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Abstract: The way in which a perforated structure is formed has attracted much interest in the
porous membrane research community. This novel structure gives materials an excellent antifouling
property as well as a low operating pressure and other benefits. Unfortunately, the current membrane
fabrication methods usually involve multi-step processes and the use of organic solvents or additives.
Our study is the first to offer a way to prepare perforated membrane by using a physical foaming
technique with CO2 as the blowing agent. We selected thermoplastic polyurethane (TPU) as the base
material because it is a biocompatible elastomer with excellent tensility, high abrasion resistance, and
good elastic resilience. Various processing parameters, which included the saturation pressure, the
foaming temperature, and the membrane thickness, were applied to adjust the TPU membrane’s
perforated morphology. We proposed a possible formation mechanism of the perforated membrane.
The as-prepared TPU membrane had good mechanical properties with a tensile strength of about
5 MPa and an elongation at break above 100%. Such mechanical properties make this novel membrane
usable as a self-standing filter device. In addition, its straight-through channel structure can separate
particles and meet different separation requirements.

Keywords: thermoplastic polyurethane; foaming; perforated structure; membrane; filtration

1. Introduction

A porous structure within a polymeric membrane plays significant roles in such filtration areas as
cell separation [1], water purification [2,3], gas filtration [4], battery separation [5], cell harvesting [6],
and filtrate collection [7]. Up until the present, many techniques have been developed to prepare
membrane materials, among which fibrous membrane and perforated membrane have been the
most commonly produced products [8]. Fibrous membrane has been deemed to be an effective
medium for filtration given its tunable fiber diameter, high porosity, remarkable specific surface area,
and interconnected porous structure [9,10]. Nevertheless, membrane fouling greatly challenges its
applications [3,9]. This is due to its sponge-like or tortuous pore channel structure, which makes it
difficult to clean within the material’s structure [11].

Multiple scientific and engineering methods have been used to enhance the membrane’s antifouling
property in the application process. Among these investigations, it was found that a perforated structure
gave the material an excellent antifouling property [12]. These as-prepared membranes have recently
been used in the filtration of both lager beer [13] and of bacteria [14]. This has been due to their
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unique characteristics; that is, a straight pore channel and a low operating pressure [11,15]. The
following techniques have been used to prepare perforated membranes: the breath figure method,
anodization, lithographic microfabrication, colloidal crystal assembly, emulsion templating, and
microphase separation of block copolymers [1,16]. However, an organic solvent or an additive
has been most commonly used in the fabrication of the noted materials. Typically, to obtain a
perforated membrane using the breath figure method, the polymer needs to be dissolved in carbon
disulfide. Next, it is placed on the water’s surface, and then it is carefully transferred to the support
device [1]. The environmentally hostile nature of solvents and/or additives like carbon bisulfide,
chloroform, and tetrahydrofuran limits their large-scale preparation. In addition, their harsh operating
conditions present further drawbacks [17]. Also, some of the as-prepared perforated membranes’
mechanical properties are insufficient for them to be used as self-standing filtration media, which
require support from high-strength materials during the separation process [15,18]. Thus, the search
for a simple, efficient, and feasible way to prepare perforated membrane for use in the filtration field is
very meaningful.

It’s well known that the physical foaming process is a high-efficiency technique to prepare
porous materials, and it has enormous advantages. This is because it is both environmentally-friendly,
cost-effective, and its features are straightforward [19,20]. Carbon dioxide, nitrogen gas, water vapor,
and other physical foaming agents have been widely adopted for use in the preparation of polymeric
foams of polypropylene, polycarbonate, polyethylene terephthalate, and polylactic acid [21–24] in
various foaming processes such as batch foaming, foam extrusion, and foam injection moulding. The
interconnected open-cell structure can be formed via the previously noted techniques under high
temperature and pressure conditions [25,26]. However, since CO2 has a high diffusion rate from the
polymer surface, the formation of a dense skin layer is a very common phenomenon [19,27,28]. Thus,
the structure; that is, the interconnected open-cell structure and the dense skin layer show that a
perforated membrane cannot be created using the existing foaming technology. The nucleation of
cells mainly occurs in the first few seconds of the foaming process, involved in two mechanisms of
homogeneous nucleation and heterogeneous nucleation; for the former mechanism, it is a spontaneous
and non-filler assisted formation process without cell precursor; for the latter nucleation process, it
works normally with the help of the filler interface, shear, ultrasound, and the crystalline regions,
etc. [29–32]. In our study, which makes use of the heterogeneous nucleation effect on the polymeric
material’s surface, we have presented a novel way to prepare perforated membrane.

