Supplementary Materials

Scanning probe lithography based highly sensitive and selective detection of unamplified genomic DNA of *Ganoderma boninense*

Ekta Rani ^{1,2} Siti Akhtar Mohshim ^{3,4} Muhammad Zamharir Ahmad ⁴ Royston Goodacre ^{1,5} Shahrul Ainliah Alang Ahmad ^{3,6,*} and Lu Shin Wong ^{1,*}

- ¹ Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; ades.ekta@gmail.com (E.R.); roy.goodacre@liverpool.ac.uk (R.G.)
- ² Present address: Department of Physical Sciences, Central University of Punjab, Mansa Rd, 151001 Bathinda, Punjab, India
- ³ Department of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; ctakhtar@gmail.com
- ⁴ Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia; zamharir@mardi.gov.my
- Present address: Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
- ⁶ Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- * Correspondence: l.s.wong@manchester.ac.uk (L.S.W.); ainliah@upm.edu.my (S.A.A.A.); Tel: +44-161306 8939 (L.S.W.); +60-389466805 (S.A.A.A.)

Supplementary Figure 1. (a) Representative AFM topography image of a substrate patterned with reporter DNA dissolved in DMF/aqueous solution (ink 1), (b) representative corresponding cross-section profile along the line between points 1 and 2 marked in (a).

Number of copies of genomic DNA in the sample

The estimated number of copies of the target gene were calculated in the following manner.

Given:

Avogadro's number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Average molecular weight of 1 bp (as sodium salt) = 650 Da

Number of base pairs in 1 copy of G. boninense genome¹, $BP_{genome} = 63.03 \times 10^6$ bp

Mass of genomic DNA in sample, $m_{sample} = 400 \text{ ng} = 4.0 \times 10^{-7} \text{ g}$

Therefore:

Molecular weight of 1 copy of genome = $BP_{genome} \times 650 = 4.10 \times 10^{10} \text{ Da}$

Number of moles of genome in sample = m_{sample} / (4.10 × 10¹⁰ Da) = **9.76** × **10⁻¹⁸ mol**

Number of copies of genome in sample = 2.44×10^{-19} mol $\times N_A = 5.88 \times 10^6$ copies

And thus:

Number of copies of genome in 160 ng of genomic DNA sample = 2.35×10^6 copies

Number of copies of genome in 30 ng of genomic DNA sample = 4.41×10^5 copies

References

Mercière, M.; Laybats, A.; Carasco-Lacombe, C.; Tan, J. S.; Klopp, C.; Durand-Gasselin,
T.; Syed Alwee, S. S. R.; Camus-Kulandaivelu, L.; Breton, F. Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. *Mycol. Prog.* 2015, 14, 103.