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Abstract: The mechanical behaviour of carbon-black (CB)-filled rubber is temperature-dependent. It
is assumed that temperature affects the fatigue life of rubber products by changing the tear energy
of the material. The static tearing behaviour and fatigue crack propagation behavior of CB-filled
rubber at different temperatures were investigated in this study. The critical tear energy of the
material was measured through static tear fracture tests at different temperatures; it is shown that
the critical tear energy decreases exponentially with increasing temperature. A fatigue crack growth
test of a constrained precracked planar tension specimen was conducted at room temperature; the
measurements verify that the fatigue crack growth follows a Paris–Erdogan power law. Considering
the temperature dependence of the critical tear energy, the temperature dependent fatigue crack
growth kinetics of CB-filled rubber was established, and the fatigue life of the material at high
temperatures was predicted based on the kinetics. The predictions are in good agreement with
experimental measurements.
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1. Introduction

The excellent mechanical properties of rubber enable its widespread use in many applications [1–3].
Many rubber components, such as tires, vibration isolators, and impact bumpers, experience cyclic
loading, which could lead to fatigue failure. Hence, estimating the fatigue life of rubber components
has become a highly important industrial issue. To prevent the fatigue failure of rubber components in
service, studies focusing on the durability of rubber have been increasing significantly for the past few
years [4–9], and the prediction of fatigue failure in rubber has become very important [7–9].

During fatigue loading, due to the self-heating of the rubber and environmental conditions, rubber
components can reach temperatures up to 110 ◦C [10]. Several studies have investigated the effect of
temperature on the fatigue behaviour of rubber materials. For example, Lake and Lindley showed
that the fatigue life of styrene butadiene rubber (SBR) gum decreases by a factor of 10,000 when the
temperature increases from 0 to 100 ◦C, and the fatigue life of natural rubber (NR) gum decreases by a
factor of 4 for the same temperature range [11]. Wu showed that the fatigue life of NR decreases with
increasing temperature, and it decreases obviously when the temperature is higher than 75 ◦C [12].
An increase in temperature leads to a decline in the anti-fatigue property of the rubber. Therefore, the
effective prediction of the fatigue life at different temperatures is of great significance for the timely
replacement and extension of the service life of rubber products.

Although fatigue life prediction at different temperatures is very important for rubber components
to ensure their reliability and safety, more research is needed on the fatigue life prediction considering
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temperature factors. To better understand and predict the fatigue life of rubber components, the
temperature dependence of the critical tear energy is experimentally determined in the present study;
the fatigue crack growth kinetics and fatigue life prediction model at high temperatures are also
developed based on the fatigue crack growth law at room temperature.

2. Materials and Testing

2.1. Basic Mechanical Behaviour

The tested material was CB-filled natural rubber with a shore-A hardness of 60, generously
provided by the Zhuzhou Times New Material Technology Co., Ltd. in China. The main formulation
of the rubber compound was as follows: 100 phr NR (Thailand RSS3), 42 phr carbon black (N330),
5 phr zinc oxide, 2 phr antioxidant, 2.2 phr sulfur, 2 phr stearic acid and 0.8 phr vulcanization activator.
To understand the basic mechanical properties of the material, simple tension, planar tension and
equal biaxial tension tests were carried out. The stress–strain curves for these tests are shown in
Figure 1a–c, respectively.
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Figure 1. Loading/unloading stress-strain curves of carbon-black (CB)-filled rubber under (a) simple 

tension, (b) planar tension and (c) equal biaxial tension at 23 °C. 
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Figure 1. Loading/unloading stress-strain curves of carbon-black (CB)-filled rubber under (a) simple
tension, (b) planar tension and (c) equal biaxial tension at 23 ◦C.

2.2. Tear Fracture Tests

A high temperature shortens the fatigue life of rubber products. The main reason for this is that
an increasing temperature reduces the crack propagation resistance of the material. According to
Thomas [13], the tear energy of a rubber material is defined as the energy spent per unit thickness per
unit increase in crack length:

Ta = −

(
∂W
∂A

)
u

(1)

where Ta is the tear energy (or energy release rate), W is the elastic energy stored in the specimen, and
A is the area of one surface of the crack. The suffix u denotes differentiation with constant displacement
of the boundaries on which forces are applied. For a constrained precracked specimen, which consists
of a wide strip of rubber material whose long side edges are attached to rigid grips, as shown in
Figure 2, the tear energy is given by

Ta = wh0 (2)

where h0 is the specimen height and w is the storage energy density of the specimen under constrained
tension, which can be found from the stress–strain curve of the specimen.
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Figure 2. Dimensions of the tearing test specimen.