As previously noted, a membrane with poor deformation ability cannot be applied to the filtration
process in a self-standing way. Thermoplastic polyurethane (TPU), a type of elastomer, shows potential
for use in the preparation of perforated membrane because of its excellent tensility, good elastic
resilience, and excellent biocompatibility [33–35]. Our study describes, for the first time, a simple
fabrication method for perforated membrane, which is based on the heterogeneous nucleation effect
on the TPU’s surface. By sandwiching the TPU film between two polyimide (PI) films blown with
CO2, this structure provides heterogeneous nucleation sites at the interfaces between the TPU film and
the PI film. At the same time, a perforated membrane with different morphologies can be obtained
by adjusting the foaming condition. Based on our differential scanning calorimetry results, we have
proposed a formation mechanism for perforated membrane. In the last part of our paper, we discuss the
influences of cell structures on the filtration function with separation of the polystyrene microsphere.

2. Experimental

2.1. Materials

The polyester TPU (380A) was obtained from Austin, Co., Zhangjiagang, China in a pellet
form. Within TPU matrix, the hard segment is composed of 4,4’-diphenylmethane diisocyanate
with 1,4-butylene-glycol as the chain extender, and the soft segment is poly(1,4-butylene adipate).
The polyimide (PI) film was received from Kapton with a thickness of about 45 µm, which was
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derived from the condensation polymerization of the pyromellitic dianhydride (PMDA) and the
4,4’-diaminodiphenyl ether (DDE). The CO2 physical blowing agent was obtained from Ningbo Wanli
Gas, Co., Ningbo, China with a 99.9% purity. The polystyrene microsphere used for the filtration
evaluation was prepared using a method obtained from the literature [36].

2.2. Preparation of the TPU Sandwich Structure Film

To fabricate the PI/TPU/PI sandwich structure film, the as-received TPU pellets were dried in a
vacuum oven at 60 ◦C for 5 h to remove the moisture, and were then compression molded between two
PI films. Typically, 3 g TPU pellets were dispersed onto the PI film, which measured 20 cm × 20 cm.
Further, a PI film of the same size was put on the above the TPU pellets. Next, the films were loaded
into a hydraulic press, and were heated at 190 ◦C for 3 min. The PI/TPU/PI film then formed under
15 MPa after 3 min. After this process, a TPU layer with a thickness of about 20 µm can be obtained.
Notably, by changing the pressure during the hot compression step, different TPU layer thicknesses
can be achieved.

2.3. Preparation of the TPU Perforated Membrane

The PI/TPU/PI film was enclosed in a stainless steel chamber flushing with low-pressure CO2 for
2 min. Then, the film was placed under the designated pressure and room temperature for 12 h to
ensure the equilibrium adsorption of the CO2. Once the saturation process was finished, the chamber
was depressurized at a rate of 0.5 MPa·s-1. Then, within 30 s, the film was transferred to a hot bath
with polydimethylsiloxane (PDMS) as the heating medium at a fixed temperature for 10 s to foam.
The foamed membrane was put into an ice bath to fix its cell structure. The residual PDMS on foams’
surface was removed by cleaning.

2.4. Characterizations

We used a scanning electron microscope (SEM; Zeiss EVO18, Aalen, Germany) to observe the
morphologies of the membranes and the polystyrene microsphere. For the membrane specimens,
they were prepared by using a sharp-edged knife, and were then sputter-coated with a thin platinum
layer. To see the polystyrene microsphere’s morphology, the microsphere’s suspension was dropped
onto a silicon wafer. Then the dispersion medium, which was ethanol, evaporated in the atmospheric
environment. The accelerating voltage of the scanning electron microscope was 20 kV. We determined
the diameter and size distribution of both the cells and the microspheres by analyzing the SEM images.

