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Abstract: Desire to accurately predict the deformation behaviour throughout industrial forming
processes, such as thermoforming and stretch blow moulding, has led to the development of
mathematical models of material behaviour, with the ultimate aim of embedding into forming
simulations enabling process and product optimization. Through the use of modern material
characterisation techniques, biaxial data obtained at conditions comparable to the thermoforming
process was used to calibrate the Buckley material model to the observed non-linear viscoelastic
stress/strain behaviour. The material model was modified to account for the inherent anisotropy
observed between the principal directions through the inclusion of a Holazapfel–Gasser–Ogden
hyperelastic element. Variations in the post-yield drop in stress values associated with deformation
rate and specimen temperature below the glass transition were observable, and facilitated in the
modified model through time-temperature superposition creating a linear relationship capable of
accurately modelling this change in yield stress behaviour. The modelling of the region of observed
flow stress noted when above the glass transition temperature was also facilitated through adoption
of the same principal. Comparison of the material model prediction was in excellent agreement with
experiments at strain rates and temperatures of 1–16 s−1 and 130–155 ◦C respectively, for equal-biaxial
mode of deformation. Temperature dependency of the material model was well replicated with
across the broad temperature range in principal directions, at the reference strain rate of 1 s−1. When
concerning larger rates of deformation, minimum and maximum average error levels of 6.20% and
10.77% were noted. The formulation, and appropriate characterization, of the modified Buckley
material model allows for a stable basis in which future implementation into representative forming
simulations of poly-aryl-ether-ketones, poly(ether-ether-ketone) (PEEK) and many other post-yield
anisotropic polymers.
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1. Introduction

A semi-crystalline polymer belonging to the family of poly-aryl-ether-ketones, poly(ether-ether-ketone)
(PEEK) is an emerging polymer gaining popularity for implementation into a wide range of applications
in bulk form and as a matrix material for Short Fibre Reinforced Composites (SFRC) as a result of
its superior mechanical qualities combined with high thermal stability and chemical resistance.
The anticipated suitability of PEEK for the application of thin walled, thermoformed products is
governed by its characteristically large stiffness to mass ratio (2.571 MNm/kg), or specific stiffness,
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when compared to similar thermoplastics in this field such as poly(ethylene terephthalate) (PET) and
polypropylene (PP)—exhibiting stiffness to mass ratios of 1.206 and 1.935 MNm/kg respectively.

The industrial practice of thermoforming is widely used for the large-scale manufacture of
lightweight, thin-walled polymeric parts with the advantage of producing repeatable, complex
products, along with relatively cheap production costs. During the thermoforming process, the
thermoplastic material is subject to a range of dynamic multi-axial deformation at strain rates of
1–10 s−1 and higher whilst processing the polymer in its rubber-like state above and below its
characteristic glass transition temperature (Tg) [1]. In many applications the relationship between the
resultant deformation of the polymeric sheet is generally unknown, leading to local inhomogeneity in
final part thicknesses. Trial and error approaches in the hopes of optimising the formed part is often time
consuming, causing authors to take a more systematic methodology. This is predominantly achieved
through the use of a mathematical material model to represent the deformation behaviour subject to
characteristic loading experienced during forming processes. In order for this mathematical model to
be accurate in its predictions of the mechanical behaviour of the polymeric material, characterisation at
conditions comparable to those experienced during the forming process is encouraged [2–4]—allowing
the constitutive model to be calibrated and then implemented into a process simulation [5–7] with the
ultimate aim of optimising the forming conditions and/or the formed part.

The mechanical properties of PEEK have been widely investigated in previous work. Due to its
many applications, authors have rigorously investigated the mechanical response of PEEK subject to
various characterisation methods. An extensive review of these is presented by Rae et al. [8]. Mechanical
characterisation of PEEK has been primarily focussed on uniaxial stretching [8–12], with authors
detailing the strong temperature and deformation rate dependence of specimens. A lack of research
concerning the deformation in more than one axis is evident, and has only been investigated recently
by the authors [13]. In our previous study, both load-controlled and displacement-controlled testing
of thin extruded PEEK specimens were conducted at conditions comparable to the thermoforming
process, drawing similar parallels to the temperature and strain rate dependencies found during
uniaxial tests as well as noting profound anisotropy when simultaneously stretching in two axes [13].
It is the data from this investigation which serves as the basis for modelling the constitutive biaxial
deformation behaviour of PEEK, for the application of thermoforming.

