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Abstract: Several families of polymers possessing various end-groups are characterized by ion
mobility mass spectrometry (IMMS). A significant contribution of the end-groups to the ion collision
cross section (CCS) is observed, although their role is neglected in current fitting models described
in literature. Comparing polymers prepared from different synthetic procedures might thus, be
misleading with the current theoretical treatments. We show that this issue is alleviated by comparing
the CCS of various polymer ions (polyesters and polyethers) as a function of the number of atoms in
the macroion instead of the usual representation involving the degree of polymerization. Finally,
we extract the atom number density from the spectra which gives us the possibility to evaluate the
compaction of polymer ions, and by extension to discern isomeric polymers.

Keywords: mass spectrometry; ion mobility; polymers; data fitting; ion structure

1. Introduction

Due to its successful coupling to Mass Spectrometry (MS), Ion Mobility Spectrometry (IMS)
has become increasingly popular for probing the shape of gaseous ions [1]. This technique allows
separation of ions as a function of their mobilities in a buffer gas under the influence of an electric field.
The ion drift time across the mobility cell is directly proportional to their collision cross-section (CCS),
which strictly corresponds to a momentum transfer cross-section. However, it is often considered in
first approximation to reflect the 3D structures of gaseous ions [2–4]. While the concept of Ion Mobility
Mass Spectrometry (IMMS) dates back to the 1960s, its versatility and recent commercialization fueled
fundamental studies of a large range of analytes, such as biomolecules, host-guest systems, and
synthetic polymers [5–11].

In the field of polymers, IMMS is mostly used to follow the evolution of the CCS of various
macroions as a function of their charge states and degree of polymerization (DP) to ultimately
make it a powerful analytical tool. In this context, many polymers have been considered, such as
poly(ethylene glycol) (PEG) [12,13], poly(propylene glycol) (PPG) [14–16], poly(ethylene terephthalate)
(PET) [17], poly(styrene) (PS) [18], poly(methyl methacrylate) (PMMA) [15], polylactide (PLA) [9,19],
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and poly(ε-caprolactone) (PCL) [20]. Although linear polymers were mainly investigated, it is
worth stressing that more complex structures were also considered, such as cyclic or star-shaped
macromolecules [20–23]. Due to the intrinsic dispersity of polymers, it is possible to follow the
evolution of CCS for a large range of chain lengths by analyzing a limited number of samples. Recently,
some groups went a step further by deriving physicochemical data and structural interpretations by
fitting CCS/DP evolutions. For instance, Kokubo and Vana introduced a model based on globular
structures allowing determination of the characteristic ratio and dielectric constant of polyethers [24,25].
Haler et al. reported a method to deduce the structure of gaseous polymer ions without any input from
computational chemistry [26]. Both works used a power law with an (0,0) intercept to rationalize CCS
as a function of DP evolutions in the form of CCS = A DP

2
3 ; forcing the (0,0) intercept thus implies that

any following analysis is made by neglecting the contribution of end groups. The power exponent was
constrained to 2/3 to describe the evolution of spherical objects and the parameter A was left free [9,27].

In the present contribution, we aim to probe the contribution of the various polymer end-groups
typically encountered in polymerization strategies to the CCS chain-size evolution. To avoid possible
misleading interpretations arising from literature data, we will, thus, synthesize polymers with various
chain ends and the measured CCS will be plotted against the DP. We will also modify the reported
methodologies by restraining the type of ions that should be considered for fitting to only the spherical
macroions [9,27]. Each data set will be fitted by the equation CCS = A DP

2
3 + B, with both the A and

the B parameters being fitting parameters. In a second approach, another representation of the CCS
evolutions taking into account the size, in terms of number atoms, of the monomer units as well as
the size of the end groups will be introduced to characterize globular polymer ions as a function of
their compaction.