The thermal behavior of the TPU thin films was recorded before and after the saturation process,
using differential scanning calorimeter measurements. The melting temperature (Tm) and the enthalpy
of fusion (∆Hm) were measured via the Diamond DSC (PerkinElmer, Waltham, MA, USA), and had
been obtained from the first heating scan. That scan ranged from 25 to 220 ◦C at a heating rate of
10 ◦C·min−1 in a nitrogen environment. Before the measurement was taken, the saturated TPU thin
film was allowed to degas at room temperature for 48 h.

We used a universal testing machine (Instron 5567, Boston, MA, USA) for the tensile test. The
specimens were under a strain rate of 200 mm·min−1. They measured 30 mm in length, 10 mm in width,
and were about 0.02 mm thickness. The test was done at the room temperature. Each specimen’s
tensile strength was acquired based on five values.

The peel strength between the PI film and the TPU film was obtained by using a universal testing
machine (Instron 5567) according to ASTM D1876 and the reference [37]. The distance between two
clamps was 50 mm, and the peel rate was 100 mm·min−1.
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3. Results and Discussion

3.1. Preparation of the TPU Perforated Membrane

Unlike the breath figure method, anodization, lithographic microfabrication, colloidal crystal
assembly, emulsion templating, and the microphase separation of block copolymers, a typical feature
of the cellular materials fabricated by physical foaming technique is this: the as-received samples have
closed cells that are insulated from the surrounding cells or the interconnected open cells [25,38–40].
Therefore, to obtain the perforated membrane, the traditional foaming process needs to be improved.
Traditionally, a polymer matrix blended with fillers or used crystalline domains has been used in
the foaming process. Also, the foaming ability of the as-prepared foamed material is far beyond
that of the neat polymer because these domains act as heterogeneous nucleation sites that reduce
the energy barrier for cell nucleation [24,29,38]. As reported by Kakroodi [41], only a 3 wt % of
microfibrils dramatically improved the foaming ability of poly(lactic acid). By applying this nucleation
mechanism, we designed, for the first time, a technique that causes a heterogeneous nucleation effect
on the material’s surface. This can then be used to successfully prepare a perforated membrane.

To improve the mechanical properties of the perforated membrane, we selected TPU, a
thermoplastic elastomer, as the base material in our work. Thermoplastic polyurethane is a copolymer
consisting of both hard and soft segments [42,43]. However, due to their polarity differences, the polar
hard segments aggregate into hard domains and form crystalline areas [44,45]. As previously noted,
these areas act as nucleation sites within the polymer matrix to effectively generate small cells. Such
cells in the cross-section do not help to form a straight and cylindrical perforated structure. In Figure 1,
the DSC thermographs of the as-received TPU specimens before and after the saturation process under
2.0 MPa are shown in association with a melting peak of about 190 ◦C. This melting peak is related to
the melt that occurs in the hard segment micro-crystalline area [46]. Before the saturation process, the
Tm and the ∆Hm were, respectively, 188.9 ◦C and 1.24 J/g. After the saturation process, the Tm and
the ∆Hm increased, as we had expected they would, and are shown in Figure 1. They were 190.6 ◦C
and 1.79 J/g, respectively. This result showed how CO2 could facilitate the chains’ movement; thus,
improving the hard segment domain’s perfection [28]. At the same time, this phenomenon illustrated
how the crystalline area always exists in the TPU’s matrix, either before or after the saturation process.
Even with the heterogeneous nucleation’s influence, the cell sizes within the foamed material obtained
by the conventional technique are usually on a micron scale [24,47]. Thus, we envisaged reducing the
material’s thickness to approximate the cell sizes needed to produce a single-layer cell structure; that
is, a perforated structure.
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Figure 1. DSC thermogram of TPU specimens: (i) original TPU; (ii) TPU after saturating process.

Figure 2 shows the preparation process. Typically, the base material, meaning the TPU pellets,
was dispersed between two PI films and compressed under 15 MPa and 190 ◦C to achieve a thickness
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of about 20 µm TPU film (Figure 2a,b). This was close to the cell size of the foamed materials obtained
through the traditional technique [24]. The sandwich film was saturated in a high-pressure chamber at
25 ◦C for 12 h (Figure 2c), allowing sufficient CO2 dissolution in the TPU’s matrix. The saturated TPU
was removed from the chamber (Figure 2d) and placed into a high-temperature oil bath to foam via
the temperature-induced foaming method (Figure 2e). The presence of large amounts of interface area
between the TPU and the PI films could act as the heterogeneous nucleation sites. These tended to
enhance cell nucleation on the TPU’s surface, which resulted from the lower energy barrier required for
heterogeneous nucleation. Consequently, a perforated membrane could be easily prepared (Figure 2f)
during the foaming.
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Figure 2. Schematic for preparation of TPU perforated membrane.

