each other, exhibit a wagging behavior due to Brownian motion, passing each other back and forth
multiple times before the molecule begins to reextend. As a consequence, the orientation angle of the
chain end-to-end vector, θete, oscillates haphazardly between −90◦ and 90◦ as evident in Figure 4a. The
orientation angle of the chain primary axis, θpa, however, does not oscillate as much as θete suggesting
that the body of the molecule does not wag like a solid object. (The primary axis of the molecule is
defined as the eigenvector corresponding to the largest eigenvalue of the molecule gyration tensor.)
Yet, θpa changes rapidly between positive and negative values when the molecule is in a collapsed
and highly compressed state, indicating that the coiled chains wag for some indefinite period of time
before they begin to unravel.

In the uppper portion of the range τ−1
R <

.
γ < τ−1

e (i.e., 100 < Wi < 800), the dynamical
behavior of the macromolecules is much more regular and resembles the tumbling behavior observed
in prior work [2,3,8,14,18,22]. During a typical cycle, the chain end-to-end distance varies dramatically
from high values associated with the stretched configurations to values that are even smaller than
the average equilibrium end-to-end distance. This is manifested in the wide non-Gaussian bimodal
probability distribution function at this flow regime, as displayed in Figure 3a. Specifically, the peak
at low values of |R|/|R|max shifts to the left as Wi increases and occurs at extensions smaller than
the equilibrium peak, indicating the increasing population of the collapsed configurations during the
course of the tumbling cycle. At the same time, the ensemble average molecule size (Figure 3b) and
tube stretch (Figure 3d) increase with Wi in this flow region. Based on theoretical arguments, this is
the region wherein tube stretch becomes significant. As mentioned earlier, Figure 3d shows that tube
stretching begins at lower flow strength than theoretically expected; however, tube stretch in the third
flow region is apparently of a different nature than within the second flow regime. In the third region, λ

scales as λ0.04 while this power-law exponent is 0.03 in the second range, τ−1
d <

.
γ < τ−1

R . This suggests
that the tube stretch is influenced by the tumbling dynamics of the individual macromolecules, and
that it has an influential contribution to the shear stress and constitutes a major relaxation mechanism
in this intermediate flow strength regime. Note that the time-average orientation angle of the molecules
is very close to its plateau value in the third region and does not change significantly, indicating that
the chain end-to-end vectors are almost completely aligned in the flow direction on the molecular
length scale, although not necessarily on the tube segment length scale.
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Figure 4. Normalized end-to-end vector and orientation angle vs. time for a random chain at Wi = 58
(a) and Wi = 1170 (b). A time progression of configurations of a random chain at Wi = 117 is depicted
in panel (c). θete is the angle between the chain end-to-end vector and the flow direction (x) and θpa is
the angle between the primary axis of the chain and the flow direction.

The fourth and final flow regime is the strong flow region where
.
γ > τ−1

e , approximately
Wi > 800. Although the molecules continue to stretch in this region (Figure 3b,d), the molecular
size and the tube stretch ultimately attain plateau values, which are significantly smaller than their
corresponding maximum theoretical values. The tube stretch profile has an inflection point around
.
γ ∼ τ−1

e where the curvature changes from positive to negative. This signals a new regime where the
tube stretch becomes saturated as chain rotation becomes the more dominant dynamic mechanism.
The shape of the end-to-end distance distribution curve is also very different in this high Wi region
compared to that at lower Wi regimes. Specifically, the distributions become relatively flat with a
characteristic rotational peak at low |R|/|Rmax| and a stretch peak that emerges at very high Wi. (See
Figure 3a. The stretch peaks can also be easily recognized in C400H802 and C700H1402 systems [18].)
These flat distributions, which become wider as Wi increases, are attributed to the more regular
molecular rotation cycles at very high shear rates, as discussed by Nafar Sefiddashti, et al. [3]. The
skewed distributions within the intermediate Wi regime suggest that during a rotation cycle individual
molecules spend on average a longer time at collapsed (or less stretched) configurations than they do
at relatively stretched configurations [18], or that some of the chains have not yet stretched enough
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to begin their rotation cycles (see Figure 4a). Both cases lead to unbalanced lifetimes for various
configurations, and consequently irregular rotation cycles. Within the high Wi regime, on the other
hand, molecules undergo more regular periodic cycles. Hence various configurations between a highly
stretched chain and a tightly packed coil have fairly similar lifetimes or probabilities (see Figure 4b),
which manifest in the flat probability distribution of the end-to-end distance [18].