2. Materials and Methods

Polylactides with Mn = 2000 and 4000 g mol−1, poly(ε-caprolactones) with Mn = 3000 and
4000 g mol−1, and polypropiolactones with Mn= 2000 and 4000 g mol−1 were freshly synthetized by
using the procedures described below. All other compounds (α-methyl, ω-hydroxy-poly(ethylene
oxide)s (PEO) with Mn = 750, 1150, 2000 g mol−1, N,N′-dicyclohexylcarbodiimide (DCC),
4-dimethylaminopyridine (DMAP), 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), benzoic acid,
2-benzoylbenzoic acid, 3,3,3-triphenylpropionic acid, hexanoic acid, and palmitic acid were purchased
from Sigma Aldrich and used without further purification, except DBU, which was dried over CaH2

before being distilled. Trifluoromethane sulfonic acid (TfOH) was purchased from Merck and used as
received. Propiolactone is supplied by VWR and was dried on CaH2 for 24 h and distillated under
vacuum. Methanol used as an initiator was dried on molecular sieves 3 Å for 48 h. CHCl3 and CH2Cl2
solvent was dried using a MBraun Solvent Purification System (model MB-SPS 800) equipped with
alumina drying columns.

Preparation of α-methyl,ω-hydroxy-poly(L-lactide) (PLA) for Mn = 2000 g mol−1: In a glovebox
under nitrogen pressure (O2 < 5 ppm, H2O < 1 ppm), a vial was charged with L-lactide (L-LA) (1.00 g,
6.9 mmol). CH2Cl2 (10.0 g) was added, followed by the addition of methanol (30 µL, 0.74 mmol) and
DBU (112 µL, 0.74 mmol). After 1 min under stirring, benzoic acid (100 mg, 0.8 mmol) was added.
The as-obtained DBU/benzoic acid salt and residual L-LA were removed by precipitation into cold
methanol to give α-methyl, ω-hydroxy-P(L-LA). The amounts of methanol (10 µL, 0.25 mmol) and
DBU (39 µL, 0.26 mmol) and the polymerization time (2 min 30 s) were varied to produce PLA Mn =

4000 g mol−1.
Preparation of α-benzyl, ω-hydroxy-poly(ε-caprolactone) (PCL) for Mn = 1700 g mol−1: In a

glovebox under nitrogen atmosphere (O2 < 5 ppm, H2O < 1 ppm), a glass vial was charged with
320 µL ε-caprolactone (ε-CL) (2.8 mmol), 16.9 mg benzoic acid (0.14 mmol), and 12 µL benzyl alcohol
(0.11 mmol). The mixture was let to stir at 155 ◦C for 20 h and was subsequently cooled down and
diluted in a minimum amount of CH2Cl2. After solubilization, the medium was precipitated in cold
heptane to give α-benzyl,ω-hydroxy-PCL.
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Preparation of α-methyl,ω-hydroxy-poly(propiolactone) (PPL) for expected Mn = 1800 g mol−1:
In a previously flame-dried vial, PL (187 mg, 2.9 mmol) and CH3OH (5 µL, 0.12 mmol) were solubilized
in 3.5 g of CHCl3. After 10 min under stirring at 50 ◦C, a solution of TfOH in CHCl3 (11 µl of TfOH
(0.12 mmol) in 0.49 g of CHCl3) was injected into the medium ([PL]0 = 0.71 M, [PL]0/[CH3OH]0/[TfOH]0

= 24/1/1). The polymerization was conducted at 50 ◦C for 5 min, cooled down, and precipitated twice
in cold heptane.

General procedure for chain end functionalization: To start, 100 mg of polymer (PEO or PLA)
(1 equivalent) were dissolved in 3 mL of tetrahydrofuran (THF). To the solution of polymer, 3 equivalents
of carboxylic acid-based reagents (benzoic acid, 2-benzoylbenzoic acid, 3,3,3-triphenylpropionic acid,
hexanoic acid, or palmitic acid), and 1 equivalent of N,N′-dicyclohexylcarbodiimide (DCC) and
4-dimethylaminopyridine (DMAP) were then added. After 24 h under stirring at room temperature,
the polymers were recovered via precipitation into cold diethyl ether (for PEOs) or cold hexane (for
PLAs), dried under vacuum, and used as is.

End-capped polymer characterization: In the present paper, we did not optimize the end-capping
procedures, since using mass spectrometry, mass discrimination between end-capped and pristine
macromolecules is readily achieved. Each functionalized polymer sample was analyzed by mass
spectrometry (MS) using a Matrix-assisted Laser Desorption/Ionization (MALDI) ion source. Partial or
quantitative functionalization was attested by the appearance of additional signals with adequate mass
differences compared to the precursor α-methyl, ω-hydroxy polymers. For the sake of illustration,
Figure 1 presents the MALDI mass spectra recorded for functionalized and non-functionalized PEOs
with Mn = 2000 g mol−1.