The critical tear energy Tc is a criterion index to determine if the crack is unstable. To obtain the
temperature dependence of Tc for CB-filled rubber, the rubber specimens were stretched at a strain
rate of 0.01 s−1 at four different temperatures (−40, 23, 40 and 70 ◦C) to complete fracture on an Instron
tensile testing machine. The tear fracture tests at each specified temperature were repeated three times.

2.3. Fatigue Crack Growth Tests (23 ◦C)

Fatigue crack growth tests were performed on an MTS 810 machine at an ambient temperature
of 23 ◦C by applying fatigue loads in displacement-controlled mode to the specimens, as shown in
Figure 2, to obtain the relationship between the crack growth rates and tear energy. The specimens
were stretched by a prescribed sinusoidal pulse with a maximum strain εmax and a minimum strain
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εmin at a frequency of 3 Hz, and the crack growth rates were obtained by measuring the changes in the
crack contour length with fatigue cycles.

The strain loading history, which comprises 9 stages, is shown in Figure 3. The 9 stages can be
categorized into 3 loading types: (i) when strain ratio R = 0 with increasing εmax, such as in stages 1, 4,
7; (ii) when R = 0 while εmax remains constant, such as in stages 2, 5, 8; (iii) when 0 < R ≤ 0.8 and εmax

remains constant while εmin increases gradually, such as in stages 3, 6, 9. The detailed strain history is
listed in Table 1.

Polymers 2019, 11, x FOR PEER REVIEW 4 of 11 

 

strain 
min at a frequency of 3 Hz, and the crack growth rates were obtained by measuring the 

changes in the crack contour length with fatigue cycles.  

The strain loading history, which comprises 9 stages, is shown in Figure 3. The 9 stages can be 

categorized into 3 loading types: (i) when strain ratio R = 0 with increasing 
max , such as in stages 

1, 4, 7; (ii) when R = 0 while 
max  remains constant, such as in stages 2, 5, 8; (iii) when 0 0.8R   

and
max remains constant while 

min increases gradually, such as in stages 3, 6, 9. The detailed strain 

history is listed in Table 1. 

0 1x10
5

2x10
5

3x10
5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

9865432

 Maximum strain

 Minimum strain

 

 
S

tr
a

in
 

Cycles

1 7 98654321 7

 

Figure 3. Graphical strain loading history. 

Table 1. Detailed fatigue strain history. 

Loading Stages R 
  

N/Cycles 

1 0 0 0.05~0.125 0~15,000 

2 0 0 0.125 15,000~76,000 

3 0~0.8 0~0.10 0.125 76,000~176,000 

4 0 0 0.125~0.425 176,000~190,000 

5 0 0 0.425 190,000~210,000 

6 0~0.8 0~0.34 0.425 210,000~246,000 

7 0 0 0.425~0.4625 246,000~248,000 

8 0 0 0.4625 248,000~261,000 

9 0~0.8 0~0.37 0.4625 261,000~282,500 

3. Test Results and Discussion 

3.1. Temperature Dependence of Critical Tear Energy 

The stress–strain curves for the tear fracture tests at four specified temperatures are shown in 

Figure 4. The critical tear energy is calculated by Equation (2), and the averaged values for different 

temperatures are plotted in Figure 5. It is obvious that the critical tear energy decreases 

exponentially with increasing temperature. Thus, the critical tear energy at temperature T can be 

expressed as follows: 

( )c c,ref 0expT T k T T= − −    
(3) 

where 
c,refT denotes the critical tear energy at a reference temperature 

0T  and k measures the 

degree of the temperature sensitivity. 

min max
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Table 1. Detailed fatigue strain history.

Loading Stages R εmin εmax N/Cycles

1 0 0 0.05~0.125 0~15,000
2 0 0 0.125 15,000~76,000
3 0~0.8 0~0.10 0.125 76,000~176,000
4 0 0 0.125~0.425 176,000~190,000
5 0 0 0.425 190,000~210,000
6 0~0.8 0~0.34 0.425 210,000~246,000
7 0 0 0.425~0.4625 246,000~248,000
8 0 0 0.4625 248,000~261,000
9 0~0.8 0~0.37 0.4625 261,000~282,500