Figure 5 displays the entanglement network properties of the C1000H2002 melt at various
Wi. The ensemble average entanglement density and the probability distribution function for the
entanglement density are displayed in Figure 5a,c. Figure 5b shows the tube diameter, determined as
the step length of the primitive path a = 〈L〉/(〈Zk〉/2) [2,3]. The probability distribution function of
the primitive path contour length is also shown in Figure 5d for various values of Wi. Note that the
primitive path contour length, 〈L〉, is essentially commensurate with the tube stretch, λ (see Figure 3d),
which is the normalized primitive path contour length. These plots show that, within the linear
viscoelastic regime, the entanglement network is practically unperturbed as compared to quiescent
conditions. Specifically, the entanglement density and tube diameter do not change as the flow strength
increases. The probability distribution function for the entanglement density, P(Zk), follows a Poisson
distribution and is independent of Wi in this regime. P

(
Lpp

)
exhibits a similar behavior, except that it

follows a Gaussian distribution. As Wi increases and shear rate enters into the nonlinear viscoelastic
regime, the tube network begins to lose entanglements. Notably, there is no sharp boundary between
the second (1 < Wi ≤ 38) and the third 58 ≤Wi < 800) flow regimes, as discussed for the structural
properties of the system. Rather, there is an initial stage of convective constraint release wherein the
chains disentangle at a moderate rate in the region 1 < Wi < 500 such that Zk ∼Wi−0.07. Accordingly,
the tube diameter increases moderately in this region. The probability distribution function for the
entanglement density, P(Zk), shifts to the left with increasing Wi as the chains disentangle. The shape
of the distribution, however, remains approximately similar to that of the linear viscoelastic regime and
still follows a Poisson distribution. On the other hand, P

(
Lpp

)
shifts to the right and becomes wider

(i.e., with a higher standard deviation); nevertheless, the distribution continues to follow a Gaussian
distribution. These results suggest that, although by the end of this flow regime the system loses about
30% of its entanglements, the nature of the entanglement network does not change radically. Note that
even at the highest shear rate within this regime, none of the chains has lost all of its entanglements.
For instance, the curve for Wi = 117 in Figure 5c shows that all molecules possess 5 or more kinks.

At higher flow strength, (i.e., Wi ≥ 585), the entanglement density begins to drop dramatically as
Wi increases with a power-law exponent of 〈Zk〉−0.35. The tube diameter also increases substantially
in this region, such that at Wi = 2340 the tube diameter grows almost as large as the molecular radius
of gyration. This means that a molecule could effectively diffuse as far as its size without feeling
the confining tube. This interpretation essentially questions the existence of the tube concept and of
an entangled system. These subtleties can be understood by examining the probability distribution
of the entanglement density. Figure 5c shows that the distributions begin to deviate somewhat
from Poisson distributions. More importantly, these distributions suggest that, unlike before, in
this flow region some of the molecules have lost all their entanglements and have become virtually
unentangled. The distribution of the primitive path contour length also deviates considerably from the
Gaussian distribution in this region. All of these observations suggest that the entanglement network is
effectively destroyed due to the strong flow. This also might explain why the system behavior at such
high shear rates resembles that of a dilute solution, as has been argued for shorter chain C400H802 and
C700H1402 liquids [3,18]. In this regime, the tumbling cycles are comparatively more regular, similar
to those of dilute solutions. Tube stretch approaches its plateau value as macromolecular tumbling
becomes the dominant dynamic mechanism.
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An important characteristic of the entanglement network is the tube orientation tensor, S, that is
one of the principal variables of many tube-based constitutive models. Figure 6 displays the nonzero
components of S as functions of Wi at steady state obtained from the NEMD data for the C1000H2002