Ion Mobility Mass Spectrometry: Ion mobility mass spectrometry experiments were conducted
with a Waters Synapt G2-Si (Manchester, UK), a Traveling Wave Ion Mobility instrument equipped with
an Electrospray (ESI) ion source. Polymer solutions were prepared in acetonitrile at a final concentration
of 0.5 µM and NaI was added to reach a concentration of 15 µM in Na+. These solutions were infused
in the ESI ion source with a flow rate of 5 µL min−1 using a Harvard Pump11 Elite (Holliston, MA, USA)
syringe pump. ESI parameters used (Positive ion mode): Capillary voltage at 3.1 kV, sampling cone at
30 V, source temperature at 100 ◦C, and desolvation temperature at 200 ◦C. Ion mobility experiments
were performed using N2 as a drift gas and a wave height of 40 V. Experiments were carried out three
times with varied wave velocity (400–800 m s−1) and drift gas flow (60–90 mL min−1). Arrival times
were extracted using Waters MassLynx and subsequently converted to collision cross sections (CCS) in
helium by the polymer calibration using poly(ethylene glycol) and PLA as calibrants [28]. Reported
CCS values are averaged over three sets of experiments and calibrations. It should be emphasized
that the conversion from N2 arrival times to He CCS is susceptible to induce bias depending on the
ion’s nature, charge state, and size [3,29]. However, since we analyse here ions having similar chemical
natures, sizes, and charge states to our calibrants, we do believe that the possible errors are negligible
and do not alter the conclusions drawn in the present manuscript.

Data treatment and fitting: Data processing and fittings were performed using Sigmaplot 11.0
(Systat, San Jose, CA, USA). All data points used for fittings are shown in each figure, except for
Figure 2.
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Figure 1. MALDI mass spectra recorded for functionalized and non-functionalized PEO with Mn = 
2000 g mol−1. Functionalization was attested by the appearance of additional signals with adequate 
mass differences compared to the α-methyl, ω-hydroxy PEO used as a starting material (top). 
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3.1. Model Description 

Upon ESI, α-methyl, ω-hydroxy-PEO and PLA polymers are detected as adducts with sodium 
ions (Figure 2A). For simplicity, each PX polymer (X = EO or LA) with a Mn = 1000 g mol−1 will be 
named PX 1000 in the rest of this manuscript. Polymer ions are subjected to ion mobility experiments 
and are separated according to their electrophoretic mobilities in the buffer gas [1,3]. From such 
measurements, the ion drift times through the mobility cell can be recorded and converted into 
collision cross sections (CCS). In the current literature, ion mobility data are often represented for a 
given charge state as a function of the degree of polymerization (DP) or as a function of m/z to account 
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2000 g mol−1. Functionalization was attested by the appearance of additional signals with adequate
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Figure 2. (A) Electrospray (ESI) Mass spectra of α-methyl, ω-hydroxy-Poly(ethylene oxide) (PEO) 
1000, poly(L-lactide) (PLA) 1500, PEO 2000, and PLA 4000. Detected ion series with different charge 
states, 1+, 2+, 3+, and 4+ are highlighted in different colors. (B) Collision cross section evolution of 
singly and doubly charged PEO and PLA ions as a function of the degree of polymerization (DP). 
Fittings of the data corresponding to globular structures (singly charged and doubly charged beyond 
the plateau) are shown in dark grey along with fitting equations and regression coefficients. 

Whereas the CCS of singly charged oligomers increases steadily with growing DP, the CCS of 
doubly charged oligomers presents a non-monotonic evolution. This behavior is extensively 
described in the literature and is associated with different conformations for gaseous polymer ions 
[9,12,19,30]. Singly charged polymer ions fold around the cation to form a globule, while small 
multiply charged ions adopt stretched shapes due to the Coulombic repulsion of the complexed 
cations and are often described as “beads on a string” conformations [30]. Longer chains can screen 
the electrostatic repulsion and fold into globular species. The tipping point between stretched and 
globular conformations is characterized by a plateau in the CCS/DP or CCS/m/z evolution [9,12,19,30]. 
Here, we only fit the ion mobility data for the globular species, for which the constrained 2/3 power 

