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Abstract: Dynamical properties of branched polymer melts are determined by the polymer molecular
weights and architectures containing junction points. Relaxation of entangled symmetric star
polymers proceeds via arm-retraction and constraint release (CR). In this work, we investigate
arm-retraction dynamics in the framework of a single-chain slip-spring model without CR effect
where entanglements are treated as binary contacts, conveniently modeled as virtual “slip-links”,
each involving two neighboring strands. The model systems are analogous to isolated star polymers
confined in a permanent network or a melt of very long linear polymers. We find that the distributions
of the effective primitive path lengths are Gaussian, from which the entanglement molecular weight
Ne, a key tube theory parameter, can be extracted. The procured Ne value is in good agreement with
that obtained from mapping the middle monomer mean-square displacements of entangled linear
chains in slip-spring model to the tube model prediction. Furthermore, the mean first-passage (FP)
times of destruction of original tube segments by the retracting arm end are collected in simulations
and examined quantitatively using a theory recently developed in our group for describing FP
problems of one-dimensional Rouse chains with improbable extensions. The asymptotic values of Ne

as obtained from the static (primitive path length) and dynamical (FP time) analysis are consistent
with each other. Additionally, we manage to determine the tube survival function of star arms µ(t),
or equivalently arm end-to-end vector relaxation function φ(t), through the mean FP time spectrum
τ(s) of the tube segments after careful consideration of the inner-most entanglements, which shows
reasonably good agreement with experimental data on dielectric relaxation.

Keywords: entangled polymers; slip-spring model; slip-link; tube theory; arm retraction dynamics;
first passage time; primitive path; relaxation correlation function

1. Introduction

Dynamics of entangled polymer melts have been predominantly described by theories based
on the tube model. de Gennes [1], Doi and Edwards [2] introduced the concept of confining tube to
account for the topological constraints on the motion of a target chain arising from the uncrossability
of surrounding chains in concentrated polymer solutions and melts. Original tube theories developed
for describing stress relaxation of entangled linear chain systems following a step strain focus on three
main relaxation mechanisms, namely contour length fluctuation (CLF), constraint release (CR) and
reptation, by which a chain escapes from its original confining tube and forgets about the anisotropic
conformation induced by the step strain to release the stored stress. Tube-based theories have provided
reasonably good predictions on linear and nonlinear viscoelastic behaviors of monodisperse linear
polymers with high molecular weights [3–8], with the entanglement molecular weight Ne and the
Rouse relaxation time τe of an entanglement strand as input parameters.
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Relaxation of entangled branched polymers undergoes a hierarchical way, starting from the
retraction of the outermost branch arms and proceeding to inner layers until the cores of the molecules.
For the simplest case of symmetric star polymers in a fixed network, the pioneering work of Pearson
and Helfand [9] treated their relaxation process as an one-dimensional (1D) arm retraction problem.
The characteristic relaxation time or first-passage (FP) time of a specific tube segment is determined by
the time when the arm free end reaches it for the first time. For simplification, the retracting arm was
modeled as one single particle which carries the friction experienced by the entire arm and fluctuates
under an entropic potential U(s) = 3N

2Ne
s2, where N is the number of beads in the arm and s is the

fractional retraction distance along the primitive path (PP). The mean FP time τ(s) grows exponentially
with s as τ(s) = τ0 exp[U(s)] where τ0 is related to the inverse “attempt frequency”. For concentrated
solutions and melts of star polymers, the predictions of this theory showed large discrepancy from
experimental measurements due to the neglect of CR effects. Ball and McLeish [10] treated the CR
effects in a self-consistent way by assuming the relaxed arm segments as a solvent for the unrelaxed
materials, which is generally termed as “dynamic tube dilation” (DTD). Later, Milner and McLeish [11]
improved the theory for predicting mean FP time of arm retraction by solving the Kramers’ problem
of one bead linked to the origin through a harmonic spring. After combining with the contribution of
early time fluctuations of the arm free end, the theory predicts the stress loss modulus G′′ of symmetric
star polymer melts in good agreement with experiments [12]. However, the Milner–McLeish theory
encountered difficulties in quantitatively predicting the dielectric or arm end-to-end vector relaxation
functions of symmetric stars [12] and in describing the rheological behaviors of asymmetric stars with
different short arm lengths by using a single set of model parameters [13]. Such inadequacies inspire
further understanding of relaxation mechanisms in star polymer melts as well as examining the DTD
picture during the last decade.

Recently, we demonstrated that the Pearson–Helfand theory and subsequently the
Milner–McLeish theory without constraint release oversimplified the arm retraction problem by
only considering the slowest relaxation mode of the arms [14]. Instead, the entangled arms should be
represented by 1D Rouse chains moving in the confining tubes because the fast relaxation modes play
an important role in the tube segment destruction. The arm retraction dynamics can be considered as a
multi-dimensional Kramers’ problem in the normal space [15]. The position of the arm free end in real
space is transformed to a hyperplane in the normal space such that the original FP problem turns to a
FP problem of a fluctuating particle reaching an absorbing hyperplane in multi-dimensional space
under certain potential landscape. The dynamics is projected onto the most probable trajectory between
the origin and the absorbing hyperplane, termed as “minimal action path” (MAP). The preceding
mean FP time τ(s) can be derived based on the conventional Kramers’ solution along the MAP,

τ(s) ∼ 1
s3 exp

(3Zs2

2

)
,

where Z = N/Ne is the number of entanglements per arm. Calculations using this so-called large
deviation theory show that the Milner–McLeish theory without CR overestimates the FP time by a
factor of 10 or more.

For examining the assumptions made in different theoretical models and validating their
predictions, molecular dynamics (MD) simulations based on bead-spring models have been widely
accepted as one of the most suitable candidates because they allow the direct visualization of the
conformations and trajectories of individual polymers as well as their topological interactions with
neighboring chains, which are essential for understanding the microscopic relaxation mechanisms
underlying entanglement dynamics [16–31]. However, the high demand for computational power has
limited MD simulations to systems with relatively low polymer molecular weights and smaller system
sizes in comparison with real experimental setups. The intrinsically slow relaxation of entangled
branched polymers, such as star, H-, comb and Cayley-tree polymers, even further compresses the
parameter space that MD simulations are able to explore confidently. Therefore, more coarse-grained
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(CG) simulation models, such as the slip-spring and slip-link models [32–41], have been developed
to bridge the gap between tube theories and MD simulations. One essential hypothesis made in these
models is the binary contact picture between entangled polymers. This picture has been qualitatively
validated by analyzing the persistent close-contacts between pairs of neighboring polymer strands in
both linear and star polymer melts obtained from MD simulations based on the standard bead-spring
model [31]. Under this picture, Ne(φ) in concentrated polymer solutions appears to scale linearly with
1/φ where φ is the polymer volume fraction [42], which is also supported by topological analysis of ring
polymer melts in mesoscopic MD simulations [43] and entanglement analysis of Polyethylene networks
and melts in atomistic MD simulations [44]. We will thus employ the single-chain slip-spring model
originally developed by Likhtman [21,24,31,32,45] to examine the theoretical models for describing
the entanglement dynamics of star polymers [9–11,14]. The main focus of the current work will be
the dynamics of symmetric stars in a permanent network, aiming at evaluating the predictions of the
Pearson–Helfand theory [9] and the large deviation theory [14] and accordingly extracting the important
tube theory parameters, including Ne. This study is carried out by taking advantage of the slip-spring
model which can switch on and off constraint release without affecting other relaxation mechanisms.

Zhu et al. recently presented an efficient simulation algorithm by combining the single-chain
slip-spring model with the forward flux sampling method for studying arm retraction dynamics of
strongly entangled symmetric stars [46]. In the absence of CR effects, the arm terminal relaxation times
τd and the dielectric and stress relaxation functions are reported for star polymers with arm lengths
up to 16 entanglements, which are generally inaccessible to direct simulation methods. In that work,
it was pointed out that, in the systems without CR, the arm terminal relaxation times and the Ne values
obtained by fitting the simulation data to theoretical models may have some quantitative sensitivity to
the discrete destruction of tube segments in the slip-spring model, especially in relation to the release
of the innermost slip-link or tube segment. Considering that this is a common problem for all discrete
models, we will propose a numerical solution to this issue.

In experiments, dynamics of star polymers in nearly non-CR environment have been studied by
Matsumiya et al. using star-branched polyisoprene (PI) probes diluted in a matrix of much longer linear
PI chains [47]. The relaxation of the star probes was shown to be retarded and broadened due to the
quenching of constraint release effects, as made evident by the coincidence of the frequency dependence
of their dielectric and viscoelastic losses. Quantitative analysis of the retardation magnitude of the
probes within the context of the tube model indicated that the conventional DTD picture [10,11] is not
sufficient to explain the relation between the viscoelastic relaxation and dielectrically evaluated survival
fraction of the dilated tube of PI stars in monodisperse bulk. A different mechanism was suggested
where arm retraction of star polymers in the bulk proceeds along the longitudinally partially dilated
tube that wriggles in the laterally partially dilated tube. We show in this work that the single-chain
slip-spring model without CR can produce simulation results on the dielectric losses of star polymers
in reasonably good agreement with experimental data on the probe PI stars [47]. Its predictions on the
arm retraction dynamics in the absence of CR can thus be compared with simulation results obtained
from the same slip-spring model but for monodisperse melts [31] as well as those from multichain
slip-spring/slip-link model [48,49] and more detailed molecular dynamics [31,50–52] simulations to
provide microscopic insights into the proposed constraint release mechanisms.

The rest of this paper is organized as follows. First, the details of the single-chain slip-spring model
are summarized in Section 2. In Section 3, we will construct the primitive paths of the confining tubes
of star arms in two different ways. In Section 4, the tube step length a and the entanglement molecular
weight Ne will be determined by probing static properties of the primitive paths. The obtained Ne

values based on different constructions of the primitive paths are found to be in very good agreement
with each other. Furthermore, they are also consistent with that estimated by mapping the slip-spring
model simulation results on the middle monomer mean-square displacements of linear chains to tube
theory prediction. In Section 5, we will introduce an efficient and convenient algorithm to measure
the mean FP time τ(s) of tube segment destruction on the fly. Our results suggest that in the systems
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without CR the FP times τ(s) of tube segment destruction do have exponential distributions close to
the branch points, just as predicted by earlier tube theories. A reasonable Ne value can be determined
by comparing the τ(s) results with predictions of the large deviation theory [14]. In the end, the tube
survival function µ(t), or equivalently the stress relaxation function in the current study, will be
recovered from τ(s) and shown to have very good agreement with direct measurement of the arm
end-to-end relaxation function φ(t). A conclusion section follows.

