Supplementary materials

Molecular Assembly between Weak Crosslinking Cyclodextrin Polymer and *trans*-Cinnamaldehyde for Corrosion Inhibition towards Mild Steel in 3.5% NaCl Solution: Experimental and Theoretical Studies

Yucong Ma¹, Baomin Fan^{1,*}, Tingting Zhou¹, Hua Hao², Biao Yang^{1,*} and Hui Sun¹

- ¹ School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China; jzfbm@163.com
- ² Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; haohua@iccas.ac.cn
- * Correspondence: fanbaomin@btbu.edu.cn (B. F.); ybiao@th.btbu.edu.cn (B.Y.) Tel.: +86-1358-157-2938 (B.F.)

Figure S1. Phase solubility curves of *trans*-cinnamaldehyde with β-cyclodextrin at 303, 313 and 318 K.

Figure S2. Fluctuations of (a) temperature and (b) energies for *trans*-cinnamaldehyde assembled with β -cyclodextrin through the narrow rim and wide rim during molecular dynamics simulation.

Figure S3. Quantum chemistry descriptors of guest molecule (*trans*-cinnamaldehyde): (a) optimal configuration, (b) mapping of molecular electrostatic potential, (c) HOMO and (d) LUMO distributions.

Table S1. Main composition of Q235A mild steel obtained from	optical emission spectroscopy.
--	--------------------------------

Element	С	Mn	Si	S	Р	Fe
Content (wt%)	0.16	0.5	0.3	0.05	0.05	balance

Table S2. Apparent stability constants and thermodynamic parameters of
 β -cyclodextrin/*trans*-cinnamaldehyde inclusion complex.

Temperature (K)	Ks (mol ⁻¹)	ΔH_{a} (J/mol)	ΔS_{a} (J/(mol·K))	ΔG_{a} (J/mol)
303	34.3			8954.8
313	31.1	-14054.2	-16.8	_
318	25.8			_