Figure 2. (A) Electrospray (ESI) Mass spectra of α-methyl,ω-hydroxy-Poly(ethylene oxide) (PEO) 1000,
poly(L-lactide) (PLA) 1500, PEO 2000, and PLA 4000. Detected ion series with different charge states,
1+, 2+, 3+, and 4+ are highlighted in different colors. (B) Collision cross section evolution of singly and
doubly charged PEO and PLA ions as a function of the degree of polymerization (DP). Fittings of the
data corresponding to globular structures (singly charged and doubly charged beyond the plateau) are
shown in dark grey along with fitting equations and regression coefficients.

3. Results

3.1. Model Description

Upon ESI, α-methyl,ω-hydroxy-PEO and PLA polymers are detected as adducts with sodium
ions (Figure 2A). For simplicity, each PX polymer (X = EO or LA) with a Mn = 1000 g mol−1 will be
named PX 1000 in the rest of this manuscript. Polymer ions are subjected to ion mobility experiments
and are separated according to their electrophoretic mobilities in the buffer gas [1,3]. From such
measurements, the ion drift times through the mobility cell can be recorded and converted into collision
cross sections (CCS). In the current literature, ion mobility data are often represented for a given charge
state as a function of the degree of polymerization (DP) or as a function of m/z to account for the
evolution of the ion shapes along the polymer distribution [9,10,20,21,30]. CCS are here recorded for
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singly and doubly charged PEO and PLA and plotted as a function of DP (Figure 2B). To keep the
discussion focused, higher charge states will not be involved in the fitting analysis.

Whereas the CCS of singly charged oligomers increases steadily with growing DP, the CCS of
doubly charged oligomers presents a non-monotonic evolution. This behavior is extensively described
in the literature and is associated with different conformations for gaseous polymer ions [9,12,19,30].
Singly charged polymer ions fold around the cation to form a globule, while small multiply charged
ions adopt stretched shapes due to the Coulombic repulsion of the complexed cations and are often
described as “beads on a string” conformations [30]. Longer chains can screen the electrostatic repulsion
and fold into globular species. The tipping point between stretched and globular conformations is
characterized by a plateau in the CCS/DP or CCS/m/z evolution [9,12,19,30]. Here, we only fit the ion
mobility data for the globular species, for which the constrained 2/3 power law is well established.
We also use the CCS = A DP

2
3 + B equation, where A and B are free parameters, so that the possible

contribution of the chain ends to the CCS is not neglected [24–26]. To strengthen the postulate that
chain ends should not be ignored when fitting ion mobility data, α-methylω-hydroxyl PEO and PLA
samples are functionalized on their hydroxy end groups by molecules of growing sizes, containing
either aliphatic or aromatic groups (See Figure 1 and Table 1).

Table 1. Naming convention for the functionalized polymers.

End-Groups Naming Number of Atoms *

CH3O/H CH3OH 6
CH3O/C(=O)C5H11 C6 23
CH3O/C(=O)C15H31 C16 53

CH3O/C(=O)Ph PhCOOH 18
CH3O/C(=O)Ph(C=O)Ph Ph2 30
CH3O/C(=O)CH2CPh3 Ph3 44

Note: * The number of atoms of the end-groups are reported regardless of the nature (H, C, O) of the atoms.
(Ph stands for Phenyl).

3.2. Contribution of the Chain Ends to the Collision Cross Section

The α-methyl ω-hydroxy PEO and PLA samples were esterified using five aliphatic and aromatic
acids. The naming convention of the produced α-methyl ω-ester polymers is presented in Table 1.
MALDI mass spectra of each functionalized sample are shown in Figure 1 for PEO2000 and all others
are reported in Figures S1–S4.

Ion Mobility Mass Spectrometry (IMMS) analyses were performed on the pristine and
functionalized PEO and PLA. The evolution of the CCS as a function of DP for globular singly
and doubly charged ions are represented in Figure 3. We recall here that we consider only the globular
structures for the fits, whereas the full range of CCS/DP values are plotted in Figure 2 (compact and
extended ions).

