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FIG. S1. Solvent density of systems with and without polymers. With attached polymers,

the solvent density is reduced, as compared to the density of the system without polymers, but the

bulk value is the same in both systems. The parameters are the same as in Fig. 1 of the main text.
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FIG. S2. Velocity profiles from the MD simulations and the NSB model. The velocity

profiles are shown for a few polymer lengths, N . The agreement between the two approaches is

reasonably good for all values of N .
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FIG. S3. Gyration radius of polymers in parallel (x, y) and perpendicular (z) directions

with respect to wall.

S1. GYRATION RADIUS OF POLYMERS

The gyration radius of polymers along axis α is [1]

Rg,α =

√√√√ 1

N
〈
N∑
i=1

[rα,i − r̄α]2〉, (S1)

where the coordinates of the ith bead are (rx,i, ry,i, rz,i), the center of mass of polymers

r̄ = (rx, ry, rz), and 〈· · · 〉 denotes the statistical average. The result (Fig. S3) shows that

the variation of gyration radius is different in parallel (x, y) and perpendicular (z) directions.

Specially, the size of a polymer is larger in the perpendicular direction and increases with

increasing the degree of polymerization. This is likely because the configuration of polymer

changes from the mushroom to the brush-like shapes. In addition, the parallel size of polymer

in the x direction is larger than that in the y direction. This phenomena might originate

from the deformation of polymers induced by the flow along the x direction.
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FIG. S4. Velocity and density distributions around a bead complex. (a) Distribution of

solvent velocity (red) and solvent density (green) for the bead complex oriented at 45◦ to the flow

direction. The ambient velocity was calculated in the blue shaded area. (b) Ambient velocity as

a function of orientation of the bead complex (see the inset in Fig. 3c of the main text). This

velocity has been used in the Stokes equation to obtain the hydrodynamic radius due to the near

bead shielding.
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FIG. S5. Distribution of far beads around central beads located at z = 2 nm away

from the wall. Although the concentrations of beads are slightly different, as compared to the

distribution with z = 1nm (Fig. 4b of the main text), the general features remain the same, in

particular that the number of beads increases with N , and that their relative increase slows down

as N increases. Distribution of far beads for N = 4 mer is not shown because the height of such

polymer is lower than 2 nm.
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S2. AVERAGING OVER BEAD ORIENTATIONS

For bead configurations as in the insets of Fig. 3c and 4e (of the main text), the number

of beads at position r within a spherical element dθdφ is ρr2 sin(θ)dθdφ, where ρ(r, θ, φ) is

the surface density of beads at distance r and orientation (θ, φ), with θ and φ being the

polar and azimuthal angles, respectively. Assuming that the amount of beads varies little

with the orientation, i.e., ρ ≈ ρ(r) (Fig. 3a-b and Fig. 4c-d of the main text), and taking

into account that configurations (θ, φ) and (π − θ, π − φ) are equivalent for both near and

far bead configurations (Fig. 3c and Fig. 4e of the main text), the orientation averaging of

a(r, θ) is

〈a〉θ(r) =

∫ π/2

0

a(θ)P (r, θ)dθ, (S2)

where

P (r, θ) = 2πρ(r)r2 sin(θ), (S3)

and we have used the φ-independence of a.

To calculate the averaged hydrodynamic radius due to the near-bead shielding, we took

ρ ≈ 7.07 nm−2 (see Fig. 3a-b of the main text) and r = rnear = 0.15nm, which corresponds to

the separation between two neighbouring beads in a polymer. Note that 2πρ(rnear)r
2
near ≈ 1.

For far beads, from molecular dynamics simulations, we calculated the average number

of beads at position r, nfar(r) (Fig. 4b of the main text). Assuming again the orientation

independence of the far bead distribution, nfar is

nfar(r) = 4πr2ρ(r). (S4)

Using eqn (S3), the far-bead distribution function becomes (see eqn (1) in the main text)

Pfar(r, θ) =
1

2
nfar(r) sin(θ). (S5)
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S3. AVERAGING OVER FAR BEADS

Let us consider a bead (say, bead 1) and observe the behaviour of another bead (bead

2) with respect to bead 1. In the course of a simulation, we can split the simulation time

T into time T0, when bead 2 is beyond the shielding radius r0, and times T (r) when it is

within r0 at distance r. Then, for an observable with the property that a = a0 outside the

shielding shell and a = a(r) for r < r0, the average is

ā =
a0T0
T

+
1

T

∫
r<r0

a(r)T (r). (S6)

Using the obvious identity T = T0 +
∫
r<r0

T (r), we obtained

ā = a0 −
∫
r<r0

P (r)[a0 − a(r)], (S7)

where P (r) = T (r)/T is the probability of bead 2 to be distance r away from bead 1.

Assuming the additivity of far bead screening, we performed the average over all polymer

beads in a sample, which yields

ā = a0 −
∫ π/2

0

dθ

∫ r0

0

drP (r, θ)[a0 − a(r)], (S8)

where P (r, θ) is given by eqn (S5).
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S4. NAVIER-STOKES-BRINKMAN MODEL

The Navier-Stokes-Brinkman (NSB) model is a continuous model, in which the velocity of

an electro-osmotic flow is determined by the one-dimensional Navier-Stokes equation, sup-

plemented by the Brinkman term, describing the effect of polymers [2]. The NSB equation

is given by eqn (2) in the main text. This equation was used to extract the effective Stokes

radius of polymer beads. The computational details are provided below.