2. Slip-Spring Model

In the single-chain slip-spring model we used, the star arms are represented by Rouse chains in
three-dimensional space, each consisting of N + 1 beads linked by N harmonic springs [21,24,31,32,45].
The average spring bond length b3D, the friction coefficient of each bead ξ3D, the temperature kBT and
the slip-spring unit time scale are all set to unity. The subscript 3D used here is to distinguish from the
one-dimensional Rouse model parameters introduced later. The confinement due to entanglements
are modeled in a discrete manner by a set of virtual springs, each having one end connected to the
Rouse chain by a slip-link, while the other end (anchor point) fixed in space [32,45]. This approach
effectively treats entanglements as binary contacts between two arms such that each slip-link is paired
with another slip-link sitting on an arm from a different star polymer in the system.

Apart from the standard parameters of the Rouse model [2], there are two other adjustable
parameters related to entanglements, namely the average number of monomers in between two
neighboring slip-links, Nss

e , and the average number of monomers per virtual spring Nss
s . It is

important to note that Nss
e is not necessarily equal to the entanglement length Ne as defined in the

tube theory. The values of Nss
e and Nss

s can be adjusted for controlling the intensity of entanglements.
The trajectories of the Rouse monomers are determined by the Langevin equations of motion [2]. In the
original slip-spring model [32,53], the slip-links are assumed to travel continuously along the straight
lines between adjacent monomers and so can sit any position on the chain. In a later version of the
model [31,46] as also used in the current work, the slip-links hop discretely between neighboring
monomers with acceptance rate controlled by a Metropolis Monte Carlo scheme. On average, one
Monte Carlo hopping motion is attempted per slip-link per time step. The long time bebavior of the
simulation system is not sensitive to the details of the slip-link hopping. Recently, Shivokhin et al.
found that the slip-links can make non-negligible contributions to the effective friction experienced
by the Rouse chain when moving along the tube because the virtual springs effectively restrict
the excursion volumes of the slip-links and so reduce their successful rate to hop onto adjacent
monomers [54]. Thus, an effective monomeric friction coefficient ξe f f should be used when mapping
the simulation results of slip-spring model to experimental data. Such effect will not affect the
discussion in the current study, since all data analysis and comparison are carried out within the
same slip-spring model framework. The slip-spring model parameters are chosen to be Nss

e = 4 and
Nss

s = 0.5 for consistence with previous publications [24,53,55,56].
Each arm is capped at the branch point such that the slip-links cannot slide through to other arms

of the same star. The branch points are fixed in space instead of fluctuating around for the convenience
of analyzing the slip-link motion along the arms. It has been shown by Masubuchi et al. in primitive
chain network simulations that for asymmetric star polymers the simulations with branch points
fixed in space predicted much slower stress relaxation than those allowing them to fluctuate [48].
A recent multichain slip-spring simulation study of Masubuchi also implies that fluctuations around
the branch points may play a significant role in the stress relaxation of weakly entangled asymmetric
stars or H-polymers [49]. For symmetric stars, the effect of branch point fluctuations is less significant
because these branch points are essentially trapped in entanglement cages [49]. Our simulation work on
melts of monodisperse symmetric star polymers has demonstrated that, even though the single-chain
slip-spring model with fixed branched points predicted slower dynamics than MD simulations based on
bead-spring model, the stress relaxation data obtained using the two different simulation methods show
good qualitative agreement [31]. The branch point fluctuation effect can be further reduced in the non-CR
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systems due to the quenching of constraint release. As will be seen later in Section 6, our slip-spring
simulation results on dielectric loss of symmetric stars agree reasonably well with experimental data
obtained from star probes blended in long chain matrix. Therefore, at least for symmetric stars with arm
lengths in the range we studied (4–8 entanglements), allowing the branch points to fluctuate will not
change the slip-spring model predictions qualitatively from those obtained with fixed branch points.
Some quantitative differences are however to be expected, especially in the terminal regime where
a broader distribution of the innermost primitive path segments can be resulted from branch point
fluctuations, which, in turn, can change the terminal relaxation times slightly. However, this will not
alter the validity of the discussions and main conclusions drawn in this work.

Furthermore, the slip-links are not allowed to cross each other or sit on the same monomer.
This assumption effectively introduces excluded volume interactions between the slip-links, which is
supported by the low swapping rate between neighboring entanglements as found in the persistent
close-contact analysis in our recent MD simulation study of star polymer melts [31]. We noticed that,
in some of the recently developed multi-chain slip-spring models [36–39], the slip-links are allowed to
cross over each other. There are additional short-range repulsions among all Rouse monomers have
been introduced for maintaining homogeneous distributions of slip-links in space. In our single-chain
slip-spring model, the probability distributions of the slip-links along the star arms have been shown to
follow exactly those expected for one-dimensional real gas in equilibrium [46,57]. The excluded volume
effects between slip-links is a key mechanism causing CR-induced drifting behaviors of entanglements
towards the arm free ends [31].

During either creation or destruction of a slip-link (as our simulations are at time-reversible
equilibrium), at least one arm free end would be involved. In the systems with constraint release, if a
slip-link reaches the free end of the arm, it sits on and is then deleted from the system, its associated
partner on another arm will also be deleted regardless of its location. At the same time, a new pair
of coupled slip-links will be added to the system in the manner that one goes to the free end of
a randomly chosen arm and the other is attached to a monomer of any other arm with an equal
probability. The total number of slip-links is thus kept constant, which is reasonable for a system
with large number of molecules at equilibrium. Since we will only concentrate on the arm-retraction
mechanism in the current work, the CR mechanism is switched off by decoupling the association
between the slip-links. The creation and destruction of slip-links can only take place at the free ends
of the star arms. The system studied here is closely analogous to that addressed in Pearson–Helfand
theory [9], where isolated star polymers are confined in a permanent network and so each entanglement
is constructed by an arm strand and a network strand. Under such framework, the release of any
entanglement can only be induced by arm retraction.

For each system we studied, an ensemble of hundreds of independently relaxing symmetric
stars was simulated. The total number of slip-links in the system was determined by the number
density 1/Nss

e and kept constant throughout the simulation run. The initial configurations of the star
arms were created by random walks with average step size b3D = 1. The slip-links were randomly
allocated on monomers of different arms. The total simulation time highly depends on the arm length
N because the terminal relaxation time τd of the star polymers grows exponentially with increasing
N in the absence of CR. For the systems with N < 40, the simulations ran for at least 50τd. For
example, the terminal relaxation time of the stars with N = 36 was found to be τd ≈ 106 from the arm
end-to-end vector correlation function. The simulation of the corresponding system was run for a
total time duration of 108. The system was first equilibrated for a time interval of τd and the data were
collected for analysis thereafter. For the systems with the longest arm length (N = 42) we studied,
the data were collected only over approximately one τd due to high computational cost. In all of the
following analyses, the average locations of the slip-links refer to their mean positions averaged over
their entire lifetimes.

The physical quantity in the limelight of this work is the mean first-passage time τ(s) of “slip-links”
as a function of the fractional distance s away from the mean equilibrium position of the arm free ends,
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which is closely associated with the tube survival function µ(t). The development and validation of
any quantitative theories for describing the dynamics of entangled branched polymers will rely on the
availability of exact τ(s) data. For example, τ(s) can be used to test the validity of the arm retraction
potential proposed in different theoretical models. It is important to note that, in the star polymer
system without CR, the obtained tube survival function µ(t) represents the stress relaxation function
G(t) of the system.

3. Constructing Primitive Paths in Slip-Spring Model

The confining tube as used in tube theories is a mean-field concept describing a tube-like region
where the lateral motion of an entangled polymer is restricted to [2]. A clear microscopic definition of
this region remains unsettled in real polymer systems, which causes difficulties for directly verifying
the assumptions and predictions made in existing tube theories. Instead, it is more convenient to
use the primitive path which represents the minima of the effective constraining potentials acting
on the monomers of the target polymer. Two complementary views of the PP have been fruitfully
investigated in theoretical calculations. In one view, the primitive path of a chain is treated as a
continuous curvilinear path going through the center of the confining tube, which is a random
walk with persistence length of the order of tube diameter a. In molecular dynamics simulations,
such types of PPs have been constructed using the mean path (MP) [27] and isoconfigurational
ensemble (ICE) [58] methods, which have no strong perturbation to the local structures of the polymer
chains. In the second view, the primitive path can be constructed as a sequence of straight lines
connecting consecutive entanglement points along a given chain. This idea has been implemented
in the primitive path analysis (PPA) of MD trajectories of entangled polymer melts by shrinking the
chains via total energy minimization or length minimization algorithms but not allowing them to cross
each other. The disadvantage of PPA methods is that the chain-shrinking process destroys the local
structures of the melts from their equilibrium configurations [19,59–62].

The nature of the single-chain slip-spring model where the entanglements are introduced as
discrete slip-springs or slip-links makes it remarkably simple to adopt the discrete picture of the
primitive path. Different from PPA methods, there is no perturbation on the equilibrium structures of
the system. The sketch of a single star arm at equilibrium is shown in Figure 1, in which the square
and black disk symbols represent the branch point and arm free end, respectively. The slip-links
(grey spheres) located on individual monomers of the arm are connected to anchor points fixed in
space(small red spheres) through the virtual harmonic springs. The two alternative descriptions of the
primitive path, namely by connecting either the successive anchor points or the average locations of
successive slip-links during their lifetimes, are shown in Figure 1 by the red dotted and black dashed
lines, respectively. Since we are also interested in recovering the arm end-to-end vector relaxation
function φ(t), the segment between the arm free end and the outermost slip-link or anchor point
is also included as part of the primitive path. The so-constructed PPs can be conveniently used for
determining the tube model parameters through the static and dynamical properties of star polymers
obtained in the slip-spring model simulations.

Figure 1. Sketch of a star arm simulated in the slip-spring model and the primitive paths constructed
by connecting the successive anchor points (red dotted line) and the average locations of successive
slip-links during their lifetimes (black dashed line), respectively.
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4. Static Properties: Primitive Path Analysis

We start with analyzing the distribution of the PP lengths of the entangled star arms in equilibrium
state. In the discrete picture, the primitive path of a given star arm is a 3D random walk of Z steps
with the average step length a. The corresponding PP length of the arm is then L = Za. Since the
retraction of the arm free end proceeds in a curvilinear way along the PP, the 3D random walk can be
projected on a 1D Rouse chain for convenience of theoretical calculations (see Figure 2a). As mentioned
in Section 3 and sketched in Figure 1, the entanglement points (gray spheres) in the PP and the
projected Rouse chain could be either the locations of the anchor points of the slip-springs or the mean
positions of the slip-links on the given arm. In the setup of the single-chain slip-spring model, the
initial configurations of the star arms are constructed as random walks with Z = N/Nss

e steps and
step length equal to

√
Nss

e b.
In the Pearson–Helfand theory, the 1D Rouse chain was further simplified to a coarse-grained

bead, which is connected to the branch point through a harmonic spring and bears an entropic force

Fent =
3kBT

a
to preserve the average primitive length 〈L〉 = Za, where Z = N/Ne is the average

number of entanglements per arm [9]. Under this assumption, the probability distribution of the PP
length L at equilibrium is determined by the potential of the harmonic spring [2,3,63],

P(L) ∼ exp
(
− U(L)

kBT

)
,

where the effective arm retraction potential is

U(L) =
3kBTL2

2Nb2
3D
− LFent. (1)

The assumed potential form U(L) can be tested by using the probability distribution of the PP lengths
obtained from our slip-spring model simulations.