We observe that the CCS evolution is specific for each polymer, thus demonstrating that the size
of the chain ends should not be ignored when their contribution to the global CCS is not negligible,
especially for small chains and bulky end-groups. Each data set is successfully fitted by the equation
CCS = A DP

2
3 + B, with regression coefficients consistently larger than 0.99. The parameters A and B

obtained for each polymer are reported in Table 2. The B parameter appears to increase with the size
of the chain end and has similar values for a given end group irrespective of the polymer backbone
nature. The small deviations between PEO and PLA, as well as the fact that B is slightly negative for
methanol-initiated polymers, are attributed to fitting and CCS calibration uncertainties. It should be
emphasized that B does not represent the exact CCS of the cationized end groups but rather stands
for the contribution of the chain end to the global CCS. Indeed, our model considers globular ions
as perfect spheres. However, depending on the location of the bulky chain ends in the globular ion,
either on the surface or within the core of the spherical object, they might contribute differently to the
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global CCS. The A parameters are consistent among the polymer backbones, irrespective of the end
group, with a maximum deviation less than 10%. From the A parameters, it appears that the CCS of
PLA increases much more per added monomer unit than for PEO, which is not surprising given that a
lactidyl unit contains three times more atoms than an ethylene oxide unit.
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singly and doubly charged globular ions for α-methylω-hydroxy and α-methylω-ester-PEO and PLA
samples. Fittings are performed using the equation CCS = A DP

2
3 + B; the equations and regression

coefficients for the smallest (CH3OH) and bulkiest (C16) functionalized polymers are shown.

Table 2. Collision cross section evolution as a function of the degree of polymerization—parameters
obtained from fitted curves for a CCS = A DP

2
3 + B equation (see also Figure 3).

PEO PLA

End-Groups A B A B

CH3O/H 31.77 −2.80 65.69 −6.38
CH3O/C(=O)C5H11 30.77 27.41 63.90 22.93
CH3O/C(=O)C15H31 28.80 75.24 60.96 67.60

CH3O/C(=O)Ph 30.91 22.65 62.85 24.00
CH3O/C(=O)Ph(C=O)Ph 29.63 49.12 62.78 38.13
CH3O/C(=O)CH2CPh3 28.89 70.88 61.21 60.77

Thus, it appears that the B parameter of the fitting for CCS/DP evolutions provides information
on the contribution of the chain end to the global CCS. Although the information of the nature of the
monomer unit is contained in the A parameter, this is also slightly impacted by the end-groups. To
provide a more general method for the cross-comparisons of polymers irrespective of the nature of
their monomer units or chain ends, we suggest representing the CCS evolutions as a function of the
total number of atoms.

3.3. Considering Different Chain Ends and Polymer Backbones by Counting Atoms

As introduced by Bowers et al. when describing the evolution of the CCS of various polyethers
with different monomer sizes [14], the representation of CCS as a function of the number of atoms
(nAtoms) helps accounting for the size of the chain ends and of the monomer units. In Figures S5 and
S6, we separately plot the evolution of the CCS as a function of the atom numbers for PEO and PLA
bearing the different end-groups. Each polymer data set may be fitted by a single curve described by
CCS = A′nAtoms

2
3 . In this type of representation, the equation encompasses the (0,0) intercept, since

the CCS is nullified when there is no atom. A′ includes information about the contribution of each
additional atom, and by extension of each additional monomer unit, to the global CCS. Indeed, as
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presented in Table 3, the A′ factor seems to be clearly associated with the nature of the monomer unit,
since for the PEO and PLA polymers, the averaged A′ factors respectively amount to 8.55 ± 0.07 and
9.29 ± 0.03. The weak differences between the A′ parameters for polymers presenting different side
chains arises from the fact that when considering the contribution of the end groups only in terms
of the number of atoms, we implicitly assume that the chemical nature of the corresponding atoms
does not impact the CCS evolution. In other words, we assume that the end groups do not participate
in the growing of the sphere. Actually, the weak influence of the chain-end nature to the A′ factor
comes from the following aspects. In the present systems, we are dealing with globular or spherical
macro ions (singly charged ions or doubly charged ions after the folding), with the charged site being
entangled somewhere within the globule and being associated with the monomer unit carbonyl groups,
as described in our previous papers using Molecular Dynamics simulation [9,19]. The chain ends that
are not involved in the charge solvation, are thus more than likely located at the outer surface of the
sphere, making some interactions with the surface groups. This indicates that the structures of the
selected end groups are not likely to play a significant role in the shaping of the polymer molecules
towards the overall chain conformation. In future works, we will consider polymers with charged
bulky end-groups or end-groups that participate in the charge stabilization, as those end-groups will
be more than likely responsible for the folding of the gaseous polymer ions.