Figure 3 shows a typical TPU perforated membrane. Using the interface between the PI and
TPU films to generate the heterogeneous nucleation sites, the straight and cylindrical pore channel
membrane was successfully prepared by this foaming process. In Figure 3a, the highly ordered straight
pore channel was observed in the cross-section, and was characterized by the large inner diameter and
the small TPU surface opening size. This membrane’s thickness was about 20 µm. Morphological
observations of the TPU’s surface (Figure 3b) further confirmed the perforated structure, which was
highly suitable for the particle separation. The cells located on the surface obviously controlled the
accuracy of the separation. Figure 3c shows the cell diameter and its distribution on the surface. This
was in the range of 6.4–17.6 µm, and the average value was 11.6 µm.
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Figure 3. The TPU perforated membrane saturated under 2.0 MPa and foamed at 120 ◦C. (a) the
cross-section, (b) the surface, (c) the average diameter of the cells on the surface.

3.2. Influence of the Saturation Pressure and Foaming Temperature on the TPU Perforated
Membrane’s Morphology

The above-noted method of obtaining the perforated membrane was successful under a 2.0 MPa
saturation pressure. However, it is well known that a wide processing window is highly important in
industrial applications and in scientific research. We used this novel method for the first time to examine
the effects of the saturation pressure and foaming temperature on the traditional foaming process.
Further, we investigated the influence of these factors on the perforated membrane’s morphology.
Figure 4 shows the morphologies of the cross-section and the surfaces of the TPU’s perforated membrane
saturated under different pressures. Under 2.5 and 3.0 MPa saturation pressures, the highly ordered
straight pore channel could still be formed in the cross-section. Under the 2.5 and 3.0 MPa saturation
pressures, and even including the morphology shown in Figure 3, the cell size on the material’s surface
was significantly lower than the diameter of the straight pore channel in the cross-section. In the
foaming process, the sizes of the cells that formed using the heterogeneous nucleation mechanism
were much lower than those that formed during the homogeneous nucleation process. This is due to
the heterogeneous nucleation mechanism’s low energy barrier [38,48–50]. Apparently, the material’s
surface morphology was caused by the dominant heterogeneous nucleation mechanism. Although the
TPU used in our study formed a crystalline area, its melting enthalpy was very low. Consequently, the
large diameter straight-through channel in the cross-section indicated that the homogeneous nucleation
scheme was dominant in this region. We have discussed this in detail later in this paper. In addition,
under the 2.5 and 3.0 MPa saturation pressures, the cell size ranges and the average cell size of the
materials’ surfaces were 2.7–10.5 µm and 6.4 µm, and 1.2–8.5 and 5.1 µm, respectively. With reference
to the sample morphology saturated under 2.0 MPa, the cell size decreased gradually in conjunction
with the increased saturation pressure. The reason was that an increased saturation pressure tended to
increase the CO2 solubility within polymer matrix, which reduced the barrier of cell nucleation, and
therefore resulting in the increased cell density and the decreased cell size [51,52].
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Figure 4. SEM images of the prepared TPU perforated membranes, the films were saturated under
2.5 MPa (a–c) and 3.0 MPa (d–f), respectively, and then were foamed at 120 ◦C for 10 s. (a,d) the
cross-section, (b,e) the surface, and (c,f) the average diameter of the cells on the surface.

The foaming temperature is clearly a very important parameter, with respect to the appearance
of the foamed material’s morphology in the foaming process. Usually, the foaming condition, along
with the increased temperature, greatly improves the foaming ability [24,53], but a too high foaming
temperature will cause the collapse of foamed material as well as other structural damage [33]. As
previously noted, low saturation pressures produced large cells, which could then generate a very thick
perforated membrane. Figure 5 shows the morphology of the cross-section and the corresponding
surface after the foaming process. The saturation pressure was 1.5 MPa. In Figure 5(a,a1), the cells
cannot be seen either on the surface or in the cross-section. However, when the foaming temperature
was increased to 120 ◦C, the surface and the cross-section presented some cells, but the perforated
structure still had not formed. A clear perforated structure did not appear until the foaming temperature
had risen to 130 ◦C. However, at a high temperature of 140 ◦C the cell structure was significantly
damaged, as proven by the cell collapse (Figure 5d). In Figure 5c the perforated membrane was about
40 µm thickness.
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Figure 5. SEM images of the TPU perforated membrane saturated under 1.5 MPa: (a) the cross-section
and (a1) the corresponding surface foamed at 110 ◦C. Following similar principle, (b,b1), (c,c1), as well
as (d,d1) foamed at 120, 130 and 140 ◦C, respectively.