3. Test Results and Discussion

3.1. Temperature Dependence of Critical Tear Energy

The stress–strain curves for the tear fracture tests at four specified temperatures are shown in
Figure 4. The critical tear energy is calculated by Equation (2), and the averaged values for different
temperatures are plotted in Figure 5. It is obvious that the critical tear energy decreases exponentially
with increasing temperature. Thus, the critical tear energy at temperature T can be expressed as follows:

Tc = Tc,ref exp[−k(T − T0)] (3)

where Tc,ref denotes the critical tear energy at a reference temperature T0 and k measures the degree of
the temperature sensitivity.
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Fitting the experimental data in Figure 5 by Equation (3) with T0 = 23 ◦C yields k = 0.014/◦C
and Tc,ref = 30.2 kJ/m2. The correlation coefficient r = 0.994, which indicates that the model fit the
experimental data well. Thus, the critical tear energy of the tested CB-filled rubber was related to the
temperature, as described by Equation (4):

Tc = 30.2 exp[−0.014(T − T0)] (4)

3.2. Fatigue Crack Growth at 23 ◦C

The specimen used for fatigue crack growth testing is the same as those used in tear fracture
tests, and it was subjected to cyclic strain as depicted in Figure 3. Figure 6 shows the corresponding
crack front profiles for different loading stages, from which the crack length can be determined for
any specified load cycle by image analysis, as shown in Figure 7. Consequently, the crack growth rate
da/dN can also be determined by differentiating the crack length with respect to load cycle, and plotted
as a function of the corresponding tear energy Ta,max, which is the driving force for crack growth
corresponding to a maximum strain εmax in a fatigue cycle. For an intermediate tear energy region,
e.g., 0.3 kJ/m2

≤ Ta,max < 10 kJ/m2, the relation of da/dN ∼ Ta,max for rubbers often approximates the
Paris–Erdogan power law from [14]:

da
dN

= rc ·

(
Ta,max

Tc

)F

(5)
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where rc denotes the critical crack growth rate. The determination of the model parameters requires
curve fitting of the double logarithmic correlation of the crack growth rate and the tear energy. Figure 8
shows the measured da/dN ∼ Ta,max plot of the tested rubber on a double logarithmic scale. Recalling
Tc = 30.2 kJ/m2, as obtained in the static tear fracture test at 23 ◦C, the Paris–Erdogan parameters,
rc and F, for the tested CB-filled rubber can be determined by fitting the plotted points in Figure 8
with Equation (5). The resultant fatigue crack growth kinetics for R = 0 at 23 ◦C is then expressed by
Equation (6), where rc = 0.039 mm/cycle, F = 1.96.

da
dN

= 0.039
(

Ta,max

30.2

)1.96

= 4.90× 10−5(Ta,max)
1.96 (6)
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4. High-Temperature Fatigue Life Prediction

Equation (5) shows that the fatigue crack growth rate depends on both the tear energy (Ta,max),
which is the crack driving force, and the critical tear energy (Tc), which is the crack growth resistance.
In the previous section, the temperature dependence of Tc was obtained, as given by Equation (4).
Because of the viscoelasticity of CB-filled rubber, it is generally accepted that the storage energy density
of the material under cyclic loading is also temperature-dependent. That is, the tear energy (Ta,max)
should vary with temperature. For the cyclic planar tension of the constrained precracked specimen,
the tear energy is the energy released during unloading. It is expressed by Equation (2), and its
value is independent of crack length; therefore, the storage energy density in cyclic deformation is
also independent of crack length but varies with temperature and the experienced maximum strain.
Figure 9 shows the experimental data for the variation of the storage energy density of the CB-filled
rubber specimen that experienced a maximum strain at 23, 40 and 70 ◦C. The temperature dependence
of the storage energy density is very weak because the glass transition temperature, Tg, of the CB-filled
rubber material is below −41 ◦C, as measured from the temperature sweep tests of dynamic mechanical
analysis at various load frequencies ranging from 1 to 50 Hz by Hu et al. [15], while the test temperatures
in Figure 9 are far higher than the Tg. In the test temperature range, CB-filled rubber is hyperelastic
rather than viscoelastic in nature, so the temperature dependence of the storage energy density is also
very weak and negligible in predicting the high-temperature fatigue life of the CB-filled rubber.
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Figure 9 shows that the storage energy density for test temperatures above 23 ◦C is linearly related
to the maximum strain on a double logarithmic scale; thus, the power law is as follows:

w(εmax) = 908.15× ε1.608
max (7)

The tear energy for fatigue loading is thus obtained by substituting Equation (7) into Equation (2):