melt. The average orientation tensor of the tube segments in this figure is defined as S = 〈utut〉, where
ut is the unit end-to-end vector of an entanglement strand: knowing the positions of the entanglements
(kinks) along the chain from the Z1 code, the end-to-end vectors of the entanglement strands can be
easily identified and the appropriate ensemble averages of the components of the orientation tensor
can then be readily calculated from the NEMD data. The component, Sxy, begins to increase at very
low Wi within the linear viscoelastic regime. This segmental orientation leads to an increase in the
shear stress in this region, in agreement with theory. Sxy passes through a maximum in the range
3 < Wi < 12, which is somewhat higher than the theoretical prediction of Wi ∼ 1. At higher shear
rates, Sxy decreases almost monotonically. Such behavior can lead to excessive shear thinning, as
observed in vesrsions of the tube model that do not incorporate CCR, especially within the shear rate
range τ−1

d <
.
γ < τ−1

R or the plateau region where the tube stretch is insignificant. In fact, models
that incorporate CCR predict a nearly constant Sxy, and consequently constant shear stress, in the
plateau region in agreement with typical experiments. Hence, the decrease in Sxy observed in the
NEMD data calls into question the theoretical mechanism of CCR in some tube-based models like
MLD. The diagonal components of S remain nearly constant in the linear viscoelastic regime and
then diverge from their equilibrium value (~0.33) as Wi increases. At very high shear rates, i.e.,
.
γ > τ−1

e , the rate of change in these components increases significantly. This is the shear rate range
wherein the entanglement network begins to disintegrate. Generally, the features of these plots are
qualitatively similar to those of λ and 〈Zk〉 (see Figures 3d and 5a), which could be indicative of an
inherent connection between λ and 〈Zk〉with the normal components of the tube segmental orientation
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tensor. This is specifically important from a modeling perspective as it suggests that the evolution
equations for the tube stretch and entanglement density should be expressed in terms of the diagonal
components of S rather than the shear component.
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Figure 6. The Sxy (a) and diagonal (b) components of the tube segmental orientation tensor S, as
functions of Wi at steady state, as obtained from the NEMD data for the C1000H2002 melt.

Figure 7 displays the important characteristic timescales of the C1000H2002 liquid as functions
of Wi. These timescales are calculated based on fitting the autocorrelation function data of the
end-to-end vector with the functional form 〈ui(τ)·ui(τ + t)〉 = exp(−t/τd) cos(2πt/τrot). Hence, τd
is the decorrelation time of the end-to-end vector, which is equal to the longest relaxation time (i.e.,
the disengagement time under quiescent conditions and within the linear viscoelastic regime). τrot

quantifies the period of the rotation and retraction cycle of the macromolecules, assuming that the
cycles are quasi-periodic. A characteristic time for the tumbling period can be defined conceptually as
τr = τrot/2π [2], displayed as diamonds in Figure 7.
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Figure 7 indicates that τd does not change significantly within not only the linear viscoelastic
region (Wi ≤ 1) but also in the nonlinear regime for 1 < Wi ≤ 12. At higher shear rates, the longest
relaxation time decreases with a power-law exponent of −0.71 ± 0.06; this is consistent with the
scaling exponents of the C400H802 and C700H1402 liquids at high shear rates [2,3]. Unlike for the
C1000H2002 liquid, the relaxation times of C400H802 and C700H1402 decreased with shear rate at all
Wi > 1, and hence a separate power-law exponent for the τ−1

d <
.
γ < τ−1

e regime was reported in
prior work [2,3,18]. Nevertheless, a separate scaling factor for low Wi looks to be irrelevant here.
This is perhaps caused by the higher entanglement density of the C1000H2002 melt, which possibly
delays any meaningful change in the relaxation time until approximately Wi = 10 when 〈Zk〉 begins
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to decrease—see Figure 5a. τrot also exhibits a power-law behavior that scales as
.
γ
−0.7±0.07 with flow

strength. Although this value is slightly smaller than those of the C400H802 and C700H1402 melts (−0.78
and −0.75 respectively), they are all in reasonable agreement within statistical bounds. The ratio
τrot/τd averages about 7.3 over all Wi ≥ 50, which is reasonably close to 2π, similarly to the prior
cases [2,3]. This suggests that a single timescale, one associated with the period of the molecular
tumbling cycles, is the sole configurational relaxation mechanism of the C1000H2002 chains for

.
γ ≥ τ−1

R .