Figure 2b sketches the mapping of the 1D Rouse chain representing the PP of a given arm in our
slip-spring model system to the simplified theoretical model with a single bead fluctuating under
the effective potential U(L). The potential is at its minimum when the length of the primitive path
is at the mean value 〈L〉. Since there is no constraint release, the free end of a star arm retracts along
the primitive path via thermal fluctuations and destroys the original entanglements sequentially
from the outermost one towards the branch point. Once the arm end reaches an entanglement,
the original primitive path or tube segment between this entanglement point and its inner-neighboring
entanglement will be completely forgotten after a time scale around τe. We find that the entanglement
relaxation time τe is about the same order of the time unit of the current applied slip-spring model.
Thus, we assume that the conformation of the tube segment will be immediately forgotten once the arm
end reaches the outer slip-link confining the segment. This assumption will not affect our conclusions
later in the paper. Based on this discrete picture of the PP, the arm retraction process is considered to
be completed in our slip-spring simulations when the arm free end reaches the innermost original
entanglement for the first time. The corresponding first-passage time is recorded as the terminal
relaxation time τd of the arm. This differs from the definition of τd in the continuous tube theories
that is the FP time required for the arm free end to retract continuously all the way back to the branch
point [2,9]. In order to made direct examination of U(L) in Equation (1), we will focus on analyzing
the distribution of the PP length in between the innermost entanglement and the arm free end, which
is defined as l2 in Figure 2b, but bearing in mind that the length of the entire PP is L = l1 + l2 where l1
is the segment length in between the branch point and the innermost entanglement.
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l2l1

v1
v2

(a)

l2l1

U(L)

(b)

Figure 2. (a) Projection of the three-dimensional primitive path of a given star arm on a one-dimensional
Rouse chain which preserves the tube segment lengths between the neighboring entanglement points
(gray spheres). In the 3D plot of the arm, ~v1 is the vector pointing from the branch point to the
inner-most entanglement point, and ~v2 is the vector from the inner-most entanglement point to the arm
free end. In the 1D plot, l1 corresponds the segment length of ~v1, while l2 is the sum of the primitive
path segment lengths between the inner-most entanglement point and the arm free end (not the length
of ~v2); (b) mapping of the 1D Rouse chain obtained in (a) to a simplified theoretical model consisting of
a single bead fluctuating under an effective arm retraction potential U(L), which has a minimum at the
mean primitive path length 〈L〉.

Figure 3 shows our simulation results on the probability distribution of l2 in the system with star
arm length N = 42, together with the best-fit to the Gaussian distribution

P(l2) =
1√

2πC2
exp

(
− (l2 − C1)

2

2C2

)
, (2)

where C1 and C2 are fitting parameters. Here, the primitive paths are determined using the locations
of the anchor points of the slip-springs. It can be seen that the simulation data can be reasonably
well described by the Gaussian distribution for the whole range of length scales and for P(l2) over
five orders of magnitude. This indicates that the effective arm retraction potential U(L) has a general
quadratic form as assumed in Equation (1). The parameters C1 and C2 correspond to the mean
value and variance of the PP length l2, respectively, which are essential for extracting the tube model
parameters as shown in the following sections.
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N=42
C1=19.95±0.02

C2=20.53±0.07

0 10 20 30 40

10-5

0.001

0.1

l2

P
Hl 2

L

Figure 3. Probability distribution of the primitive path lengths P(l2) in the system with star arm
length N = 42. Here, the primitive paths are defined using the locations of the anchor points of the
slip-springs. The dashed line is the best fit to the Gaussian distribution in Equation (2).

The distributions of tube lengths have also been studied by Likhtman and coworkers using
simulations based on a simple grid model where the motion of a single Rouse chain is confined in a
cubic lattice of line obstacles [64]. The tube length was measured in two different ways. One is the
tube axis method by which the confining tube was constructed by connecting the centers of the cubes
occupied by the given chain but removing all the cubes belonging to unentangled loops. The tube
length was then calculated as (Zc − 1)g, where Zc is number of cubes in the tube and g is the grid size.
The other is the PP length which is the shortest distance between the chain ends obtained by fixing
the chain ends and shrinking the chain by reducing the temperature without allowing it to cross the
grid lines, analogous to the PPA method used in MD simulations [19,59–62]. The tube axis method
is computationally cheaper and can produce data with better statistics. The obtained tube length
distribution was found to deviate from the standard Gaussian form at improbable lengths L� 〈L〉
and L � 〈L〉. On the other hand, their results on the PP lengths are more scattered and so do not
show significant deviation from the Gaussian distribution. For comparison, we present in Figure 4 our
slip-spring model simulation results on the PP length l2 for different arm lengths using two different
PP constructions. In all cases, the results show good statistics even at very small P(l2) values, which
allow us to extract the tube theory parameters with high accuracy.

When fitting the simulation data on P(l2) to the standard Gaussian function given in Equation (2),
a truncation is found at the small l2 side due to the fact that the PP length l2 ≥ 0. Instead of employing a
truncated Gaussian function with extra fitting parameters, we introduce a mirror image of the original
Gaussian function such that the difference between these two functions is equal to zero at the origin
as follows:

f (l2) =
1√

2πC2
exp

(
− (l2 − C1)

2

2C2

)
− 1√

2πC2
exp

(
− (l2 + C1)

2

2C2

)
. (3)

As shown in Figure 4, Equation (3) provides good descriptions of the simulation data for the entire
range of l2, in particular at small l2 values—see the insets there. At larger PP lengths (l2 ≥ 2.5),
the fitting qualities of Equation (3) and the standard Gaussian form in Equation (2) to the P(l2) data
are nearly identical with very small adjustments in the fitting parameter values. This can be seen by
comparing Figure 3 with Figure 4c and the C1 and C2 values given there. We notice in the insets of
Figure 4b,d that the P(l2) data show a small bump at l2 ≈ 0.2, which probably results from the use
of the time-averaged positions of the slip-links for constructing the PP, instead of their instantaneous
positions. The existence of such small bump however will not affect our discussions below.
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Figure 4. Probability distributions of primitive path lengths, P(l2), of star arms with lengths N = 24
(a,b) and 42 (c,d), respectively. In (a,c), the primitive paths are defined by connecting the successive
anchor points, while in (b,d) by connecting the average locations of successive slip-links. The dashed
lines are the best-fit of the simulation data to Equation (3). The insets show the P(l2) data at very small
l2 values.

We can now estimate the tube theory parameters using the results on PP lengths. Considering
the random walk feature of the primitive path and the Rouse chain, we have the mean squared tube
step length (or squared tube diameter) a2 = Neb3D

2 and the mean squared arm end-to-end distance
a〈L〉 = Nb3D

2 where b3D is the statistical segment length of the chain in 3D space. Similarly, we have
a〈l2〉 = 〈~v2

2〉 for the vector ~v2 pointing from the innermost entanglement point to the arm free end,
as sketched in Figure 2. The average length of the primitive path in between these two points, 〈l2〉,
is given by the fitting parameter C1 obtained from the best fit of Equation (3) to the simulation results
on P(l2). For a Rouse chain, the direction of~v2 is spatially uncorrelated with that of the vector~v1 which
points from the branch point to the innermost entanglement point, which gives Nb3D

2 = 〈~v2
2〉+ 〈~v2

1〉.
The mean tube step length or tube diameter a is then given by

a =
〈~v2

2〉
〈l2〉

=
Nb3D

2 − 〈~v2
1〉

〈l2〉
, (4)

where 〈~v2
1〉 can be measured directly in our simulations based on the two different constructions of the

primitive path as listed in Table 1. The a values calculated using Equation (4) are shown in Figure 5a as
a function of inverse arm-length 1/N. The dashed lines are the linear fitting to the data sets. It can be
seen that the estimated tube step length increases with the increase of the arm length in both cases.
Extrapolating the data points to 1/N → 0, we got the asymptotic tube step lengths in the long chain
limit as a ≈ 2.01 for the primitive path defined by anchor points and 2.59 for that defined by the average
positive of the slip-links. The corresponding numbers of monomers per entanglement strand are then
given by Ne = a2/b3D

2 ≈ 4.0 and 6.7, respectively. The a and Ne values obtained by using the average
positions of the slip-links are higher than those obtained using the anchor points, reflecting the longer
PPs constructed by the former method for the same number of entanglements. In the single-chain
slip-spring model, the instantaneous position of a slip-link fluctuates about the corresponding anchor
point via the action of the virtual spring. If the slip-spring or entanglement survives infinitely long,
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the average position of the slip-link will converge to the location of the anchor point. However, due to
arm retraction dynamics, the original slip-springs or entanglements along the arm are deleted by the
arm free end in sequence. As a consequence, the average positions of the slip-links over their limited
lifetimes deviate from the linked anchor points with certain randomness in the 3D space, leading to
a longer PP winding around that constructed by the anchor points. In previous slip-spring model
simulation works, a value of Ne ≈ 5.7 was obtained by mapping the slip-spring model simulation
results on the linear viscoelastic properties of linear polymer melts to the Likhtman–McLeish model
predictions, [24,55] which sits in between the two asymptotic Ne values estimated from the mean
PP lengths 〈l2〉. Likhtman et al. have shown recently that a so-called invariant number of segments
between entanglements, Ñe, can be defined based on the fluctuations of the PP lengths, which is much
less sensitive to the details of the primitive path construction [64].
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Figure 5. (a) Tube step length, a, obtained from Equation (4), (b) statistical segment length of 1D Rouse
chain, b1D, derived from Equation (6) and (c) the product ab1D as functions of the inverse arm length
1/N. The results are obtained by using two different constructions of the primitive path (circles for
using anchor points and squares for using average positions of the slip-links).

Table 1. Tube theory parameters estimated from slip-spring simulations by using two different
constructions of the primitive path, i.e., positions of anchor points and average slip-link (SL) positions.