Ta,max(εmax) = w(εmax) · h0 = 908.15× 0.01× ε1.608
max = 9.08ε1.608

max (8)

The temperature-dependent fatigue crack growth of the constrained CB-filled rubber specimen at
high temperatures beyond 23 ◦C can then be quantitatively estimated by combining Equations (4), (8)
and (5):

da(εmax,T)
dN = rc ·

[
Ta,max(εmax)

Tc(T)

]F
= rc ·

[
Ta,max(εmax)

Tc,ref·e−k(T−T0)

]F
= rc ·

[
Ta,max(εmax)

Tc,ref

]F
· eF·k·(T−T0)

= 0.039 ·
[

9.08ε1.608
max

30.2

]1.96
· e1.96×0.014·(T−T0) = 0.0037 · ε3.152

max · e
0.0274(T−T0)

(9)

The fatigue crack growth rate predictions by Equation (9) for 23, 40, 60, 80 and 100 ◦C are shown
in Figure 10 by solid lines with different colours. The test data for 23 ◦C are also plotted in the same
figure to verify the model.
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For the cyclic simple tension of a single edge notched specimen, the tear energy depends on the
gauge section strain energy density w, the crack length, a, and a deformation dependent parameter
q [16]:

Ta,max = 2q ·w(εmax) · a (10)

Substituting Equation (10) into Equation (5) and recalling the temperature dependency Tc(T), the
fatigue crack growth rate at different temperatures can be expressed as follows:

da(εmax, T)
dN

= rc ·

[
Ta,max(εmax)

Tc(T)

]F

= B[2q ·w(εmax)]
FaF
· eF·k·(T−T0) (11)

where B = rc · T−F
c,ref.

The fatigue life can be obtained by integrating Equation (11) as follows:

Nf =
1

F− 1
1

B[2q ·w(εmax)]
F e−F·k·(T−T0)

 1
aF−1

0

−
1

aF−1
f

 (12)

where a0 is the initial crack length, which usually defines the intrinsic flaw size in the material or the
typical size of the nucleated fatigue crack, and was set to 0.006 mm in this study; af is the critical final
crack length corresponding to the final fatigue failure. In the case that af � a0, the fatigue life becomes
independent of the critical crack length.

Nf =
1

F− 1
1

B[2q ·w(εmax)]
F e−F·k·(T−T0)

1
aF−1

0

(13)

Recalling the model parameters for the investigated CB-filled rubber material, namely F = 1.96, rc =

0.039 mm/cycle, Tc,ref = 30.2 kJ/m2, and k = 0.014/◦C, and setting q = 2.5 for the intermediate strain
range, the fatigue cycles that cause a specified final crack length can be calculated by Equation (12) for
different temperatures. The calculated results are shown in Figure 11 for a final crack length of 1 mm,
which is the critical flaw size for a fatigue safety inspection of rubber components based on a visual
inspection. The fatigue life predicted by Equation (12) is in good agreement with the test data at 23 ◦C.
Figure 12 shows the model prediction of the variation of fatigue life under different maximum strains
and temperatures.
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5. Conclusions 

For an intermediate strain range and high temperatures in which only the temperature 

dependence of the critical tear energy is of concern, the fatigue crack growth rate of CB-filled rubber 
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Based on the viewpoint that temperature affects the fatigue life of rubber products by changing 

the tear energy of the material, a model based on the tear fracture test data at different temperatures 

and fatigue crack growth test data at room temperature can be used to estimate the 

temperature-dependent fatigue life of the rubber studied in this paper. According to the proposed 

method, the fatigue life prediction of the CB filled rubber at different temperatures can be obtained 

without carrying out the corresponding fatigue tests. It can decrease the test time and reduce the 

research and development costs. 
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5. Conclusions

For an intermediate strain range and high temperatures in which only the temperature dependence
of the critical tear energy is of concern, the fatigue crack growth rate of CB-filled rubber follows the
Paris–Erdogan power law with respect to the maximum strain, and the critical tear energy decreases
exponentially with increasing temperature. Consequently, the fatigue life decreases with increases in
temperature and strain.

Based on the viewpoint that temperature affects the fatigue life of rubber products by changing the
tear energy of the material, a model based on the tear fracture test data at different temperatures and
fatigue crack growth test data at room temperature can be used to estimate the temperature-dependent
fatigue life of the rubber studied in this paper. According to the proposed method, the fatigue life
prediction of the CB filled rubber at different temperatures can be obtained without carrying out the
corresponding fatigue tests. It can decrease the test time and reduce the research and development costs.
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