3.2.2. Rheological Response

Figure 8 displays the steady-state rheological properties of the C1000H2002 liquid as functions of
Wi. As expected, the shear stress scales as

.
γ in the linear viscoelastic regime; however, at higher shear

rates, the system’s response is quite different from typical experimental observations, as evident from
Figure 8a. Specifically, the shear stress passes through a maximum in the shear rate range 3 < Wi < 12
and a subsequent minimum in the range 58 < Wi < 117, in contradiction with the experimentally
observed plateau region where the shear stress remains approximately constant or increases slightly
as shear rate increases, usually within the shear rate ranges τ−1

d <
.
γ < τ−1

R or τ−1
d <

.
γ < τ−1

e .
Considering the uncertainties of the calculations, it appears that the local maximum and minimum in
the shear stress profile occur roughly at about

.
γ ∼ τ−1

d and
.
γ ∼ τ−1

R , respectively, and the shear stress
surpasses the local maximum value at a shear rate of approximately τ−1

e . This possibly implies that the
flow is unstable over a fairly wide range of shear rates. Such behavior is enticingly consistent with the
discussion of Doi and Edwards (see Figure 7.22 of Reference [34]) concerning the DE model predictions
at high shear rates, who argued that the power-law exponent of the shear stress is very sensitive to
the relaxation spectrum of the linear relaxation modulus. They argued that the absolute value of the
exponent becomes smaller (closer to zero) as the relaxation spectrum becomes broader. Therefore,
the shear stress should be approximately independent of the shear rate for polydisperse samples
that are commonly used in experiments (hence the plateau), whereas a maximum in the shear stress
profile could result from a completely monodisperse sample. Nevertheless, even for monodisperse
samples, multiple relaxation processes tend to broaden the relaxation spectrum and weaken the
shear rate dependence of the stress. However, as evident from Figure 7, the number of timescales
becomes effectively unity for

.
γ ≥ τ−1

R . Based on the DE model, σxy ∼
.
γ
−0.5 for τ−1

d � .
γ� τ−1

R and
as

.
γτ−1

R becomes close to unity, the shear stress increases due to tube stretching [34]. This implies
that if the number of entanglements is not large enough (i.e., τd/τR is not high enough), the shear
rate dependence weakens. In Figure 8a, σxy ∼

.
γ
−0.2 for 12 < Wi < 58, which is consistent with

this argument.
The plateau region in the shear stress profile has also been postulated to result from the onset of

the molecular tumbling cycles that begin to manifest in this shear rate regime [2,3]. This hypothesis
led to further investigations which indicated the possibility that shear banding, caused by the
molecular periodicity, was a possible cause of the experimentally observed plateau in the shear
stress profile [36–38]; however, it is unlikely that shear banding occurs in the present simulations
since the p-SLLOD equations of motion impose a homogeneous linear velocity profile throughout the
simulation cell in the NEMD simulations. That being said, however, recent DPD simulations have
demonstrated shear banding in monodisperse polymers in the same range of molecular weight where
the flow curve is non-monotonic [36–39].