PP Construction 〈~v2
1〉 〈|~v1|〉 a (N→+∞) Ne (a2/b3D

2) b1D (N→+∞) ab1D Ñe (a2b1D
2/b3D

4)

Anchor points 4.19 1.77 2.01 4.02 1.17 2.35 5.52

Average SL positions 3.37 1.53 2.59 6.71 0.94 2.43 5.90
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The fluctuations of the PP length around its mean value 〈L〉 can be characterized by the variance
〈∆L2〉 = 〈(L− 〈L〉)2〉. Considering the 1D Rouse chain representing the curvilinear primitive path as
sketched in Figure 2b, the variance of the chain end-to-end distance is independent of the stretching
force at the arm free end and given by the Rouse theory as

〈∆L2〉 = Nb1D
2

3
, (5)

where the factor 3 is due to the fact that L is measured in one dimension only [64]. Here, b1D is the
statistical segment length along the one-dimensional primitive path, which differs from the average
bond length b3D of free Rouse chain in three dimensions, although b1D is generally assumed to be
equal to b3D in the conventional tube theory. Since the PP segment lengths l1 and l2 are statistically
independent from each other, we have 〈∆L2〉 = 〈∆l12〉 + 〈∆l22〉. The variance of l2 is nothing
but 〈∆l22〉 = C2 as obtained from the best-fit of the probability distributions P(l2) to Equation (3).
The variance of l1 can also be conveniently measured in the simulations through 〈∆l12〉 = 〈~v2

1〉− 〈|~v1|〉2.
It follows from Equation (5) that

b1D
2 =

3
(
〈~v2

1〉 − 〈|~v1|〉2 + 〈∆l22〉
)

N
. (6)

The b1D results obtained by using two different primitive path constructions are shown in Figure 5b as
a function of inverse arm length. The extrapolated asymptotic values of b1D in the long arm limit are
listed in Table 1, which are not significantly departed from b3D = 1 in both cases.

The analytical calculations of Likhtman et al. suggested that, around the Rouse time τR the
mean squared displacement, g1,mid(t), of the middle monomer of a confined Rouse chain in real space
only depends on two combined parameters: ab1D N1/2 and τR [64]. It implies that, even though the
individual a and b1D values may vary with the methods used for constructing the PPs, their product
ab1D should be independent of the PP construction. This is confidently verified in our simulations as
shown in Figure 5c for different arm lengths. One can then write the relative magnitude of the PP
length fluctuations in terms of ab1D [64]

〈∆L2〉
〈L〉2 =

Nb1D
2

3(Za)2 =
a2b2

1D
3Nb4

3D
=

1
3Z

, (7)

where we have used Equation (5), the mean PP length 〈L〉 = Za and the mean squared end-to-end
distance of the primitive path in 3D space Za2 = Nb2

3D. In the last step of Equation (7), the average
number of entanglements per chain is defined by Z = N/Ñe with the invariant number of monomers
per entanglement

Ñe ≡
a2b2

1D

b3D
4 . (8)

Since b3D and ab1D are either independent or insensitive to the details of the PP construction, the Ñe

values should also be insensitive to the different PP constructions we used. This is again confirmed
by our simulation results in Table 1 where the two Ñe values are shown to be very close to each other
and both are in good agreement with that (Ne ≈ 5.7) obtained from mapping slip-spring simulation
results on linear viscoelastic properties to tube model predictions [24,55]. Therefore, our primitive
path analysis provides strong evidence to support the suggestion of Likhtman et al. [64] that the use of
the first two moments of the PP length distribution, 〈L〉 and 〈L2〉, rather than only 〈L〉, is essential to
extract the key tube theory parameter Ne without significant dependence on the details of the primitive
path construction. It should be noted that if b1D = b3D(= b), Equation (8) reduces the standard tube
theory definition Ñe = Ne = a2/b2. In the long chain limit, the star polymer systems we studied
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are close to that situation as shown by the simulation results on b1D in Figure 5b and Table 1. In the
following, we will use the value of Ñe ≈ Ne ≈ 5.7 to evaluate the number of entanglements per arm, Z.

5. Dynamic Properties: First-Passage Time of Entanglement Disengagement

As mentioned in the Introduction, dynamics of arm retraction in a fixed polymer network can be
formulated as a first-passage time problem and has been solved by various theoretical models [9,11,14].
In this section, we will examine the predictions of these theoretical works and extract the related theory
parameters by studying the FP times of entanglement disengagement along the confined star arms.
Since entanglements are represented by discrete slip-links in the slip-spring model, we first introduce a
convenient and efficient method for measuring the distribution of the FP times of slip-link destruction.

Consider a star arm confined in a fixed polymer network where the monomer index increases from
i = 0 at the branch point to N at the arm free end. The primitive path of the arm can be constructed by
the two methods sketched in Figure 1. A 1D coordinate x along the primitive path is defined as the
distance measured from the branch point. Accordingly, the fractional retraction distance along the PP
is defined as s = 1− x/〈L〉, which is equal to 0 at the mean equilibrium position of the arm free end
and 1 at the branch point [9,11,42,65]. Suppose that, at a reference initial time t, a target slip-link sits on
monomer i and is a distance x away from the branch point along the PP. If this slip-link is destructed
by the retracting arm end at a later time t′, the FP time for disengaging an entanglement that is a PP
distance x away from the branch point is then recorded as τ(x) = t′− t. Following the same procedure,
the distribution of τ(x) at a given x, denoted as f (x, τ), can be obtained by performing a large set of
slip-spring simulations and collecting the τ(x) data by tracking all the slip-links, which, at some time
points during their lifetimes, have been located at the PP coordinate x. Such calculations, however,
demand the storage of entire trajectories of the simulated systems for post-simulation data processing
because the destruction times t′ of the slip-links are not known in advance. This problem can be
resolved by taking advantage of the single-chain slip-spring model and the time reversible feature of the
equilibrium systems.

In the single-chain slip-spring model without constraint release, the slip-links can only be created
and destructed by the arm free ends. Once a slip-link is created, its PP coordinate x will not change for
the entire lifetime. Therefore, the reference initial time t for calculating the FP time can be chosen as
any time point during the lifetime of this slip-link. Instead of waiting for the moment of its destruction,
we refer to the fact that arm extension is essentially the reverse process of arm retraction. In other
words, the dynamic process experienced by the slip-link from its creation to destruction should be
statistically equivalent to the time reversible process for it to go from the moment of destruction to
creation. It means that the same distribution of τ(x) at a given x can be obtained by either measuring
the difference between any reference initial time during the lifetime of the target slip-link and its
destruction time or between its creation time and any later time during its lifetime. By using the
latter approach, we can collect the statistics of the FP times on the fly in simulations without saving
the system trajectories. In more technical details, the creation time tcreate of each slip-link is recorded
during a simulation run. The difference between the current time and tcreate of that slip-link, t− tcreate,
is counted as one FP time τ(x) for establishing the two-variable distribution function f (x, τ).

Figure 6a presents the distributions of the FP times f (x, τ) for destructing slip-links at different
PP distances (x = 1, 2 and 4 based on anchor points) away from the branch points in the system with
arm length N=24 (Z ≈ 4). The dashed lines there represent the best-fits of the simulation data to the

exponential function
1
τc

exp(−τ/τc), where τc is the characteristic time of the distribution at a given x.

Our simulation results clearly show that, for the slip-links or entanglements close to the branch points,
the FP time distributions of their destruction generally follow the exponential form. The characteristic
time τc increases dramatically with the decrease of x due to the higher entropic energy barrier that the
arm free end needs to overcome for reaching the corresponding slip-links.
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Figure 6. (a) Distributions of first-passage times f (x, τ) for destructing slip-links at different primitive
path coordinates x in the system with arm length N=24. The dashed lines are best-fits of the simulation

data (symbols) to the exponential function
1
τc

exp(−τ/τc), where the characteristic times are found to

be τc = 2.6× 103, 2.5× 104 and 1.3× 105 for x = 4, 2 and 1, respectively; (b) ratio between the standard
deviation σ (τ(x)) and the mean 〈τ(x)〉 of the FP time distribution as a function of the primitive path
coordinate x in the systems with N = 24 and 36; (c) the same σ(τ(x))

<τ(x)> data as in (b) as a function of
the fractional distance along the primitive path s = 1− x/〈L〉 for the systems with N = 24 (circles),
30 (squares) and 36 (triangles), respectively.

The mean value of an exponentially distributed variable is equal to its standard deviation. We can
thus use the ratio between the standard deviation σ (τ(x)) and the mean 〈τ(x)〉 of the FP time τ(x) to
quantify how well the distributions f (x, τ) at different x values follow the exponential form. Simulation
results on σ (τ(x)) /〈τ(x)〉 are given in Figure 6b for the systems with arm lengths N = 24 and 36.
In the system with N=24, the ratio is almost exactly (at x ≤ 2) or only slightly above 1 up to x ≈ 5,
which is consistent with the good fitting qualify in Figure 6a. The data points in the system with
N = 36 (Z ≈ 6.3) are rather scattered at small x values. The relatively poor statistics arises from
the long terminal arm relaxation time in the system (about 107τ0), which is not sufficiently sampled
in the standard slip-spring model simulations with limited computational power. More accurate
results can be achieved by combining the single-chain slip-spring model with forward flux sampling
method [14,46], but this will not affect our physical discussions in the current work. Figure 6b shows
that σ (τ(x)) /〈τ(x)〉 obtained at N=36 stays close to 1 up to x ≈ 8 in the longer arm systems. The PP
coordinate at which the f (x, τ) data deviate from the exponential distribution thus shifts to higher x
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values with the increase of the arm and so mean PP lengths. It implies a possible universal behavior
of the FP time distributions as a function of the relative distance x

〈L〉 from the branch point or the
fractional retraction distance s = 1− x

〈L〉 along the PP.
Figure 6c plots the σ (τ(x)) /〈τ(x)〉 data as a function of the fractional retraction distance s for the

systems with arm lengths N= 24, 30 and 36. All three data sets fall reasonably well onto a universal
curve, indicating that the FP time distributions f (s, τ) follow the exponential form if the slip-links or
entanglements are close to the branch points, but become non-exponential for the entanglements at
small fractional distances s from the mean equilibrium positions of the arm free ends. In the latter
case, the arm free ends undergo Rouse-like fluctuations around their mean equilibrium positions.
Tube theories based on assuming an arm retraction process over high energy barrier do not apply to
describing such shallow or early time fluctuations where the barrier height is less or comparable to kBT.
Using the arm retraction potential U(s) = νZs2 where the prefactor ν is 3/2 in the PH model [9] and
15/8 in the MM model without CR [11], the transition from early-time non-exponential to late-time
exponential behavior is theoretically predicted to take place around s ≈ (νZ)−1/2. For the arm lengths
4.2 < Z(= N/Ñe) < 6.3 studied in Figure 6c, this corresponds to a transition region of 0.60 < s < 0.68
for ν = 3/2 or 0.64 < s < 0.71 for ν = 15/8. The simulation data on σ (τ(x)) /〈τ(x)〉 show a clear
trend to approach value 1 in the predicted s region, taking into account the uncertainty in the ν and
Ñe values. This also elucidates the applicability of the quadratic form of U(s) for describing the deep
arm retraction dynamics, which is consistent with its validity in describing the static properties as
discussed in Section 4.