Attempts to model the constitutive response of PEEK have only become apparent in the past
decade, with mathematical models developed to quantify specific mechanical properties. El-Halabi
et al. [14] characterised and modelled the yield stress of PEEK for scaffold cranial implants, through
three point bending tests. The data was then used to calibrate homogenized material models and
predict local areas of fracture within scaffold designs in finite element models. El-Qoubaa and Othman
investigated the discernible influence of deformation rate on the uniaxial tensile and compressive yield
stresses over a wide strain rate range [11,15] and temperature range spanning the glass transition [16].
In the first studies a newly proposed constitutive equation was compared with the performance of
empirical and physically based models. The modified Eyring equation was shown to be capable of
accurately predicting the compressive yield stress over a strain rate range of 10−4–104 s−1, and uniaxial
tensile yield stress between 10−3–103 s−1. Although this provided a fundamental basis for further
understanding of their respective applications, during the thermoforming process the polymer is
subjected to large, complex strain histories and is typically taken beyond their characteristic yield
stress to ensure permanent forming of the product. It would therefore be desirable to understand and
be able to model the material response beyond this point.

Recent work by Chen et al. [17] recognised the shortcomings of the aforementioned studies, with
lack of consideration of the influence of temperature on modelling the post-yield flow stress of PEEK
specimens. They initially attempted to model the compressive flow stress above strains of 0.05, given
in previous literature [8], using a Johnson Cook (JC) model. It was shown that the JC model could
accurately reproduce data at room temperature but at the highest temperature a 38% discrepancy
was observable between measured and simulated data. This led to the authors creating a modified
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version of the JC model, by substituting an altered temperature term and re-calibrating. A maximum
deviation of 12% from the experimental flow stress was simulated, with the resultant yield stress
predictions correlating well over the strain rate range of 10−4–102 s−1 and temperatures between 33
and 200 ◦C. Following on from this study, the authors furthered their research into the modelling of
uniaxial extension of PEEK around the glass transition [12]. After low strain rate experimental testing
(0.01–1 s−1) at temperatures between 100 and 150 ◦C the above-mentioned JC and modified JC models
were calibrated as well as a second modified JC model devised to more accurately capture the coupling
effect of strain rate and temperature [18], not considered in the previous models. The authors detailed
that the original JC model was the most suitable in simulating uniaxial tensile stress-strain behaviour
below the glass transition, with the modified models giving maximum deviations of 16% and 21%.
Difficulties in modelling flow stress above Tg were documented and hypothesised to be as a result
of changing structure within the polymer. It is of particular interest to note that the material model
best suited for replicating uniaxial tensile behaviour is unsuitable for modelling compression of PEEK
samples. This conclusion further strengthens the argument that in order for an accurate representation
of material behaviour, the chosen material model must be calibrated to data at expected modes of
deformation experienced during the process under investigation.

In order for accurate simulation of material behaviour during deformation an appropriate material
model capable of capturing the observed material behaviour during stretching is vital. The physically
based, three-dimensional Buckley material model was developed originally to the replicate nonlinear,
temperature and strain rate dependent stress/strain behaviour of amorphous polyethylene terephthalate
(aPET) near its Tg [19,20]. Several authors have detailed the suitability of the Buckley material model to
further model thermoplastics above their respective Tg for many polymer forming processes [7,20–22].
Nixon et al. [23] adopted the Buckley material model for investigation into the forming behaviour of
aPET subject to changing external forming parameters. The material model, previously calibrated
through displacement-controlled biaxial testing [7], was implemented into a three dimensional finite
element simulation of the stretch blow moulding process with the final part shape examined, amongst
others. The authors [23] found strong correlation between the experimentally observed final part
shapes and those predicted in simulations. By observing the biaxial stress–strain data recorded in
a previous study [13] parallels can be drawn between the biaxial deformation behaviour observed
for aPET and PEEK, thus warranting the evaluation of this material model to capture the nonlinear,
viscoelastic behaviour of PEEK.