For
.
γ > τ−1

e , the shear stress scales as
.
γ

0.3. The power-law exponents for the C400H802 and
C700H1402 melts over the same range of shear rates are approximately −0.5 and −0.4, respectively [2,3],
which suggest a molecular weight dependence for the shear stress at these high shear rates. Figure 8b,c
show the first normal stress coefficient Ψ1 = N1/

.
γ

2, and the second normal stress coefficient Ψ2 =

N2/
.
γ

2, where N1 = σxx − σyy and N2 = σyy − σzz. Both coefficients exhibit strong shear thinning
behavior in the nonlinear regime with power-law exponents of –1.7 and –1.8, in agreement with those
of the C700H1402 melt [2]. The ratio −Ψ2/Ψ1 ranges over 0.04 < −Ψ2/Ψ1 < 0.27 in the nonlinear
regime, again in reasonable agreement with C700H1402 melt [2] and typical experimental values [40].
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Figure 8. Shear stress (a), first and second normal stress coefficients (b), (c), and the ratio of the normal
stress coefficients (d), all as functions of Wi.

3.3. Startup of Shear Flow Properties

3.3.1. Transient Behavior

The time-dependent microstructural and rheological properties of the C1000H2002 melt were
investigated under startup of simple shear flow similarly to those of the C700H1402 liquid presented in
a prior publication [17]. Figure 9 displays the transient shear viscosity, Sxy, λ, and 〈Zk〉 as functions of
time for various Wi obtained from the NEMD simulations. The data for the transient viscosity and
Sxy have been smoothed using a running time average over a number of successive sample times
spanning 0.05–0.1 relaxation time at the corresponding Wi, as represented by the circles in Figure 7.
It should be noted that λ is very sensitive to the box shape when calculated using the Z1 code; since
the box shape continuously changes during the simulation due to the Lagrangian rhomboid periodic
boundary conditions, it is difficult to calculate transient tube stretch using the Z1 code. A solution to
this problem is to calculate the tube stretch only at time steps when the box is rectangular or slightly
(e.g., less than 5%) tilted. The tube stretch profiles displayed in Figure 9 were obtained using this
method. A major disadvantage of this method is that it significantly reduces the resolution of data,
which could lead to the loss of important dynamical features, such as an overshoot or undershoot.
However, unlike tube stretch, the entanglement density is not very sensitive to the simulation box
shape; since the entanglement density has essentially similar dynamics as the primitive path contour
length (and equivalently, the tube stretch—see Figure 9), it can be used to estimate the overshoot and
undershoot times of the tube stretch. Note that an overshoot in tube stretch corresponds an undershoot
in entanglement density, and vice-versa.
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Figure 9. Shear viscosity (blue), the Sxy component of the tube segmental orientation tensor (red), tube
stretch λ (purple), and normalized entanglement density (green) versus time upon startup of shear
flow at Wi = 12 (a), Wi = 58 (b), and Wi = 1170 (c). The dynamics of 〈Zk〉 are similar to those of λ

except that the minimum in 〈Zk〉 corresponds to a maximum in λ. Note that in panel (c) there appear
small gaps in some of the data profiles at long times where simulation data was accidentally deleted.
Since these data points had no bearing on the present discussion, the simulations were not repeated.

The transient first and second normal stress differences are shown in Figure 10 for various
Wi as functions of time. This figure also displays the tube orientation tensor differences Sxx − Syy

corresponding to N1 and Szz− Syy corresponding to−N2 for comparison. Note that the data have been
smoothed using the same method as discussed above. The data are displayed at three Wi numbers,
which were chosen to represent the three distinct nonlinear viscoelastic flow regimes: τ−1

d ≤ .
γ < τ−1

R ,
τ−1

R ≤ .
γ < τ−1

e , and
.
γ ≥ τ−1

e .
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Figure 10. Transient first (left panels) and second (right panels) normal stress differences as well as
their corresponding tube orientation tensor differences as functions of time upon startup of shear flow.
Normal stress differences are normalized with respect to the plateau modulus. Weissenberg numbers
are 12, 58, and 1170 from top to bottom rows, respectively.