The mean FP time τncr(x)(≡ 〈τ(x)〉) of slip-links destructed at PP coordinate x can be calculated
using the distribution f (x, τ) obtained in simulations

τncr(x) =
∫ +∞

0
τ f (x, τ)dτ, (9)

where the subscript ncr indicates that there is no CR effect in the system. The τncr(x) results for the
system with N=24 are presented in Figure 7 by a linear-log plot over a x range beyond the average PP
length 〈L〉 ≈ 12.57 of the studied arms. Apart from the terminal regime at very small x, the FP time
grows exponentially with the arm retraction depth, which qualitatively agrees with the prediction of the
PH theory [9]. The terminal arm relaxation time in the system is found to be τd ≈ 3× 105τ0. The same
FP data have also been plotted in Figure 8a as a function of the fractional retraction distance s, together
with the results obtained from systems with arm lengths N= 30, 36 and 42. As expected, the τncr(s)
curves shift to higher time scales with the increase of the arm length. For the systems with longer
arms (N ≥ 36), the exponentially slow dynamics makes it difficult in simulations to well sampling
the terminal relaxation regime. Therefore, the statistics of the FP times of the innermost slip-links
and correspondingly the arm terminal relaxation times are not very satisfactory. However, the overall
quality of the τncr(s) curves are sufficient for being used to extract tube theory parameters.
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Figure 7. Mean first-passage time τncr(x) of slip-links at primitive path coordinate x in the system with
arm length N = 24.
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Figure 8. (a) Mean first-passage time τncr(s) as a function of the fractional retraction distance s for the
systems with different arm lengths N = 24, 30, 36 and 42 from bottom to top. The dashed lines are
the predictions of the large deviation theory (Equation (10)) made using the fitting parameters C2(N)

(black disks) and Ñe(red squares) given in (b).

In a previous work [14], we developed a large deviation theory of 1D Rouse chain with one end
fixed for determining the mean FP time of the arm free end to reach certain improbable extension
state. Here, we briefly describe the theory. As sketched in Figure 2b, the 3D primitive path of an
entangled star arm in a fixed network can be projected onto a 1D Rouse chain with one end fixed at
the origin. The problem of finding the tube survival probability is then simplified to solving a FP
problem for the Rouse chain. The equations of motion of the Rouse beads can be transferred to a set
of independent equations for the eigenmodes of the system, called Rouse modes. Thus, the original
problem is transformed to a multi-dimensional Kramers’ problem. Such transition path problems
are treated with the well-known Freidlin–Wentzell theory [66], which provides the statistical weight
of each path in terms of an action functional and suggests that the most probable path is the one
minimizing the action functional associated with the system. Following that, the multi-dimensional
FP problem is further reduced to the conventional Kramers’ problem along the Minimal Action Path
(MAP) that has an exact analytical solution for the mean FP time of a diffusing particle experiencing
certain effective potential. In addition, we introduce an entropic correction to the effective free energy
along the MAP by considering the fluctuations of the particle in a channel perpendicular to the MAP.
Our theory predicts two scaling regimes of the mean FP time that the arm free end reaches a certain

distance s away from its equilibrium position, namely τ(s) ∼ 1
s3 exp(U(s)/kBT) in the intermediate



Polymers 2019, 11, 496 17 of 27

s regime before the chain reaches its fully extension and τ(s) ∼ 1
s

exp(U(s)/kBT) at large s values.
An empirical expression is then proposed to cover both regimes

τ(s) =
( C1(N)

N(N/Ňe)1/2s
+

C2(N)

(N/Ňe)3/2s3

)
τR exp

( 3N
2Ňe

s2
)

, (10)

where the Rouse time τR = ξb2

12kBT sin−2
(

π
4(N+1/2)

)
, and C1(N) =

√
32π

3 N2 sin2
(

π
4(N+1/2)

)
. C2(N)

and Ňe are two fitting parameters. We note that this expression is applicable to the intermediate and
large s regimes due to the use of the quadratic form of the arm retraction or extension potential.

In Figure 8a, the predictions of Equation (10) made by using the fitting parameters C2(N) and
Ňe given in Figure 8b are compared with the slip-spring model simulation data for different arm
lengths. For each N, reasonably good agreement between the theoretical and simulation data has
been reached for the range of s covered by the theory. It is noticed that the C2 values used for
the fitting are around 1.2 for all the arm lengths studied, which is very close to that obtained from
fitting Equation (10) to simulation data on τ(s) of 1D Rouse chain extension (instead of retraction) in
Reference [14]. Therefore, we carry out another round of fitting by fixing C2(N)=1.2 and using the
number of monomers per entanglement strand Ňe as the only fitting parameter. The obtained Ňe values
(red squares) are plotted in Figure 9 against 1/N, together with the invariant number of monomers
per entanglement Ñe estimated using Equation (8) from the primitive path analysis. Different from Ñe,
the Ňe values show a strong arm length dependence by growing roughly linearly with the inverse of
N. At finite arm lengths, the Ne values estimated from static (Ñe) and dynamic (Ňe) analyses differ
significantly from each other, e.g., by 40% for longest arm length N = 42 studied in this work. In the
long chain limit, the asymptotic value of Ňe ≈ 5.1 is close but still smaller than the invariant value
Ñe ≈ 5.7 by about 10%.
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Figure 9. Numbers of monomers per entanglement obtained from static primitive path analysis
using Equation (8) (Ñe, cirlces) and dynamic first-passage time spectrum analysis using Equation (10)
(Ňe, squares) for the systems with different arm lengths.

The large discrepancy between Ñe and Ňe for a given arm length may be related to the different
primitive path portions used for the static and dynamic analyses. The primitive path analysis in
Section 4 was focused on the PP length l2 in between the innermost slip-link and the arm free end
because the arm retraction process is terminated in the discrete slip-spring model when the innermost
slip-links are destructed. However, when calculating the FP time distribution f (x, τ), x is measured as
the distance away from the branch point along the primitive path, which includes l1 as sketched in
Figure 2. Consequently, the FP times of the innermost slip-links are collected and counted into the
distribution function f (x, τ) over a certain range of x ≥ 0 or equivalently l1 ≥ 0, depending on their
locations on the PPs. As will be seen in Section 6, the f (x, τ) functions calculated this way are required
for providing tube survival probabilities µ(t) consistent with the standard tube theory definition. If we
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instead define x as the distance measured from the innermost slip-link along the PP, the FP times
of destructing all innermost slip-links will be counted to a single point (x = 0) in the probability
distribution, i.e., f (x = 0, τ). This introduces a discontinuity in the FP time spectrum τncr(s) at the
corresponding fractional distance s = 1− x/〈l2〉 = 1. The resulted f (x, τ) distributions also do not
follow the exponential form even at small x values (not shown).

As discussed in the previous sections, the terminal relaxation time of the arm τd is
determined by the mean first-passage time of the free arm end reaching the innermost slip-link.
Thus, after transferring from absolute length scale x to the fractional distance s, τd would normally
contribute to τ(s ≈ Z−1

Z ) instead of τ(s ≈ 1). As an attempt to make the definitions of the
primitive path and fractional distance s used in the FP time analysis more close to those used
in the primitive path analysis, we introduce an ad hoc renormalization of the fractional distance

s′ =
Zs

Z− 1
= s

(
1 +

Ňe

N − Ňe

)
so that the FP times of the innermost slip-links would contribute to

τncr(s′ ≈ 1) instead of τncr(s ≈ Z−1
Z ). The modified expression of the mean FP time of arm-retraction

is then given as

τ(s) =
( C1(N)

N(N/Ňe)1/2s(1 + Ňe
N−Ňe

)
+

C2(N)

(N/Ňe)3/2
(
s(1 + Ňe

N−Ňe
)
)3

)
τR exp

( 3N
2Ňe

(
s(1 +

Ňe

N − Ňe
)
)2
)

. (11)

Equation (11) will reduce to Equation (10) in the long chain limit as s′ → s. We then fit
Equation (11) to the slip-spring simulation data on τ(s) following the same fitting procedure as
done with Equation (10), namely using C2(N) = 1.2 and Ňe as the only fitting parameter. The fitting
curves are shown as dashed lines in Figure 10a and the fitting parameters Ňe are given in Figure 10b
(black disks) together with the Ñe and Ňe results from Figure 9. The fitting quality of Equation (11) to
the τ(s) data in the relevant s region is similar to that of Equation (10), but the fitting parameters Ňe

show very different N dependence in these two cases. The ones obtained using Equation (11) remain
nearly constant, independent of the arm lengths we studied. Nevertheless, the asymptotic Ňe values
are very close but both are smaller than the invariant value of Ñe ≈ 5.7.

The large deviation theory has also been used to describe the simulation results on the terminal
relaxation times τd(N) of star arms in the absence CR obtained by using a combined slip-spring and
forward flux sampling method [46]. There the arm length studied up to N = 72 and τd was defined as
the FP time for destructing the innermost slip-link. The τd(N) data were fitted with the theoretical

prediction of τd(N) = C2(N)τR(N) exp
(
3N/2Ňe)/(N/Ňe

)3/2 with C2(N) = 1.2. The obtained Ňe

values also showed a linear increase with 1/N, qualitatively similar to that in Figure 9. However,
the asymptotic Ňe value of about 4.47 found in that work is lower than Ňe ≈ 5.1 given in Figure 9.
On the other hand, the fitting of the same τd(N) data with the Milner–McLeish theory without CR
yielded a nearly constant value of Ne(N) ≈ 4.94 [46]. The systematically lower Ne values found in
the previous work may be attributed to the neglect of the relaxation of the last tube or primitive
path segment in between the innermost slip-link and branch point by defining τd as the FP time for
destructing the innermost slip-link. Neglecting the relaxation process of the innermost PP segment
has a more noticeable effect on determining the exact terminal relaxation time than on the overall
shape of the FP time spectrum τ(s) when comparing with theoretical predictions based on continuous
tube assumption. Since this is a common problem for all discrete simulation models, we will propose
an analytical approach to take into account the innermost PP segment relaxation for constructing
continuous relaxation functions using the FP time spectrum obtained from discrete model simulations.
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Figure 10. (a) Mean first-passage time spectra τncr(s) for the systems with different arm lengths
(symbols, same as in Figure 8). The dashed lines are predictions made by using the large deviation
theory (Equation (11)) with renormalized fractional distance s′ and the fitting parameters Ňe

(black disks) given in (b). The Ñe and Ňe results from Figure 9 are also included in (b) for comparison.