To the best of the author’s knowledge no previous studies exist in modelling the constitutive
biaxial tensile deformation behaviour of PEEK subject to finite deformation. The importance of
characterisation through this experimental technique is of particular concern in order to quantify and
understand the material behaviour during thermoforming processes. The ultimate aim of this work was
to accurately replicate the biaxial stress-strain behaviour of PEEK specimens under a variety of loading
conditions through the following research objectives: (a) firstly a suitable material model is identified
capable of reproducing the nonlinear viscoelastic constitutive response, (b) the chosen material model
is modified to accommodate the post-yield anisotropic behaviour and necking behaviour, (c) then
physically calibrated based on previously generated biaxial stress–strain data within the forming
window, and (d) the final simulated material behaviour compared to the experimentally measured
stress–strain behaviour above and below the glass transition.

2. Constitutive Modelling

2.1. Material Testing

Extensive biaxial testing of PEEK samples has been conducted and presented in previous work [13],
and hence a brief summary is presented here. Following Dynamic Mechanical Analysis of the PEEK
films, of number average molecular weight equal to 45,000 g/mol, a formable temperature window
spanning above and below the Tg of 150 ◦C was revealed (130–155 ◦C). Upon realization of this
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forming window, the 12 µm thick extruded PEEK films were biaxially stretched in the machine (MD)
and transverse directions (TD) simultaneously at equal strain rates and displacements, detailed in
previous work [13] at the conditions shown in Table 1. Samples were stretched using the purpose-built
Queen’s Biaxial Stretcher (QBS)—specializing in the replication of temperature, deformation speeds
and modes of deformation equivalent to those experienced during thermoforming and stretch blow
moulding processes. The square specimens were held by 24 pneumatic clamps around its edges, shown
in Figure 1, and heated to the specified temperature by two convection heaters: one placed above
the sample and one below. After reaching the desired temperature the sample was simultaneously
stretched in two directions by two servo-controlled motors, whilst a load cell located centrally in
each axis recorded the force. The force and displacement data were then converted to true stress
and nominal strain as described by O’Connor [24]. A typically sample stretched equal-biaxially is
shown beside an unstretched counterpart in Figure 2. Planar biaxial characterization highlighted
the non-linear viscoelastic stress–strain behaviour of the films, along with post-yield anisotropy at
conditions equivalent to the forming process. The true stress–nominal strain data presented in the
companion paper [13] concerning the in-plane biaxial deformation behaviour of PEEK provides the
foundation in which the material model can be calibrated in a step-by-step approach, similar to that for
aPET as presented by Buckley et al. [19,20].

Table 1. Specifications of planar biaxial stretching conditions [13].

Temperature Range 130–155 ◦C
Strain Rate Range 1–16 s−1

Mode of Deformation Equal Biaxial (EB)
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2.2. Buckley Material Model

It is assumed in the Buckley material model that the total stress is from a contribution of two
independent sources: a bond-stretching and conformational part—represented in 1D by a parallel
network of a spring and dashpot in series. The former is described by a linear elastic spring, to
model initial linear elasticity, and viscous Eyring formulation for an activated rate process representing
the temperature and strain rate dependence of the yield stress. The latter is characterized by an
Edwards–Vilgis spring and nonlinear dashpot to represent strain hardening and entanglement slippage
between polymeric chains associated with being above the glass transition. The principal values of
Cauchy stress (σi) are represented through the addition of the individual contribution of the two
sources as shown in Equations (1)–(3):

σi = σb
i + σc

i (i = 1, 2, 3), (1)

σi = sb
i + Kb

3∑
i=1

∈i +σ
b
m0 + σc

i , (2)

σb
m = Kb ln(J) + σb

m0, (3)

where σb
i and σc

i are the bond-stretching and conformational stresses in the principal directions
respectively. sb

i is the principal deviatoric bond stretching stress, Kb is the bulk modulus, ∈i is the
principal true strain in each direction, σb

m0 is the stress at zero strain, σb
m is the strain induced hydrostatic

stress and J is the determinant of the deformation gradient tensor. Deviatoric stresses (sb) within the
bond stretching arm exhibit viscoelasticity in terms of the deviatoric true strains (e) by Equation (4):

2Gb de
dt

=
dsb

dt
+

sb

τ
, (4)

where Gb is shear modulus arising from bond stretching and τ is the relaxation time—obtained
by shifting the linear viscoelastic relaxation time at a reference temperature and structure (τ∗0).
The shift factors responsible are due to stress (ασ), structure (αs) and temperature (αT) using an Eyring
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formulation [25], Vogel–Tammann–Fulcher function [26–28] and Arrhenius equation [29], as shown in
Equations (5)–(8):