Figure 6 shows the statistical analysis of the surface morphologies of the foamed materials obtained
at different foaming temperatures. It is obvious that as the temperature increased from 120 to 130 ◦C,
the average size and the maximum size of the cells increased, and, then from 130 to 140 ◦C, their sizes
decreased. For example, the average cell size increased from 17.5 to 20.3 µm, and then it decreased to
15.1 µm. Meanwhile, the maximum cell size increased from 23.8 to 39.7 µm, and then it decreased to
27.0 µm. This type of tendency also helped to explain why a perforated structure could be formed at
a 130 ◦C foaming temperature. At 130 ◦C large cells form, and these can cross the 40 µm thickness
membrane. The increased cell sizes, which followed the increased foaming temperature, occurred
mainly because the high foaming temperature reduced the cell wall’s strength, and then facilitated
cell coalescence [38,54]. The morphology at the 140 ◦C foaming temperature was related to the cell
structure’s collapse.

3.3. Formation Mechanism of the Perforated Membrane

The above results indicated that the formation of a perforated structure benefits from cells that
can move across the cross-section. Figure 7 shows a cross-section of the membranes with different
thicknesses formed under different saturation pressures and foaming temperatures, and further
verifies the cell’s influence on the cross-section of the perforated structure. As shown in Figure 7a,
an undesirable double-row cell structure was formed even with a low membrane thickness of 21 µm,
when a high saturation pressure of 3.5 MPa was used. As the saturation pressure was further increased
to 4.0 MPa, a conventional closed-cell structure was formed inside the membrane because too many
cells generated. These results strongly indicate that a saturation pressure of below 3.0 MPa would
be necessary to form a desirable single-row cell structure to make a perforated membrane when the
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membrane thickness is approximate 20 µm. When a higher saturation pressure was used, a higher cell
density was induced [55] and, consequently, small cells in the cross-section that have formed under a
high saturation pressure were unable to effectively cross a membrane of 20 µm thickness.
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Figure 7. SEM images of the cross-section of the membrane with various thicknesses prepared under
different saturation pressure and foaming temperature conditions: (a) 21 µm, 3.5 MPa, and 120 ◦C;
(b–c) 23 µm, 4.0 MPa, and 120 ◦C; (d) 70 µm, 1.5 MPa, and 130 ◦C; (e) 39 µm, 2.0 MPa, and 120 ◦C;
(f) 34 µm, 2.5 MPa, and 120 ◦C; and (g) 28 µm, 3.0 MPa, and 120 ◦C. SEM images of the surface of the
membrane (h,i), obtained under 4.5 MPa saturation pressure and 120 ◦C foaming temperature.

Figure 7d–g show the effects of the perforated membrane’s thickness under different foaming
conditions. As noted above, a low saturation pressure can form large cells because of a low cell density,
which can cross even thick membranes. A 70 µm thickness of perforated membrane cannot effectively
form under a saturation pressure of 1.5 MPa. The thick skin layer prevents the cells in the cross-section
from coalescing with those on the surface. Similarly, after the saturation pressures were increased to
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2.0, 2.5, and 3.0 MPa, a double-row of cell membranes with thicknesses of about 39, 34 and 28 µm was,
respectively, obtained. The cells in the cross-section effectively gathered with those on the surface, but
the cell coalescence in the cross-section seemed to be negligible due to the thick cell wall. This further
showed that cells which can move across the cross-section are needed to form a perforated structure.

However, when the pressure increased above 3.5 MPa, the cells on the surface did not effectively
gather with those in the cross-section. Many small cells on the surface just presented a half-cell
structure, that is, half of a normal cell (as pointed by the red arrow in Figure 7c). Figure 7h,i show
that, under higher saturation pressure, i.e., 4.5 MPa, the surface forms numerous half-cells and a
concave structure without coalescence with those in the cross-section. This indicates that the cells on
the surface may have played a role for the formation of the perforated structure. When a low pressure
was adopted, the large cells can be obtained, which can coalesce with those in the cross-section.