It is evident from Figures 9 and 10 that the transient viscosity and normal stresses are in qualitative
agreement with typical experimental data. Specifically, except for N2 at Wi = 12, they all exhibit an
overshoot for Wi ≥ 12 before they attain steady state. Additionally, the overshoot in shear viscosity is
followed by an undershoot at least for Wi ≥ τ−1

R , again in agreement with typical experiments. These
overshoots and undershoots (if any) also occur in the entanglement network variables, as shown in
Figures 9 and 10. These figures make it possible to compare the dynamics of the stress tensor with those
of tube variables (i.e., the tube segmental orientation tensor S, and the tube stretch λ) to investigate
the origins of these phenomena, as discussed in the next section. It is worth mentioning that steady
or transient shear banding might occur in the range τ−1

d ≤ .
γ < τ−1

e . This phenomenon cannot be
investigated here due to the use of p-SLLOD equations of motion, as discussed in Section 3.2.2. As a
consequence, the quantities presented in this section could be affected, assuming shear banding occurs.
However, we do not expect a significant change, especially in ensemble-averaged quantities such as
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the stress tensor and tube variables. Cao and Likhtman [41] compared the startup shear behavior
of entangled melts obtained from NEMD simulations using the SLLOD equations and a Langevin
thermostat with those of boundary-driven DPD simulations. These comparisons suggested that the
ensemble average shear stresses obtained from these two methods were consistent (although not
identical) despite the presence of shear banding at the examined shear rates.

3.3.2. Stress Overshoot and Undershoot

From Figure 9, it appears that the dynamic response of shear viscosity and Sxy are roughly
synchronized over a wide range of Wi. Specifically, the overshoot and undershoot of transient viscosity
(if any) occur approximately at the same time as those of the Sxy component of the tube orientation
tensor. On the contrary, tube stretch and entanglement density respond to the applied flow field
with a notable lag as compared to η+ and Sxy. It is worth noting that the displayed Wi numbers
represent various flow regimes: Wi = 12 lies in WiR < 1 regime where tube stretch is negligible;
Wi = 58 is within the regime where tube stretch is significant, and Wi = 1170 is within the regime
where molecular tumbling is dominant. It should also be noted that this classification is based on
the steady-state responses and that it might not necessarily remain valid in transient situations. For
instance, whereas the tube stretch is minor at WiR < 1, it could exhibit an overshoot in transient
situations. Although the magnitude of the shear viscosity (and stress) is a function of both tube
orientation, Sxy, and stretch, λ, these plots suggest that the dynamics of shear viscosity are mainly
influenced by the tube segment orientation, Sxy, which indicates that the principal origin of stress
overshoot and undershoot is possibly tube segmental orientation. These plots also show that there is
no significant undershoot in λ (or equivalently, an overshoot in 〈Zk〉) at any Wi. This observation, that
also applies to other shear rates (not shown in Figure 9), practically rules out tube stretch as the origin
of the stress undershoot at high shear rates. It is also evident from Figure 10 that the dynamics of N1

and N2 are also in good agreement with their corresponding components of the tube orientation tensor,
i.e., Sxx − Syy and Syy − Szz, respectively, suggesting that the overshoot in normal stresses arises from
the tube segment orientation.

Figure 11 shows the overshoot (panel (a)) and undershoot (panel (b)) times for the transient
viscosity and Sxy component of the tube orientation tensor as functions of Wi. It also displays the
undershoot time for the entanglement density in both panels for comparison. Note that an undershoot
in 〈Zk〉 corresponds to an overshoot in λ, as discussed before. It is evident that the transient viscosity
overshoot and undershoot times effectively overlap with those of Sxy at all Wi < 585. At higher Wi,
although these two curves look to be diverging, the difference between the two times is not significant,
considering the error associated with extracting these small values from the noisy data, as shown in
Figure 9. On the other hand, it is obvious that there is a significant difference between the undershoot
time in 〈Zk〉 and either the overshoot and undershoot times of shear viscosity. These results again
imply that both the stress overshoot and undershoot are originated from similar phenomena in the
tube segmental orientation. This conclusion is in agreement with observations for a C700H1402 melt at
high shear rates [17]. It also agrees with the results of Cao and Likhtman [42] for unentangled and
mildly entangled systems, indicating that the origin of the stress overshoot at low shear rates is the
orientation of the tube network rather than chain stretching. Jeong, et al. [9] also attributed the stress
overshoot to the segmental orientation in a wide range of flow strength for a mildly entangled C400H802