τ = τ∗0α0αsαT, (5)

ασ =
Vsτb

oct
2RT

exp
(
−

Vp∆σb
m

RT

)
sinh

(
Vsτb

oct
2RT

) , (6)

αs = exp

 Cv

T f − T∞
−

Cv

T∗f − T∞

, (7)

αT = exp
[∆H0

R

( 1
T
−

1
T∗

)]
, (8)

where Vs is the shear activation volume, Vp is the pressure activation volume, τb
oct is the isotropic

invariant of the stress state, ∆σb
m is the mean stress, R is the universal gas constant, Cv is the

Cohen–Turnbull constant, T∞ is the Vogel temperature and ∆H0 is the activation enthalpy. T and T f are
actual and fictive temperature, whilst the reference configurations of these variables are denoted by T∗

and T∗f respectively. In previous work concerning the deformation behaviour of polymers above their
characteristic glass transition T f is assumed to equal T [20], but this cannot be assumed for materials
deformed below Tg. Post-yield softening is typically observed for this condition when stress is plotted
against strain and is captured through variation of fictive temperature with visco-plastic strain, as
detailed in Equation (9) [30]:

T f = T f 0 + ∆T f

1− exp

−
εv

j

εv
0


r
, (9)

where T f 0 is the initial fictive temperature, ∆T f is the change in fictive temperature due to rejuvenation,
εv

0 is the strain range in which rejuvenation occurs, εv
j is the von Mises equivalent viscoplastic strain

and r is a fitting parameter of order unity.
In the original material model the conformational stress, σc

i , is characterised by the hyperelastic
Edwards–Vilgis model [31], representative of polymeric chains of finite length physically entangled
with one another. The free energy function, Ac, of the Edwards–Vilgis model is defined by Equation (10):

Ac = NeKBT
2

[
(1+η)(1−α2)
1−α2 ∑3

i=1 λ
n2
i

3∑
i=1

λn2
i

1+ηλn2
i

+
3∑

i=1
ln

(
1 + ηλn2

i

)
+ ln

(
1− α2

3∑
i=1

λn2

i

)]
,

(10)

where Ne is the density of entanglements, KB is Boltzmann’s constant (1.38 × 10−23 m2kg s−2 K−1), η is
the parameter identifying the looseness of entanglements, λi

n is the network stretches in principal
directions and α is the inextensibility of the entanglement network. The constitutive material model
was further developed by Adams et al. [31] to incorporate entanglement slippage when above Tg.
The viscosity of this dashpot, γ, dictating the onset of ‘lock-up’ of molecular chains, is governed by
Equation (11):

γ = γ0/
(
1−

λn
max
λn

crit

)
, (11)

where λn
max and λn

crit are maximum principal and critical values of the network stretch, with γ0 the
initial viscosity of the dashpot. For further insight, an extensive description of the material model has
already been detailed elsewhere in previous literature [19,20,32].
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2.3. Existing Capabilities of Buckley Material Model

Following calibration to the model described in Section 2.1, the specifics of which are detailed
later, the simulated equal biaxial stress–strain behaviour in both material directions at a temperature of
130 ◦C and a strain rate of 1 s−1 is shown in Figure 3. Two major shortcomings are noticeable. Firstly,
it is evident that stress levels post-yield in the machine direction (MD) are significantly greater than
those observed in the transverse direction (TD)—equal to a 20% difference in total stress at failure
between the two principal directions. The current capability of the traditional Buckley material model
is unable to reproduce this phenomenon, assuming isotropic deformation after yielding. Second, is the
inability to accurately capture the increased dip in stress after yielding, known as necking, shown in
Figure 3 with biaxial deformation at the highest strain rate (16 s−1). In the current model no concern
is given to the potential evolution of yield stress behaviour with strain rate. It is therefore necessary
that modifications be made in order for accurate representation of the equal biaxial deformation of
PEEK specimens.
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2.4. Modification to the Material Model

As mentioned, one such limitation of the traditional Buckley material model is that associated in the
calculation of isotropic conformational stresses by the current Edwards–Vilgis model. To accommodate
the observed post-yield anisotropic behaviour during biaxial stretching of PEEK specimens, the
anisotropic Holzapfel–Gasser–Ogden (HGO) material model, initially developed to imitate the
anisotropic mechanical response of arterial walls during inflation tests [33], was chosen.