The cell formation process includes nucleation, cell growth, and cell coalescence [56]. We believe
that the formation of a perforated structure, possessing the straight pore channel with a large diameter
in the cross-section and small openings on both upper and lower surfaces, may be due to the difference
in the cell-nucleation mechanisms that occur between the surface and the cross-section of the TPU film,
and the shear force and the friction between the TPU film and PI film. In our study, the TPU film’s
upper and the lower surfaces adhered to the PI film. As shown in Figure 8, the peel strength was about
29.6 N, which demonstrates that a well-defined interface bonding was formed between TPU and PI
films, and then provided a lot of heterogeneous nucleation sites to form small cells. Liao et al. [57,58]
investigated the foaming behavior of two-phase blend and reported that these cells on the surface or at
the interface were due to the low energy barrier of heterogeneous nucleation, which facilitated the
formation of small cells. On the other hand, since foaming occurred only in the TPU layer during the
foaming process, this will cause a relative movement between the TPU layer and PI layer. Under the
influence of the existence of adhesion, the foaming behavior will produce friction or shear force at the
interfaces, which would also be beneficial for the formation of those cells on the surface of the TPU
layer. Furthermore, the matrix of the TPU layer also provided cell-nucleation sites, most likely at the
interfaces of the soft segments and the hard segments [29,59]. We note that the melting enthalpy in
reported TPU specimens was about 40 J/g [29,59] while the melting value of the TPU resin we used was
only about 1 J/g. Therefore, the cell nucleation mechanism within the TPU’s matrix played a leading
role to form relatively large cells.
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The polymer matrix with dissolved CO2 was foamed by a temperature-induced method. In this
work, under the influence of the heterogeneous nucleation, the shear force, and the friction on the
surface, a low saturation pressure was adopted to produce single-layer large cells in the cross-section
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and no small cells on the surface of membrane. The cell wall’s strength may not have been high
enough to resist cell coalescence in a high foaming temperature environment [38]. It seemed that
the cross-section cells were coalesced with those on the surface and, consequently, the perforated
structure was formed. However, given the current experimental results, more experiments are needed
to understand the formation mechanism of perforated structures in depth.

3.4. Particle Separation

Most of the perforated membranes cannot be used as self-standing filtration media due to their
poor mechanical property. They must be supported by high-strength materials in the separation
process [15,18]. In a TPU-perforated membrane, given the base material’s good mechanical properties,
it should be possible to use this as a self-standing separation medium. Figure 9 shows the tensile
properties of the as-prepared perforated membrane obtained under different conditions. These
materials demonstrated good deformation behavior: the breaking elongation was above 100% strain
and the tensile strength was about 5 MPa. They could be used as the self-standing separation material.
It was also apparent that, with the surface cell size being decreased, the mechanical properties of the
material, including the elongation at break and the tensile strength, were improved. They increased
from 149% and 3.9 MPa to 191% and from 5.1 MPa to 222% and 5.5 MPa to 235% and 5.6 MPa,
respectively. This result may have originated from the stress concentration around the large cells
within the foamed material, which would induce failure initiation of the material [60].
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For example, the TPU perforated membrane saturated under 3.0 MPa was used to separate the
polystyrene microsphere so as to evaluate the filtration performance. Figure 10a shows a simple filter
device. Based on the colour change in the suspension and filtrate; namely, the white suspension and
transparent filtrate, this membrane can act as an effective separation instrument for water treatment
and particle collection. The TPU-perforated membrane, without any support device, was placed
directly between the syringe and the needle, and the operation process was implemented without
external pressure. The suspension flowed through the TPU-perforated membrane, and the filtrate
was collected in the glass bottle for the particle size statistics. In Figure 10b, the SEM images and
the corresponding particle size statistics are shown both before and after the filtration. As we had
expected, the decreased maximum size of the microsphere from 31.4 to 4.6 µm and the narrower size
distribution were clearly seen. This result shows that the TPU perforated membrane can effectively
remove large particles from the suspension.
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In addition, the polystyrene microspheres can be filtered by using perforated membranes equipped
with different surface morphologies to obtain filtrates that meet different requirements. Figure 11 shows
the filtration effect of the perforated membranes, which were prepared under conditions where the
saturation pressures were 1.5, 2.0, and 2.5 MPa, respectively. After filtration, the maximum size of the
microspheres in the filtrate was about 29.0, 14.0, and 9.6 µm, and the size distribution had also decreased
from what it was in Figure 11a–c. Obviously, the material had achieved a different filtration effect, and
could meet different filtration requirements. Moreover, we believe that these TPU perforated membranes
with straight and cylindrical structures may possess an excellent antifouling property relative to the
fibrous membrane, which has a tortuous channel structure that makes it difficult to clean [11].