6. Determining Relaxation Functions Using First-Passage Times of Entanglement Disengagement

As discussed above, FP times of entanglement disengagements play an essential role in
determining the dynamics of entangled polymers. According to tube theories, they can be applied to
calculate the tube survival probabilities and consequently the important time correlation functions,
such as the stress relaxation function G(t) and the end-to-end vector correlation function of polymer
chains φ(t), which are directly measurable in experiments [2,9,11]. In the absence of constraint release,
all entanglements sitting on a star arm are released by the arm free end. Therefore, both G(t) and φ(t)
are proportional to the survival probabilities of all the original entanglements or tube segments [2].
For star polymer melts with CR, it has been shown by MD and slip-spring simulations that G(t) is
determined by the survival probabilities of all entanglements in the system, while φ(t) of a target arm
is dominated only by the entanglements destroyed from the arm free end [31].

The coincidence of the frequency dependence of the dielectric (end-to-end relaxation) and
viscoelastic losses in systems with quenching CR effects has been shown experimentally by Matsumiya
et al. using polyisoprene star probes in long linear chain matrices [47]. In Figure 11, we compare our
slip-spring model simulation results on the dielectric loss of star polymers with arm length N = 36
with the experimental data (ε′′1,b) in Figure 5d of Reference [47], where the 6-arm PI star probes with
arm molecular weight Ma = 24k are dispersed in a matrix of PI chains with molecular weight 1.1M.
The reasonably good agreement between the two sets of data indicates that the slip-spring model
without CR can essentially capture the CR quenching behavior observed in experiments. It can thus be
used together with slip-spring/slip-link [31,48,49] and bead-spring molecular dynamics [31,50–52]
methods for bulk systems to provide microscopic understanding of constraint release mechanisms,
in a similar manner to that done in experiments [47]. For the comparison in Figure 11, we noticed
that there is a small difference in the numbers of entanglements per arm as used in experiments
(Z = Ma/Me ≈ 4.8 calculated using Me = 5k for PI) and slip-spring simulations (Z = N/Ne ≈ 6.3
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estimated using Ñe ≈ 5.7). This again can be attributed to the variation in the Ne values determined
from mapping simulation results to different experimental observables.
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Figure 11. Comparison of dielectric loss spectra ε′′(ω) obtained in slip-spring model simulations of
star polymers with arm length N = 36 without constraint release (blue filled circles) and experimental
measurements of polyisoprene 6-arm star probes with arm molecular weight Ma = 24k in long linear
PI chain matrix (red open circles) [47]. The slip-spring data have been shifted by multiplying a factor of
6× 105 in frequency ω and 0.075 in ε′′, respectively.

In a star polymer system without CR, the survival probability of a slip-link or correspondingly
tube segment at a fractional distance s from the mean equilibrium position of the arm free end at time
t can be calculated using the FP time distribution f (s, τ) [2,31],

ψ(s, t) =
∫ +∞

t
f (s, τ)dτ. (12)

If the primitive path is considered to be continuous in space, the normalized tube survival function
µ(t) can be obtained by integrating over the tube segment survival probability ψ(s, t) along the PP

µ(t) =
∫ 1

0
ψ(s, t)ds. (13)

Based on the analysis in Section 5, the FP time distributions generally follow the exponential form
for tube segments or slip-links close to the branch points so that ψ(s, t) can be approximated by
exp(−t/τncr(s)) where the mean FP time τncr(s) is calculated using Equation (9) with the simulation
results on f (s, τ). It follows that

µ(t) ≈
∫ 1

0
exp

(
− t

τncr(s)

)
ds. (14)

The normalized µ(t)/µ(0) results calculated using Equation (14) and f (s, τ) obtained in slip-spring
model simulations are presented in Figure 12 for the star arms with length N = 30. The arm end-to-end
vector correlation function φ(t) obtained in the same set of simulations is also included for comparison.

In the Doi–Edwards theory, the end-to-end vector correlation function, φ(t) ≡ 〈
~Ree(t)~Ree(0)〉
〈R2

ee(0)〉
,

of a polymer chain in a fixed network is equal to the normalized survival function µ(t)/µ(0) of its
original confining tube [2]. Here, ~Ree is the chain end-to-end vector. The φ(t) and normalized µ(t)
results in Figure 12, however, do not show the expected agreement. Such discrepancy originates
from the fact that Equation (14) is valid only if the FP time distribution f (s, τ) is exponential at all
s values and the tube is continuous such that the deletion of each entanglement releases an original
tube segment of the same length. Both conditions are not fully satisfied in the discrete slip-spring
model for star polymers. The assumed exponential form of f (s, τ) does not apply for the slip-links
at relatively small s values or farther away from the branch points. On the other hand, the tube or
primitive path segment lengths released by destructing slip-links next to the branch points do not
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follow the assumed uniform distribution. As sketched in Figure 1, the destruction of a slip-link located
at a primitive path distance x from the branch point by the arm free end at time t will release the PP
segment of length lPP(x) in between itself and the nearest inner neighboring slip-link (or branch point)
along the arm. By ensemble average, the mean squared end-to-end distance of the surviving part of
the original primitive path at time t is reduced by an amount of 〈l2

PP(x)〉 [2]. The simulation results
on 〈l2

PP(x)〉 are shown in Figure 13a for the systems with different arm lengths. It can be seen that
〈l2

PP(x)〉 first increases quadratically with x and then approaches a plateau at x > a where the tube

step length a ≈ Ñe
1/2b1D. The deviation from the theoretically assumed uniform profile occurs for

the innermost slip-links, which are at distances x ≤ a from the branch points. The primitive path
lengths held in between them and the branch points are simply proportional to x, giving 〈l2

PP(x)〉 ≈ x2.
The uncertainty in determining the terminal arm retraction time is also associated with the distribution
of the innermost PP segment lengths to be released by the arm free ends.

0.1 10 1000 105 10710-4

0.001

0.01

0.1

1

t

f
HtL

Figure 12. Normalized tube survival function µ(t)/µ(0) (symbols) calculated using Equation (14) with
simulation results on τncr(s) and arm end-to-end vector correlation function φ(t) (solid line) obtained
from the same set of simulations for the system with star arm length N = 30.
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Figure 13. (a) Mean squared primitive path segment lengths, l2
PP(x), released by the destruction of

slip-slinks at a primitive path distance x away from the branch point; (b) probability P2(s) of finding a
slip-link at a fractional PP distance s = 1− x/〈L〉 away from the mean equilibrium position of the arm
free end.
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From a numerical point of view, the tube survival function µ(t) can be calculated more accurately
by using the simulation results on both the PP segment lengths lPP(x) held by the slip-links located at
the position x from the branch points along the primitive path and the probability P2(x) of finding an
original slip-link at x. The simulation results on P2(x), or more precisely P2(s), are plotted in Figure 13b
with respect to the fractional PP distance s(= 1− x/〈L〉) of the slip-links from the mean equilibrium
positions of the arm free ends for the systems studied in Figure 13a. All sets of P2(s) data drop on
the same universal curve, which shows a broad distribution around s = 0 (x = 〈L〉) due to the large
fluctuations of the arm PP lengths around their mean value 〈L〉 and becomes constant at intermediate
and small s values except for being very close to the branch points. The tube survival function µ(t)
can then be calculated as

µ(t) ≈
∫

l2
PP(s)P2(s) exp

(
− t
〈τ(s)〉

)
ds∫

l2
PP(s)P2(s)ds

, (15)

which is normalized such that µ(t = 0) = 1. We can see that the denominator equals to a〈L〉.
The obtained µ(t) results are presented in Figure 14a and show very good agreement with the directly
measured arm end-to-end vector correlation functions φ(t). To reveal more subtle differences and
regimes, it is particularly useful to compare the dimensionless derivatives of the two functions, −t dφ(t)

dt

and −t dµ(t)
dt . As shown in Figure 14b, for each given arm length, the two derivatives have reasonably

good agreement at large time scales. The discrepancy at early times is again related to the use of the
exponential approximation instead of the numerical results on the FP time distribution f (s, τ) at small
s values.
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Figure 14. (a) Comparison of the tube survival functions µ(t) (symbols) calculated using Equation (15)
and the arm end-to-end vector correlation functions φ(t) (lines) directly measured in the slip-spring
simulations for the systems with arm lengths N = 24, 30 and 36 from left to right; (b) derivatives

−t
dµ(t)

dt
(open symbols) and −t

dφ(t)
dt

(solid symbols) of the functions given in (a).
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The results in Figure 14 demonstrate the applicability of Equation (15) for estimating the
tube survival function µ(t). However, the requirement of inputting simulation data on l2

PP(s) and
P2(s) strongly limits its prediction power. Based on the universal behavior of l2

PP(x) and P2(x)
observed in Figure 13, we propose the following empirical expressions to approximate these quantities.
First, we assume that the slip-links are uniformly distributed along the primitive path from the branch
point to the mean equilibrium position of the arm free end, which gives a step or indicator function
for P2(x),

P2(x) =

{
1/〈L〉, 0 ≤ x ≤ 〈L〉,
0, otherwise.

(16)

Secondly, we describe the simulation data on l2
pp(x) with an empirical function

l2
PP(x) =

(
1

x−2β + C−β

)1/β

, (17)

where the two fitting parameters are found to be C = 4.87 and β = 1.69. The value of C corresponds to
the plateau magnitude of l2

pp(x). By substituting Equations (16) and (17) into Equation (15), we calculate

µ(t) and its derivative −t
dµ(t)

dt
for the systems studied in Figure 14. As shown in Figure 15, the results

agree with φ(t) and −t
dφ(t)

dt
very well. Equations (15)–(17) or similar formulae may also be used in

other discrete simulation models for describing the relaxation correlation functions.
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Figure 15. (a) Comparison of the tube survival functions µ(t) (black symbols) calculated by substituting
Equations (16) and (17) into Equation (15) and the arm end-to-end vector correlation functions φ(t)
(blue lines, same as the one in Figure 14a) directly measured in the slip-spring simulations for the

system with arm length N = 24; (b) derivatives−t
dµ(t)

dt
(open black symbols) and−t

dφ(t)
dt

(solid blue
symbols) of the functions given in (a). Red symbols are the same plots as those in Figure 14.
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The tube survival probability can also be calculated from the probability density that a randomly
selected entanglement has a lifetime t, as has been used in the single-chain slip-spring and molecular
dynamics simulations of monodisperse symmetric star polymer melts [31], where this probability is
termed as Pent(t). In the absence of constraint release, all entanglements or slip-links are destroyed by
the retracting arm ends, the Pent(t) results will be consistent with µ(t) calculated with Equation (15)
and so with the end-to-end vector correlation function φ(t). Since recent theoretical models on branch
polymer dynamics, such as the Milner–McLeish and large deviation theories, are mainly based on
the calculation of first-passage times of entanglements, we will limit our discussions on µ(t) in the
current work.