polyethylene melt. However, unlike the current results, they did not observe a clear overshoot in the
primitive path of the contour length (and hence in the tube stretch) even at very strong flow fields. This
may be due to the relatively low entanglement density of the C400H802 molecules used in their NEMD
simulations. Masubuchi et al. [43] also investigated the origin of the stress undershoot at high shear
rates using primitive chain network simulations. They examined segmental orientation, tube stretch,
and the ensemble average squared sine of the chain end-to-end orientation angle (representing the
tumbling motion) and showed that all these variables exhibit undershoots, although not synchronized
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with shear stress. Masubuchi et al. [43] concluded that their results supported the mechanism proposed
by Costanzo et al. [16]
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Figure 11. Overshoot (a) and undershoot (b) times for the transient viscosity, η+, and Sxy component
of the tube orientation tensor, as well as the undershoot time for the entanglement density as a function
of Wi in both panels. Note that the undershoot time in 〈Zk〉 (which corresponds to the overshoot time
in tube stretch) does not coincide with either the overshoot or undershoot time in η+ or Sxy.

Figure 12 displays the shear strain, λ, at the times of overshoot (panel a) and undershoot (panel
b) in the transient viscosity and Sxy component of the tube orientation tensor, as functions of Wi.
Shear strain expresses the theoretical deformation due to the applied flow field, which is calculated
as γ =

.
γt. This figure also shows the strain at the undershoot time for the entanglement density in

both panels for comparison. The agreement between η+ and Sxy curves in the region Wi < 585 is
not surprising, considering the results of Figure 11 and how the strain is calculated. The important
point to notice is that up to very high Wi the overshoot in Sxy occurs at about γ = 2 consistently. This
suggests that regardless of flow strength, the material deforms affinely during the initial 2 strain units
until Sxy attains a maximum. However, it does not look to be the case at later times that Sxy passes
beyond its minimum, especially at intermediate and high Wi as evident from Figure 12b. It is also
worth noting that the strain at the maximum of viscosity is roughly 2 at low and intermediate Wi, in
agreement with the prediction of the Doi-Edwards model [44], and shifts to higher values for Wi ≥ 585.
The experimental value of strain at stress overshoot is also about 2 at low shear rates; however, it shifts
to higher strains, as the shear rate exceeds τ−1

R [45].
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Figure 12. Shear strain, γ, at the times of overshoot (a) and undershoot (b) in the transient viscosity,
η+, and Sxy component of the tube orientation tensor, as well as strain at the undershoot time for the
entanglement density as a function of Wi in both panels. Note that the undershoot time in 〈Zk〉 does
not coincide with either the overshoot or undershoot strain in η+ or Sxy. The strain overshoots for η+

and 〈Zk〉 scale as Wi0.17 and Wi0.33 respectively, for Wi > 58.

The discussion concerning the overshoot and undershoot dynamics in the last few paragraphs
should not lead to misinterpretation about the role of tube stretch in the stress overshoot and
undershoot. Figure 13a shows the magnitude of the overshoots in the normalized shear stress and tube
orientation Sos

xy, versus Wi. The shear stress is normalized with the plateau modulus, G0
N . Figure 13

also displays the magnitude of the tube stretch at the time of stress overshoot. Note that this quantity
is different from the magnitude of the tube stretch overshoot. It is evident from this figure that for
Wi < 585 the shear stress closely mimics Sos

xy, while the tube stretch is fairly close to the equilibrium
value of unity, or only mildly greater. This suggests that in this region tube stretch has a minor or
negligible contribution to the stress overshoot, σos

xy. At higher shear rates, whereas Sos
xy looks to become

saturated and remain roughly constant, σos
xy increases quickly as Wi increases. The tube stretch in this