Polymers 2019, 11, x FOR PEER REVIEW 13 of 16 

 

 

Figure 11. SEM images and size distribution of microspheres in the filtrate, obtained from the 

membrane with: (a) 20.3 μm, (b) 11.6 μm, and (c) 6.4 μm average cell diameter on the surface. 

In addition, the polystyrene microspheres can be filtered by using perforated membranes 

equipped with different surface morphologies to obtain filtrates that meet different requirements. 

Figure 11 shows the filtration effect of the perforated membranes, which were prepared under 

conditions where the saturation pressures were 1.5, 2.0, and 2.5 MPa, respectively. After filtration, 

the maximum size of the microspheres in the filtrate was about 29.0, 14.0, and 9.6 μm, and the size 

distribution had also decreased from what it was in Figures 11a–c. Obviously, the material had 

achieved a different filtration effect, and could meet different filtration requirements. Moreover, we 

believe that these TPU perforated membranes with straight and cylindrical structures may possess 

an excellent antifouling property relative to the fibrous membrane, which has a tortuous channel 

structure that makes it difficult to clean [11]. 

4. Conclusions 

In our study, the straight through channel structure was successfully introduced into the TPU 

membrane by means of the heterogeneous nucleation’s effect on the material’s surface during the 

foaming process. The morphology of these perforated membranes could be easily regulated by 

changing the saturation pressure, the foaming temperature, and the membrane’s thickness. A high 

saturation pressure could generate a small channel membrane while a low value pressure could be 

used to prepare a thick membrane with large channels. The morphological analysis and the DSC 

results indicated that the membrane’s holes were formed mainly through the heterogeneous 

nucleation mechanism at the interfaces of the TPU and PI films. Although cell nucleation also 

occurred within the TPU film, the perforated membranes were successfully formed because of the 

small thickness of the membrane. In addition, the perforated membranes had good mechanical 

properties and could be used as self-standing separation devices. The particle separation results 

showed that the membranes could effectively filter microspheres and meet different requirements. 

Author Contributions: Conceptualization, C.G.; methodology, C.G., W.Z., and C.B.P.; formal analysis, C.G., 

W.Z., and C.B.P.; data curation, C.G., W.Z., and C.B.P.; writing—original draft preparation, C.G.; 

writing—review and editing, C.B.P.; supervision, W.Z.; funding acquisition, W.Z. 

Funding: The work was supported by National Natural Science Foundation of China (No. 51573202, 

51873226) . 

Figure 11. SEM images and size distribution of microspheres in the filtrate, obtained from the membrane
with: (a) 20.3 µm, (b) 11.6 µm, and (c) 6.4 µm average cell diameter on the surface.



Polymers 2019, 11, 847 13 of 16

4. Conclusions

In our study, the straight through channel structure was successfully introduced into the TPU
membrane by means of the heterogeneous nucleation’s effect on the material’s surface during the
foaming process. The morphology of these perforated membranes could be easily regulated by
changing the saturation pressure, the foaming temperature, and the membrane’s thickness. A high
saturation pressure could generate a small channel membrane while a low value pressure could be
used to prepare a thick membrane with large channels. The morphological analysis and the DSC
results indicated that the membrane’s holes were formed mainly through the heterogeneous nucleation
mechanism at the interfaces of the TPU and PI films. Although cell nucleation also occurred within the
TPU film, the perforated membranes were successfully formed because of the small thickness of the
membrane. In addition, the perforated membranes had good mechanical properties and could be used
as self-standing separation devices. The particle separation results showed that the membranes could
effectively filter microspheres and meet different requirements.
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