Table 3. Collision cross section evolution as a function of the atom numbers—parameters obtained
from fitted curves for a CCS = A′ nAtoms

2
3 equation (See Figures S5 and S6).

PEO PLA

End-Groups Atom Number
in the End-Groups * A′ A′

CH3O/H 6 8.42 9.26
CH3O/C(=O)Ph 18 8.55 9.28

CH3O/C(=O)C5H11 23 8.54 9.31
CH3O/C(=O)Ph(C=O)Ph 30 8.62 9.26
CH3O/C(=O)CH2CPh3 44 8.63 9.31

CH3O/C(=O)C15H31 53 8.55 9.33
Average 8.55 ± 0.07 9.29 ± 0.03

* The numbers of atoms of the end-groups are reported regardless of the nature (H, C, O) of the atoms. (Ph stands
for Phenyl).

For the present data set, the impact of the structure of the chain ends on the A′ parameter remains
weak, as confirmed by Figure 4, in which we combined the CCS data of all the PEO and PLA polymers
as a function of the total atom numbers and by only considering the chain end contribution in terms of
atom numbers. All data points of a given type of polymer align on one unique curve (regardless of the
nature of the end-groups), meaning that the sole number of atoms in these end-groups seems to be a
good estimate for their contribution, with no consideration of the chemical nature of these atoms.

From the global data of Figure 4, we derive a parameter A′ directly related to the nature of the
polymers. As the influence of the chain end chemical nature to the A′ parameter is negligible here, as
discussed above, the CCS evolutions of any polymer become a characteristic of the polymer backbone.

To reinforce this observation, IMMS analyses were performed on polymers with various
backbone natures and end groups, namely α-methyl ω-C6-PEO, α-methyl ω-Ph3-PLA, α-methyl
ω-hydroxy-poly(propiolactone) (PPL), and α-benzylω-hydroxy-poly(ε-caprolactone) (PCL). Recorded
drift times are converted to CCS and are represented in Figure 5 for each globular object as a function
of the number of atoms in the macroion.
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doubly charged globular ions of pristine and functionalized PEO and PLA. Fittings were performed
using the equation CCS = A′ nAtoms
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are shown.
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Figure 5. Evolution of the collision cross-section as a function of the number of atoms for singly and
doubly charged globular ions produced from α-methylω-C6-PEO (Black), α-methylω-Ph3 -PLA (Red),
α-methyl ω-hydroxy-PPL (Blue), and α-benzyl ω-hydroxy-PCL (Green). Fittings are performed using
the equation CCS = A′ nAtoms

2
3 ; the equations and regression coefficients of each fit are also reported.

Interestingly, the CCS evolutions for each polymer backbone are rationalized by a different
equation. Each additional monomer unit, therefore, contributes differently to the global CCS regardless
of the chain end. By assuming that the CCS of a globular ion corresponds to the projection surface of
a perfect sphere, i.e., a disk, the sphere volume can be derived from the CCS by Equation (1). This
assumption is clearly harsh, as the CCS does not strictly correspond to a surface but to a momentum
transfer cross-section, as ion mobility spectrometry does not directly probe surfaces but ion mobilities [4].
We still make this approximation as we aim here to compare the compaction of globular polymer
backbones and not to derive exact physicochemical values. Additionally, based on the fitting curve, we
can also determine the CCS by Equation (2). Finally, by combining both equations, it is possible to
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determine the atomic number density, Equation (3). The value is multiplied by 1000 to have the atomic
number density by nm3 instead of in Å3.

V =
4
3

√
CCS3

π
(1)

CCS = A′ (natoms)
2/3 (2)

natoms

V

[
nm−3

]
=

3
√
π

4
√

A′3
1000 (3)

Therefore, by using the A′ parameter from each fitting presented in Figure 5, an atomic number
density can subsequently be determined for each polymer family, as illustrated in Figure 6.
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Figure 6. Atomic number densities determined by using Equation (3) for the different polymers.

