Supplementary material

S.1. Equations for models development

The strain invariants can be expressed in terms of the stretch ratios $\lambda_{1}, \lambda_{2}, \lambda_{3}$ (eq. 1, 2 and 3) [1]:
$I_{1}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}$
$I_{2}=\lambda_{1}^{2} \cdot \lambda_{2}^{2}+\lambda_{2}^{2} \cdot \lambda_{3}^{2}+\lambda_{3}^{2} \cdot \lambda_{1}^{2}$
$I_{3}=\lambda_{1}^{2} \cdot \lambda_{2}^{2} \cdot \lambda_{3}^{2}$
In our case, despite the fact that the CA/GO material is porous, as a first approximation, both polymeric mixtures were considered as incompressible; therefore, I_{3} can be calculated as [1]:
$I_{3}=\lambda_{1}^{2} \cdot \lambda_{2}^{2} \cdot \lambda_{3}^{2}=1$
For uniaxial mechanical tests, it is possible to define the different stretch ratios (λ_{1}, λ_{2}, λ_{3}) in terms of the parallel stretch $\lambda[1]$.

For a tensile test (eq. 5, 6 and 7) the main stretch is λ_{1} (x axis):
$\lambda_{1}=\lambda$
$\lambda_{2}=\lambda_{3}$
$\lambda_{2}=\lambda_{3}=\lambda^{1 / 2}$
Whereas, for a compression tests (eq. 8,9 and 10) the main stretch is λ_{2} (y axis):
$\lambda_{2}=\lambda$
$\lambda_{1}=\lambda_{3}$
$\lambda_{1}=\lambda_{3}=\lambda^{1 / 2}$

S.2. Equation for determining the average absolute relative deviation

$$
\begin{equation*}
\operatorname{AARD}(\%)=\frac{100}{n} \cdot \sum \frac{\sigma_{E}^{\text {calculated }}-\sigma_{E}^{\text {experimental }}}{\sigma_{E}^{\text {experimental }}} \tag{11}
\end{equation*}
$$

1. Treloar, L.R.G. The elasticity and related properties of rubbers. Rep. Prog. Phys. 1973, 36, 755-826.