7. Conclusions

In this work, we perform single-chain slip-spring model simulations to investigate arm retraction
dynamics of entangled star polymers in the absence of constraint release. In the mesoscopic slip-spring
model, entanglements are represented by slip-links that can only be created and destroyed from the
arm free ends. The primitive path of a confined star arm is constructed by connecting either the
successive anchor points or the mean positions of the slip-links with straight lines. The distributions of
the primitive path lengths L are calculated for the systems with different arm lengths and analyzed to
extract tube theory parameters, including the key parameter of entanglement molecular weight Ne.
It is found that the PP lengths in between the innermost slip-links and the arm free ends closely follow
the Gaussian distribution as expected from the standard tube theory, which also supports the quadratic
form of the entropic energy barrier, also called arm retraction potential, used in various tube-based
theories. The asymptotic Ne value (5.7) obtained from the static PP analysis are consistent with that
found in a previous work obtained from mapping slip-spring simulation results on linear viscoelastic
properties to tube model predictions [55]. Due to the discrete feature of the slip-spring model, the tube
or PP segments in between the innermost slip-links and the branch points are released entirely when
the innermost slip-links are destructed by the retracting arm free ends. As a consequence, the entropic
energy barrier close to the branch points and accordingly the terminal arm relaxation times determined
from simulations based on the slip-spring model and probably also other discrete models are different
from those predicted by the tube theories where the tubes are assumed to be continuous such that the
arm free ends can retract all the way to the branch points.

We then calculate the first-passage times for destructing the slip-links or entanglements on the
fly during the simulation runs. The FP time distributions f (s, τ) follow the exponential form if
the slip-links or entanglements are close to the branch points, but become non-exponential for the
entanglements at small fractional distances s from the mean equilibrium positions of the arm free
ends. Simulation results on the mean FP times τncr(s) are fitted to the prediction of a large deviation
theory of one-dimensional Rouse chain. The extracted Ne values show a nearly linearly dependence
on the inverse arm length. The asymptotic Ne value obtained from this dynamic analysis is close
to but slightly lower than that given by the primitive path analysis, which is presumably related to
the different primitive path portions used for the static and dynamic analyses, namely excluding or
including the PP segments in between the innermost slip-links and the branch points.

Following the suggestions of tube theories, the FP time distributions f (s, τ) are used to determine
the tube survival functions µ(t) that are subsequently compared with the arm end-to-end vector
correlation functions φ(t) directly measured in the simulations. The µ(t) results calculated based on
the tube theory assumptions of continuous tube and exponential FP time distributions at all s values
do not show the agreement with φ(t) as would have been expected from the Doi–Edwards theory.
The reason lies in the fact that both assumptions are not fully satisfied in the discrete slip-spring model.
By taking into account the nonuniform distribution of the PP segments released by the destruction
of slip-links at different locations along the primitive path, especially those next to the branch points,
we are able to predict µ(t) using only the mean FP times τncr(s) that are in reasonably good agreement
with φ(t) for the arm lengths we studied as well as experimental results on dielectric relaxation
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obtained from star probes blended in long chain matrix. As a final remark, we note that the dynamics
of entangled star polymer melts are determined by both the arm retraction and constraint release
mechanisms. A detailed study of CR effects in star polymer systems through multiscale simulation
approaches can be found in our recent publication [31].

Author Contributions: Conceptualization, J.C., Z.W. and A.E.L.; Data Curation, J.C.; Formal analysis, J.C., Z.W.
and A.E.L.; Funding acquisition, Z.W. and A.E.L.; Investigation, J.C., Z.W. and A.E.L.; Methodology, J.C. and
A.E.L.; Project administration, Z.W.; Software, J.C. and A.E.L.; Writing—original draft, J.C.; Writing—review and
editing, J.C. and Z.W.

Funding: This work was supported by the Engineering and Physical Sciences Research Council (EPSRC),
Grant EP/K017683/1 and EP/L020599/1.

Conflicts of Interest: The authors declare no conflict of interest.

Data Availability: The simulation data reported in this work are available upon request from the
corresponding authors.

References

1. de Gennes, P.G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572.
[CrossRef]

2. Doi, M.; Edwards, S. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1988.
3. McLeish, T.C.B. Tube theory of entangled polymer dynamics. Adv. Phys. 2002, 51, 1379–1527. [CrossRef]
4. Rubinstein, M.; Colby, R.H. Self-consistent theory of polydisperse entangled polymers—Linear viscoelasticity

of binary blends. J. Chem. Phys. 1988, 89, 5291–5306. [CrossRef]
5. Likhtman, A.E.; McLeish, T.C.B. Quantitative theory for linear dynamics of linear entangled polymers.

Macromolecules 2002, 35, 6332–6343. [CrossRef]
6. Milner, S.T.; McLeish, T.C.B.; Likhtman, A.E. Microscopic theory of convective constraint release. J. Rheol.

2001, 45, 539–563. [CrossRef]
7. Graham, R.S.; Likhtman, A.E.; McLeish, T.C.B.; Milner, S.T. Microscopic theory of linear, entangled polymer

chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 2003,
47, 1171. [CrossRef]

8. Likhtman, A.E.; Graham, R.S. Simple constitutive equation for linear polymer melts derived from molecular
theory: Rolie–Poly equation. J. Non-Newton. Fluid Mech. 2003, 114, 1–12. [CrossRef]

9. Pearson, D.S.; Helfand, E. Viscoelastic Properties of Star-sahped Polymers. Macromolecules 1984, 17, 888–895.
[CrossRef]

10. Ball, R.; McLeish, T. Dynamics dilution and the viscosity of star polymer melts. Macromolecules 1989,
22, 1911–1913. [CrossRef]

11. Milner, S.T.; McLeish, T.C.B. Parameter-free theory for stress relaxation in star polymer melts. Macromolecules
1997, 30, 2159–2166. [CrossRef]

12. Watanabe, H.; Matsumiya, Y.; Inoue, T. Dielectric and viscoelastic relaxation of highly entangled star
polyisoprene: Quantitative test of tube dilation model. Macromolecules 2002, 35, 2339–2357. [CrossRef]

13. Frischknecht, A.L.; Milner, S.T.; Pryke, A.; Young, R.N.; Hawkins, R.; McLeish, T.C.B. Rheology of Three-Arm
Asymmetric Star Polymer Melts. Macromolecules 2002, 35, 4801–4820. [CrossRef]

14. Cao, J.; Zhu, J.; Wang, Z.; Likhtman, A.E. Large deviations of Rouse polymer chain: First passage problem.
J. Chem. Phys. 2015, 143, 204105. [CrossRef]

15. Hanggi, P.; Talkner, P.; Borkovec, M. Reaction-rate Theory—50 Years after Kramers. Rev. Mod. Phys. 1990,
62, 251–341. [CrossRef]

16. Kremer, K.; Grest, G. Dynamics of Entangled Linear Polymer Melts—A Molecular Dynamics Simulation.
J. Chem. Phys. 1990, 92, 5057–5086. [CrossRef]

17. Kröger, M.; Loose, W.; Hess, S. Rheology and Structural-Changes of Polymer Melts via Nonequilibrium
Molecular Dynamics. J. Rheol. 1993, 37, 1057–1079. [CrossRef]

18. Kröger, M.; Hess, S. Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium
molecular dynamics. Phys. Rev. Lett. 2000, 85, 1128–1131. [CrossRef]

http://dx.doi.org/10.1063/1.1675789
http://dx.doi.org/10.1080/00018730210153216
http://dx.doi.org/10.1063/1.455620
http://dx.doi.org/10.1021/ma0200219
http://dx.doi.org/10.1122/1.1349122
http://dx.doi.org/10.1122/1.1595099
http://dx.doi.org/10.1016/S0377-0257(03)00114-9
http://dx.doi.org/10.1021/ma00134a060
http://dx.doi.org/10.1021/ma00194a066
http://dx.doi.org/10.1021/ma961559f
http://dx.doi.org/10.1021/ma011782z
http://dx.doi.org/10.1021/ma0101411
http://dx.doi.org/10.1063/1.4936130
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1063/1.458541
http://dx.doi.org/10.1122/1.550409
http://dx.doi.org/10.1103/PhysRevLett.85.1128


Polymers 2019, 11, 496 26 of 27

19. Everaers, R.; Sukumaran, S.K.; Grest, G.S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and
microscopic topology of entangled polymeric liquids. Science 2004, 303, 823–826. [CrossRef] [PubMed]

20. Likhtman, A.E.; Sukumaran, S.K.; Ramirez, J. Linear Viscoelasticity from Molecular Dynamics Simulation of
Entangled Polymers. Macromolecules 2007, 40, 6748–6757. [CrossRef]

21. Ramírez, J.; Sukumaran, S.K.; Likhtman, A.E. Significance of cross correlations in the stress relaxation of
polymer melts. J. Chem. Phys. 2007, 126, 244904. [CrossRef]

22. Hou, J.X.; Svaneborg, C.; Everaers, R.; Grest, G.S. Stress Relaxation in Entangled Polymer Melts.
Phys. Rev. Lett. 2010, 105, 068301. [CrossRef]

23. Cao, J.; Likhtman, A.E. Time-Dependent Orientation Coupling in Equilibrium Polymer Melts. Phys. Rev. Lett.
2010, 104, 207801. [CrossRef]

24. Wang, Z.; Likhtman, A.E.; Larson, R.G. Segmental Dynamics in Entangled Linear Polymer Melts.
Macromolecules 2012, 45, 3557–3570. [CrossRef]

25. Cao, J.; Likhtman, A.E. Shear Banding in Molecular Dynamics of Polymer Melts. Phys. Rev. Lett. 2012,
108, 028302. [CrossRef]

26. Qin, J.; Milner, S.T. Tube Diameter of Oriented and Stretched Polymer Melts. Macromolecules 2013,
46, 1659–1672. [CrossRef]

27. Likhtman, A.E.; Ponmurugan, M. Microscopic Definition of Polymer Entanglements. Macromolecules 2014,
47, 1470–1481. [CrossRef]

28. Cao, J.; Likhtman, A.E. Simulating startup shear of entangled polymer melts. ACS Macro Lett. 2015,
4, 1376–1381. [CrossRef]

29. Qin, J.; Milner, S.T. Tube Dynamics Works for Randomly Entangled Rings. Phys. Rev. Lett. 2016, 116, 068307.
[CrossRef]

30. Masubuchi, Y.; Watanabe, H. Stress-Optical Relationship in Bead-Spring Simulations for Entangled Polymers
under Start-up Shear Flows. Nihon Reoroji Gakkaishi 2016, 44, 65–68. [CrossRef]

31. Cao, J.; Wang, Z. Microscopic Picture of Constraint Release Effect in Entangled Star Polymer Melts.
Macromolecules 2016, 49, 5677–5691. [CrossRef]

32. Likhtman, A.E. Single-chain slip-link model of entangled polymers: Simultaneous description of neutron
spin-echo, rheology, and diffusion. Macromolecules 2005, 38, 6128–6139. [CrossRef]

