Supporting information for:

Boosting the adhesivity of π-conjugated polymers by embedding platinum acetylides towards

4 high-performance thermoelectric composites

- Tao Wan ¹, Xiaojun Yin ¹, Chengjun Pan ¹, Danqing Liu ¹, Xiaoyan Zhou ¹, Chunmei Gao ^{2,*},
 Wai-Yeung Wong ^{1,3,*} and Lei Wang ^{1,*}
- ¹ Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; <u>2160120407@email.szu.edu.cn</u> (T.W.), <u>xiaojunyin@szu.edu.cn</u> (X.Y.), <u>pancj@szu.edu.cn</u> (C.P.), <u>dqliu@szu.edu.cn</u> (D.L.), <u>zhouxiaoyan16@163.com</u> (X.Z.)
- 11 ² College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, PR China
- ³ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung
 Hom, Hong Kong, China
- 14 * Correspondence: gaocm@szu.edu.cn (C.G.); wai-yeung.wong@polyu.edu.hk (W.-Y.W.); wl@szu.edu.cn (L.W.)

16

17 Figure S1. Gel permeation chromatography (GPC) curves of the polymers the TBT-based homo-18 polymer with platinum acetylide unit absent in the π -conjugated main chain, namely P(TBT) and 19 platinum (II) acetylide based copolymer, P(TBT-Pt), where TBT is 20 4,7-di(thiophen-2-yl)benzo[c]-[1,2,5]thiadiazole.

21

Figure S2. Thermal gravimetric analysis (TGA) curves of the P(TBT-Pt), P(TBT), P(TBT-Pt)/SWCNT
(1:1, wt %) and P(TBT)/SWCNT (1:1, wt %) samples.

24

Figure S3. FTIR curves of the P(TBT-Pt)/SWCNT and P(TBT)/SWCNT hybrid films.

As shown in Figure S3, in comparison with the pristine P(TBT-Pt) film, the characteristic absorption peaks of the platinum acetylides (at around 2081 cm⁻¹) in P(TBT-Pt)/SWCNT composites exhibited 2 ~ 4 cm⁻¹ red – shift, which indicated enhanced π - π interactions between the P(TBT-Pt) and the SWCNTs.

Figure S4. Scanning electron microscopy (SEM) images of the P(TBT)/SWCNTs composite films with different SWCNT loding, a) 0%, b) 10%, c) 30%, d) 50%, e) 70%, f) 90%.

Figure S5. The C 1s, N 1s and S 2p spectra of the P(TBT)/SWCNT composite films.

35	Table S1. Key thermoelectric parameters of the P(TBT-Pt)/SWCNT and P(TBT)/SWCNT composite
36	films under different temperature (from r.t. to 400 K).

Composites	<i>o</i> max [S⋅cm ⁻¹]	S _{max} [μV·K ^{−1}]	PF _{max} [µW⋅m ⁻¹ ⋅K ⁻²]
P(TBT-Pt) /SWCNT	674.7	63.4	158.6
P(TBT) /SWCNT	873.2	77.7	121.7

37