A. Drag coefficient

The NSB model requires the drag coefficient K(φ), where φ(z) is the bead volume fraction

(which depends on the position z across the wall). We have used the expression provided

by Koch and Sangani [3] (and also used by Hill [2]), which reads:

K(φ) =
1 + 3[φ/2]1/2 + (135/64)φ lnφ+ 16.456φ

1 + 0.681φ− 8.48φ2 + 8.16φ3
. (S9)

B. Fluid viscosity

To calculate the viscosity for the system with polymer-grafted walls, we first used molec-

ular dynamics (MD) simulations to determine the bulk viscosity, µ0, of the system without

polymers. The applied electric field was Ex = 8×10−2 V/nm; we checked that the obtained

viscosity is valid in the range of Ex used in this work (from 1.6× 10−2 V/nm to 1.6× 10−1

V/nm).

In principle, the viscosity of the system without polymers, µ0, depends on the position

across the slit. A useful method to compute the position-dependent viscosity has been

proposed by Todd et al. [4]. For simplicity, however, we use here a constant (bulk) viscosity

for µ0, which seems sufficient for our purposes. We have checked, by using the method of

Ref. [5], that accounting for the enhancement in µ0 in the near-surface layer, does not change

our results qualitatively.

To take into account the presence of polymers, we note that the polymer bead density in

our simulations was low (about 5 beads per nm3, see Fig. 1c in the main text). This allows

the application of the low density expansion and the Einstein relation model [6], which
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FIG. S6. Fluid viscosity. The viscosity of a fluid as determined by eqn (S10) for two values of

the degree of polymerization N = 16, 24.

describes the increase of viscosity due to the suspension of polymer beads. This model gives

µ(z) = µ0[1 + 2.5φ(z)], (S10)

where φ(z) is the volume fraction of polymer beads, which we extracted directly from the

MD simulations. Two examples of the so-calculated viscosity are shown in Fig. S6.

C. Boundary conditions for the NSB model

Our molecular dynamics simulations show that the solvent velocity vanishes at z0 ≈ 0.17

nm (Fig. S2). Thus, in the NSB model we applied the non-slip boundary condition at z = z0,

i.e.,

u |z=z0= 0. (S11)
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We also made use of the mirror symmetry with respect to the mid-plane (z = w/2), which

amounts to setting

du

dz

∣∣∣∣
z=w/2

= 0, (S12)

where w is the slit width.
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TABLE S1. Parameters of molecular dynamics simulations.

Parameters Symbol Value Unit

Lateral dimension of channel Lx 9.88,19.76 nm

Lateral dimension of channel Ly 9.88 nm

Height of channel H 20 nm

Density of wall atoms ρw 33.3 nm−3

Surface charge density σs 3.28×10−2 C/m2

Grafting density of polymers σp 0.164 nm−2

Degree of polymerization N 4,8,12,16,20,24 N/A

Density of solvent ρs 49.1 mol/L

Ionic strength of electrolyte I 3.4×10−2 mol/L

Strength of external electric field Eext 1.6×10−2,8×10−2 V/nm

Solvent dielectric constant εs 78 N/A

Viscosity of bulk solvent µs 1.868×10−4 kg m−1 s−1

Temperature of system T 300 K

Pressure of system P 1 bar

Time step of MD system ∆T 4 fs
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TABLE S2. Force field parameters for the ions, solvent and polymer interactions.

nonbonded parameters

Atom type Charge σ (nm) ε (kJ/mol)

Solvent 0 0.3 2.49

Na +1 0.3 2.49

Cl -1 0.3 2.49

Polymer beadsa 0 0.3 2.49

Wall atomsb some chargec 0.3 2.49

parameters for Lennard-Jones interaction for interaction pairs

Pair σ (nm) ε (kJ/mol)

Solvent-Na 0.21 2.49

Solvent-Cl 0.21 2.49

Solvent-Beads 0.3 2.49

Na-Beads 0.3 2.49

Cl-Beads 0.3 2.49

Wall-Beads 0.3 2.49

Solvent-Wall 0.3 2.49

Beads-Wall 0.3 2.49

Na-Wall 0.3 2.49

Cl-Wall 0.3 2.49

bond interaction of polymers

bond b0 (nm) kb (kJ mol−1nm−2)

Beads-beads 0.153 334720

angle parameter of polymers

angle θ0 (◦) kθ (kJ mol−1rad−2)

Beads-beads 110.0 460.0

torsion coefficients for Rychaert-Bellemans functions (kJ mol−1)

torsion C0 C1 C2 C3 C4 C5

Beads-

beads-beads-

beads

1.8958 1.4930 -2.1667 0.5555 4.3333 -6.1111

a Polymer beads are denoted as beads in later.
b Wall atoms are denoted as wall in later.
c Wall atoms adjacent to electrolytes carry charges to produce surface charge density of 3.28×10−2 C/m2.