33. Masubuchi, Y.; Takimoto, J.I.; Koyama, K.; Ianniruberto, G.; Marrucci, G.; Greco, F. Brownian simulations of
a network of reptating primitive chains. J. Chem. Phys. 2001, 115, 4387–4394. [CrossRef]

34. Masubuchi, Y.; Ianniruberto, G.; Greco, F.; Marrucci, G. Entanglement molecular weight and frequency
response of sliplink networks. J. Chem. Phys. 2003, 119, 6925–6930. [CrossRef]

35. Nair, D.M.; Schieber, J.D. Linear Viscoelastic Predictions of a Consistently Unconstrained Brownian Slip-Link
Model. Macromolecules 2006, 39, 3386–3397. [CrossRef]

36. Uneyama, T.; Masubuchi, Y. Multi-chain slip-spring model for entangled polymer dynamics. J. Chem. Phys.
2012, 137, 154902. [CrossRef] [PubMed]

37. Chappa, V.C.; Morse, D.C.; Zippelius, A.; Müller, M. Translationally Invariant Slip-Spring Model for
Entangled Polymer Dynamics. Phys. Rev. Lett. 2012, 109, 148302. [CrossRef]

38. Langeloth, M.; Masubuchi, Y.; Böhm, M.C.; Müller-Plathe, F. Recovering the reptation dynamics of polymer
melts in dissipative particle dynamics simulations via slip-springs. J. Chem. Phys. 2013, 138, 104907.
[CrossRef] [PubMed]

39. Ramírez-Hernandez, A.; Detcheverry, F.A.; Peters, B.L.; Chappa, V.C.; Schweizer, K.S.; Müller, M.;
de Pablo, J.J. Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics.
Macromolecules 2013, 46, 6287–6299. [CrossRef]

40. Masubuchi, Y.; Watanabe, H. Origin of Stress Overshoot under Start-up Shear in Primitive Chain Network
Simulation. ACS Macro Lett. 2014, 3, 1183–1186. [CrossRef]

41. Ramírez-Hernández, A.; Peters, B.L.; Andreev, M.; Schieber, J.D.; de Pablo, J.J. A multichain polymer
slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology. J. Chem. Phys.
2015, 143, 243147. [CrossRef] [PubMed]

42. Wang, Z.; Chen, X.; Larson, R.G. Comparing tube models for predicting the linear rheology of branched
polymer melts. J. Rheol. 2010, 54, 223–260. [CrossRef]

43. Qin, J.; Milner, S.T. Tubes, Topology, and Polymer Entanglement. Macromolecules 2014, 47, 6077–6085.
[CrossRef]

http://dx.doi.org/10.1126/science.1091215
http://www.ncbi.nlm.nih.gov/pubmed/14764875
http://dx.doi.org/10.1021/ma070843b
http://dx.doi.org/10.1063/1.2746867
http://dx.doi.org/10.1103/PhysRevLett.105.068301
http://dx.doi.org/10.1103/PhysRevLett.104.207801
http://dx.doi.org/10.1021/ma202759v
http://dx.doi.org/10.1103/PhysRevLett.108.028302
http://dx.doi.org/10.1021/ma302095k
http://dx.doi.org/10.1021/ma4022532
http://dx.doi.org/10.1021/acsmacrolett.5b00708
http://dx.doi.org/10.1103/PhysRevLett.116.068307
http://dx.doi.org/10.1678/rheology.44.65
http://dx.doi.org/10.1021/acs.macromol.6b00554
http://dx.doi.org/10.1021/ma050399h
http://dx.doi.org/10.1063/1.1389858
http://dx.doi.org/10.1063/1.1605382
http://dx.doi.org/10.1021/ma0519056
http://dx.doi.org/10.1063/1.4758320
http://www.ncbi.nlm.nih.gov/pubmed/23083186
http://dx.doi.org/10.1103/PhysRevLett.109.148302
http://dx.doi.org/10.1063/1.4794156
http://www.ncbi.nlm.nih.gov/pubmed/23514519
http://dx.doi.org/10.1021/ma400526v
http://dx.doi.org/10.1021/mz500627r
http://dx.doi.org/10.1063/1.4936878
http://www.ncbi.nlm.nih.gov/pubmed/26723632
http://dx.doi.org/10.1122/1.3301246
http://dx.doi.org/10.1021/ma500755p


Polymers 2019, 11, 496 27 of 27

44. Anogiannakis, S.D.; Tzoumanekas, C.; Theodorou, D.N. Microscopic Description of Entanglements in
Polyethylene Networks and Melts: Strong, Weak, Pairwise, and Collective Attributes. Macromolecules 2012,
45, 9475–9492. [CrossRef]

45. Shivokhin, M.E.; van Ruymbeke, E.; Bailly, C.; Kouloumasis, D.; Hadjichristidis, N.; Likhtman, A.E.
Understanding Constraint Release in Star/Linear Polymer Blends. Macromolecules 2014, 47, 2451–2463.
[CrossRef]

46. Zhu, J.; Likhtman, A.E.; Wang, Z. Arm retraction dynamics of entangled star polymers: A forward flux
sampling method study. J. Chem. Phys. 2017, 147, 044907. [CrossRef]

47. Matsumiya, Y.; Masubuchi, Y.; Inoue, T.; Urakawa, O.; Liu, C.Y.; van Ruymbeke, E.; Watanabe, H. Dielectric
and Viscoelastic Behavior of Star-Branched Polyisoprene: Two Coarse-Grained Length Scales in Dynamic
Tube Dilation. Macromolecules 2014, 47, 7637–7652. [CrossRef]

48. Masubuchi, Y.; Yaoita, T.; Matsumiya, Y.; Watanabe, H. Primitive chain network simulations for asymmetric
star polymers. J. Chem. Phys. 2011, 134, 194905. [CrossRef] [PubMed]

49. Masubuchi, Y. Multichain Slip-Spring Simulations for Branch Polymers. Macromolecules 2018, 51, 10184–10193.
[CrossRef]

50. Zhou, Q.; Larson, R.G. Direct Molecular Dynamics Simulation of Branch Point Motion in Asymmetric Star
Polymer Melts. Macromolecules 2007, 40, 3443–3449. [CrossRef]

51. Bacova, P.; Hawke, L.G.D.; Read, D.J.; Moreno, A.J. Dynamics of Branched Polymers: A Combined Study by
Molecular Dynamics Simulations and Tube Theory. Macromolecules 2013, 46, 4633–4650. [CrossRef]

52. Bacova, P.; Lentzakis, H.; Read, D.J.; Moreno, A.J.; Vlassopoulos, D.; Das, C. Branch-Point Motion in
Architecturally Complex Polymers: Estimation of Hopping Parameters from Computer Simulations and
Experiments. Macromolecules 2014, 47, 3362–3377. [CrossRef]

53. Sukumaran, S.K.; Likhtman, A.E. Modeling Entangled Dynamics: Comparison between Stochastic
Single-Chain and Multichain Models. Macromolecules 2009, 42, 4300–4309. [CrossRef]

54. Shivokhin, M.E.; Read, D.J.; Kouloumasis, D.; Kocen, R.; Zhuge, F.; Bailly, C.; Hadjichristidis, N.;
Likhtman, A.E. Understanding Effect of Constraint Release Environment on End-to-End Vector Relaxation
of Linear Polymer Chains. Macromolecules 2017, 50, 4501–4523. [CrossRef]

55. Ramírez, J.; Sukumaran, S.K.; Likhtman, A.E. Hierarchical Modeling of Entangled Polymers. Macromol. Symp.
2007, 252, 119–129. [CrossRef]

56. Likhtman, A.E. Viscoelasticity and Molecular Rheology. In Comprehensive Polymer Science, 2nd ed.; Elsevier:
Amsterdam, The Netherlands, 2011.

57. Schieber, J. Fluctuations in entanglements of polymer liquids. J. Chem. Phys. 2003, 118, 5162–5166. [CrossRef]
58. Bisbee, W.; Qin, J.; Milner, S.T. Finding the tube with isoconfigurational averaging. Macromolecules 2011,

44, 8972–8980. [CrossRef]
59. Sukumaran, S.K.; Grest, G.S.; Kremer, K.; Everaers, R. Identifying the primitive path mesh in entangled

polymer liquids. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 917–933. [CrossRef]
60. Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-

dimensional polymeric systems. Comput. Phys. Commun. 2005, 168, 209–232. [CrossRef]
61. Tzoumanekas, C.; Theodorou, D.N. Topological analysis of linear polymer melts: A statistical approach.

Macromolecules 2006, 39, 4592–4604. [CrossRef]
62. Zhou, Q.; Larson, R.G. Primitive path identification and statistics in molecular dynamics simulations of

entangled polymer melts. Macromolecules 2005, 38, 5761–5765. [CrossRef]
63. Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003.
64. Likhtman, A.E.; Talib, M.S.; Vorselaars, B.; Ramirez, J. Determination of Tube Theory Parameters Using a

Simple Grid Model as an Example. Macromolecules 2013, 46, 1187–1200. [CrossRef]
65. Larson, R.G. Combinatorial Rheology of Branched Polymer Melts. Macromolecules 2001, 34, 4556–4571.

[CrossRef]
66. Freidlin, M.; Wentzell, A. Random Perturbations of Dynamical Systems; Springer: Berlin, Germany, 1998.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ma300912z
http://dx.doi.org/10.1021/ma402475a
http://dx.doi.org/10.1063/1.4995422
http://dx.doi.org/10.1021/ma501561y
http://dx.doi.org/10.1063/1.3590276
http://www.ncbi.nlm.nih.gov/pubmed/21599086
http://dx.doi.org/10.1021/acs.macromol.8b01739
http://dx.doi.org/10.1021/ma070072b
http://dx.doi.org/10.1021/ma4005988
http://dx.doi.org/10.1021/ma5003936
http://dx.doi.org/10.1021/ma802059p
http://dx.doi.org/10.1021/acs.macromol.6b01947
http://dx.doi.org/10.1002/masy.200750612
http://dx.doi.org/10.1063/1.1553764
http://dx.doi.org/10.1021/ma2012333
http://dx.doi.org/10.1002/polb.20384
http://dx.doi.org/10.1016/j.cpc.2005.01.020
http://dx.doi.org/10.1021/ma0607057
http://dx.doi.org/10.1021/ma050347s
http://dx.doi.org/10.1021/ma302103p
http://dx.doi.org/10.1021/ma000700o
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Slip-Spring Model
	Constructing Primitive Paths in Slip-Spring Model
	Static Properties: Primitive Path Analysis
	Dynamic Properties: First-Passage Time of Entanglement Disengagement
	Determining Relaxation Functions Using First-Passage Times of Entanglement Disengagement
	Conclusions
	References