region also begins to increase and diverge from its equilibrium value. This indicates that although
the dynamics of the stress overshoot are essentially controlled by the tube segmental orientation (as
discussed in the preceding paragraph), its magnitude is significantly influenced by the tube stretch at
high flow strength. A similar argument can be made for the stress undershoot—see Figure 13b. This
conclusion can be rationalized by hypothesizing that the tube stretch is itself originated from the tube
orientation or another dynamic variable. It is however immediately evident from Figure 9 that the Sxy

component could not be that variable, considering the significant differences between the features of
Sxy and λ plots in this figure.
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Figure 13. Magnitudes of the normalized shear stress, σxy/G0
N , the Sxy component of the tube

orientation tensor, and the tube stretch λ at the stress overshoot (a) and undershoot (b) times versus
Wi. The stress overshoot scales as Wi0.3 in the range 3.5 ≤Wi ≤ 2340, and the tube stretch at the stress
overshoot time scales as Wi0.1 for Wi > 58.

Figure 14 shows the undershoot time for the entanglement density as well as the overshoot time
for the ensemble average squared end-to-end distance, 〈R2〉, and the normal (diagonal) components,
Sxx, Syy, and Szz, of the tube orientation tensor. Overall, this figure shows that the overshoot times
of these variables roughly overlap, within a wide range of Wi including mildly to strongly nonlinear
viscoelastic flow regimes. Specifically, there is a good agreement between the undershoot time of 〈Zk〉
and that of 〈R2〉. It should be emphasized that 〈R2〉 is essentially the trace of the ensemble average chain
conformation tensor and represents the overall average extensional state of the molecules. Figure 14
implies that the entanglement network, and hence tube stretch dynamics, are mainly influenced by the
diagonal components of the orientation tensor or by the overall extensional properties of the molecules
rather than the shear component.
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Figure 14. Comparison of the undershoot time for the entanglement density with the overshoot times
for the ensemble average squared end-to-end distance, 〈R2〉, and the normal (diagonal) components,
Sxx, Syy, and Szz, of the tube orientation tensor.

4. Conclusions

Transient and steady-state dynamic responses of an entangled C1000H2002 polyethylene melt were
examined via virtual experimentation using NEMD simulations. Under quiescent conditions, reptation
theory could explain equilibrium properties fairly well. Under steady shear flow conditions, four
flow regimes were recognized in agreement with prior results for moderately and mildly entangled
C700H1402 and C400H802 liquids [2,3]. The first regime was the linear viscoelastic regime (

.
γ < τ−1

d )
where most of the structural and topological properties of the system remain unperturbed compared
to the quiescent conditions. Orientation effects dominated the rheological response in this flow regime,
although they are quite weak. In the second regime (τ−1

d <
.
γ < τ−1

R ), the molecules began to align
with the flow direction and a significant degree of chain orientation was observed as Wi increased.
Additionally, the tube segments began to stretch mildly and chain molecules partially unraveled
and disentagled as flow strength increased. However, the dominant relaxation mechanism in this
region was the orientation of the tube segments. In the third regime (τ−1

R <
.
γ < τ−1

e ), while on
average the chains were fully aligned with the flow direction, the molecular disentangling continued
and tube stretching dominated the rheological response. Additionally, the rotation of molecules
became a significant source of the overall system dynamics. In the fourth regime (

.
γ > τ−1

e ), the chain
stretching decelerated, and tube stretch approached a plateau value. At the same time, flow-induced
disentanglement continued and the entanglement network began to deteriorate such that some
molecules became completely devoid of entanglements. The molecular tumbling, on the other hand,
gradually became the dominant relaxation mechanism, and molecular configurations followed more
regular cycles when compared to similar behavior at lower flow strength.

The comparison of transient shear viscosity, η+, with the dynamic responses of key variables of
the tube model, including the tube segmental orientation, S, and tube stretch, λ, revealed that the
stress overshoot and undershoot in steady shear flow of entangled liquids were essentially originated
and dynamically controlled by the Sxy component of the tube orientation tensor, rather than the tube
stretch λ, over a wide range of flow strengths (including shear rates faster than τ−1

R ). Nevertheless, the
magnitude of the stress is significantly affected by λ at high shear rates.
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