Interestingly, it is now possible to classify folded polymers ions based on the atomic number
density independently of the end-groups. PLA and PPL backbones are isomeric, as each lactidyl unit
is the isomer of two consecutive propiolactone units. Since the presence of the pending CH3 groups in
the lactidyl units hinders the compaction of the structure, the contribution of each monomer unit to the
global CCS is, thus, expected to be larger for PLA than for PPL, in full consistency with Figure 6. In
addition, for polyesters, it appears that increasing the number of methylene groups induces a better
compaction of the structure due to the enhanced flexibility of the polymer chain. Finally, PEO folds
into more compact globules for the same number of atoms due to the lack of carbonyl moiety in the
monomer unit. It should be emphasized that small deviations in atomic number densities will likely be
observed for different end groups, as discussed above for deviations in the A′ parameters. However,
these divergences will be negligible compared to the compaction of various polymer backbones.

Depending on the type of representation, whether by reporting ion mobility data as a function
of DP or number of atoms, the contribution of chain ends to the global CCS or the contribution
of each additional atom (and monomer unit) to the global CCS can, thus, be highlighted but are
never neglected.

4. Conclusions

In the present paper, we discussed IMMS data fitting methodologies reported in the current
literature with the aim of deriving physicochemical data and structural interpretations, while neglecting
the contribution of chain ends to the global CCS. Due to the diversity of synthetic strategies leading to
the possibility to initiate end-cap polymer backbones by different end groups, these procedures are
found to promote ambiguous interpretations. This issue can be solved with an adapted approach,
also considering the contribution of the chain ends to the CCS. To highlight this, polymers with
various chain ends were synthetized and analyzed by IMMS. Only globular ions were considered
since, to the best of our knowledge, they are the only type of ions for which a mathematical model
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describing the size evolution of their CCS exists and is validated among the IMMS community. It
appears that the CCS evolutions can only be rationalized by the equation CCS = A DP

2
3 + B, where B

corresponds to the contribution of the chain ends to the global CCS. However, this type of equation
makes cross-comparison of different polymer backbones unreliable, since the size of each monomer
unit is not considered. In contrast, representation of IMMS data as a function of the number of atoms
accounts for both the size of end groups and monomer units. Atomic number densities can be further
derived for four polymer families to describe the relative compaction of globular macroions. When
isomeric polylactide and poly(propiolactone) chains are considered, it appears that the presence of the
pending methyl groups in polylactide is responsible for the lower atomic number density.

We hope that this work will raise awareness among the polymer mass spectrometry community
that fitting laws for ion mobility data should be as universal as possible and should consider the
diversity of possible end groups. We also hope that this work will fuel further fundamental studies on
gaseous polymer ions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/4/688/s1.
Figure S1. MALDI mass spectra recorded for functionalized and non-functionalized PEO with Mn = 750 g mol−1.
Functionalization was attested by apparition of additional signals with adequate mass differences compared to the
α-methyl,ω-hydroxy polymer. Figure S2. MALDI mass spectra recorded for functionalized and non-functionalized
PEO with Mn = 1150 g mol−1. Functionalization was attested by apparition of additional signals with adequate
mass differences compared to the α-methyl,ω-hydroxy polymer. Figure S3. MALDI mass spectra recorded for
functionalized and non-functionalized PLA with Mn = 2000 g mol−1. Functionalization was attested by apparition
of additional signals with adequate mass differences compared to the α-methyl, ω-hydroxy polymer. Figure
S4. MALDI mass spectra recorded for functionalized and non-functionalized PLA with Mn = 4000 g mol−1.
Functionalization was attested by apparition of additional signals with adequate mass differences compared to the
α-methyl,ω-hydroxy polymer. Figure S5. Evolution of the collision cross section as a function of the number of
atoms for singly and doubly charged globular ions for pristine and functionalized PEO and PLA with aliphatic end
groups. Fittings were performed using the equation CCS = A′ nAtoms

2
3 ; the equations and regression coefficients

of each fit are shown. Figure S6. Evolution of the collision cross section as a function of the number of atoms for
singly and doubly charged globular ions for functionalized PEO and PLA with aromatic end groups. Fittings were
performed using the equation CCS = A′ nAtoms

2
3 ; the equations and regression coefficients of each fit are shown.
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