The isochoric strain energy function of the HGO model is calculated through superposition of an
isotropic part, ψiso, associated with the non-collagenous matrix, and an anisotropic part due to the
orientated fibres, ψaniso. The total strain energy per unit volume, ψ, is detailed by Equation (12):

ψ = ψiso + ψaniso

= µ(I1 − 3)iso +
k1

k2
(exp

{
k2

[
(1− ρ)(I1 − 3)2 + ρ(I4 − 1)2

]}
− 1)

aniso
, (12)
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where I1 is the first invariant of the right Cauchy–Green tensor, µ and k1 are parameters given in MPa,
and k2 and ρ are dimensionless parameters. I4 is a pseudo-invariant as defined by Equation (13):

I4 = λ2
1 cos2 β+ λ2

2 sin2 β λ1, (13)

where β is the fibre angle measured between the MD axis and the direction of fibre alignment, with λ1

and λ2 equal to the total stretches in principal directions. The stress components in each direction are
then calculated by Equation (14):

σ11 = λ1
δψ

δλ1
,σ22 = λ2

δψ

δλ2
. (14)

Although clearly no fibres, collagenous or otherwise, are present within the biaxially stretched
PEEK samples, one can confidently hypothesise that the observable differences in stress values seen
post-yield between the MD and TD are due to the molecular alignment of polymeric chains in the
underlying microstructure of the material. As a result of the analogy between the polymeric chains
and the fibres, the fibre angle can be defined as that between the MD and direction of proposed
chain alignment.

A representation of the modified Buckley material model can be seen in Figure 4. It is with this
proposed model configuration that calibration will be performed using the extensive displacement-
controlled biaxial data provided in previous work [13] over the wide temperature and strain rate
window associated with the real-life thermoforming process.
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Figure 4. Spring and dashpot assembly of the proposed Buckley material model including modifications
to the conformational part.

3. Fitting of Constitutive Model

Calibration of the proposed material model was conducted using previously detailed biaxial data
at strain rates between 1 and 16 s−1 and temperatures of 130–155 ◦C, for equal biaxial and constant
width modes of deformation. From Equation (4) it can be seen that the shear modulus, Gb, is necessary
in modelling the initial stiffness response exhibited in the true stress–nominal strain curves. Assuming
incompressibility and isotropy, correct for both material directions subject to small strains, the Gb of a
given material can be commonly calculated as a third of the Young’s modulus. Between a nominal
strain range of 0–0.02 the Young’s modulus of PEEK samples at 130 ◦C and a strain rate of 1 s−1 was
found to be 750 MPa, corresponding to a value of 250 MPa for the shear modulus. It is noted that the
tensile elastic modulus of PEEK specimens appears to be unaffected by temperature, deformation rate
and material orientation [13].
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3.1. The Eyring Process in the Bond Stretching Component

The dependency of the yield stress of thin PEEK specimens as a function of temperature and
strain rate, is evident from previous literature [13] and highlighted in Figure 5.
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One such way of modelling the deformation rate dependency of yield stresses is through the use
of the Eyring activation rate process. Buckley et al. [20] previously concluded that the contribution of
bond stretching on the total stress can be described by Equation (15):

σy

T
=

6R

2(1 + ξ)Vp +
√

2
√

1− ξ+ ξ2Vs

ln(
1
λy

dλ
dt

)
+ ln


√

2
√

1− ξ+ ξ2µ0Vs

(2− ξ)RT


, (15)

where Vs and Vp are shear and pressure activation volumes, σy is the true stress at yield, T is the
absolute temperature, λ is the total stretch, R is the universal gas constant, µ0 is the limiting viscosity
and ξ is a parameter concerned with the biaxial stretching conditions, governed by Equation (16):

1
λ2

dλ2

dt
=

θ
λ1

dλ1

dt

ξ =
2θ+ 1
θ+ 2

, ξ ∈ [0, 1], (16)

where θ is a ratio of the in-plane natural strain rate. Values for Vs and Vp were computed using a similar
methodology as Dooling et al. [21]. Using previous work by Rae et al. [8], the ratio of uniaxial tensile and
compressive yield stresses of PEEK were plotted and shown in Figure 6. The relationship between the
activation volumes and ratio of tensile and compressive yield stresses are given by Equation (17) [34]:

σyc

σyt
=

1 +
√

2Vp/Vs

1−
√

2Vp/Vs
. (17)
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From Figure 3, at a chosen reference strain rate of 1 s−1, the ratio of yield stresses is 1.26—close
to the value of 1.3 widely discerned for many glassy polymers [21]. From Equation (17) the ratio of
activation volumes is calculated to be 0.0821. From Equation (15) when the equal-biaxial true yield
stress over temperature,

σy
T , is plotted against the natural logarithm of the true strain rate at yield,

ln
(

1
λy

dλ
dt

)
, a linear relationship is noted as observed in Figure 7. Taking an average of the gradients of the

Eyring plots for each temperature, equal to 0.0167 MPa K−1, the activation volumes can be calculated
from Equation (15), with values of 1.714 × 10−3 m3 mol−1 and 1.407 × 10−4 m3 mol−1 determined for
Vs and Vp respectively.
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The temperature effect on decreasing yield stress is incorporated into the bond stretching
component of the Buckley material model through the limiting viscosity, µ0, is given by Equation (18):

µ0 =
√

2
λ
.
λ

RT
Vs

sinh
( √

2Vsσb

6RT

)
exp

2Vpσb

3RT

, (18)

where σb is the bond stretching stress. Traditional methods for determining this variable require
the identification of a rubber-like plateau within isometric true stress-temperature plots. It is at the
temperature of this plateau that the contribution to total stress by bond stretching is assumed to
decrease to zero and the total stress is now solely a product of the conformational arm. In this work
the true stresses were established at a nominal stretch of 1.2, just after yielding, for EB deformation at a
nominal strain rate of 1 s−1 in order to minimise any potential self-heating effects. The isometric stress
against temperature is shown in Figure 8.
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As can be seen in Figure 8, the total true stress levels follow an almost linear decrease with
increasing temperature with a lack of an apparent plateau region evident. In this case the bond
stretching stress is assumed to be fully relaxed at the highest temperature of 155 ◦C, therefore the
rubber-like stress, σc, assumed to be independent of temperature was considered to be equal to the total
stress at a temperature of 155 ◦C (6.77 MPa). The bond stretching stresses can then be calculated by
subtracting the rubber-like stress from the total stress (Equation (1)). Values of σb at each temperature
were substituted into Equation (18) to calculate the limiting viscosity for each temperature in the
forming window, shown in Table 2.

Modelling this viscosity on specimen temperature is accounted for by the previously mentioned
Vogel–Fulcher–Tammann and Arrhenius functions, as shown in Equation (19):

µ0 = µ∗0 exp

 Cv

T f − T∞
−

Cv

T∗f − T∞
+

∆H0

RT
−

∆H0

RT∗

. (19)

A least squares curve fitting procedure was performed to characterise these parameters, with
µ∗0 equal to 92.66 MPa—the limiting viscosity at the reference temperature of the characterisation
window, T∗, of 130 ◦C (Table 1). For this fitting procedure, for temperatures below the glass transition,
T f is preliminarily considered to be equal to the previously identified Tg of PEEK (150 ◦C), until
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temperatures above this in which the fictive temperature is assumed to be equal to the specimen
temperature. Curve fitting resulted in values of ∆H0 = 301.2 kJ mol−1, T∞ = 465 K, and Cv = 399 K,
producing the plot of limiting viscosity against temperature as seen in Figure 9.

Table 2. Bond-stretching stresses and limiting viscosities for different temperatures at strain of 0.2 at
1 s−1, for EB deformation.

Temperature, T (◦C) Total True Stress,
σ (MPa)

Conformational
Stress, σc (MPa)

Bond-Stretching
Stress, σb (MPa)

Limiting Viscosity,
µ0 (MPa)

130 34.10 6.77 27.33 92.66
135 28.36 6.77 21.59 39.68
140 22.87 6.77 16.10 17.15
145 18.09 6.77 11.32 8.08
150 12.29 6.77 5.52 2.74
155 6.77 6.77 0 0
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3.2. Evolution of Fictive Temperature in the Bond Stretching Part

As mentioned in the previous section the evolution of fictive temperature, T f , is important in
capturing post-yield stress-softening effects when near the glass transition—the evolution of this
variable being primarily dependent on the four parameters as outlined in Equation (9). Initial fitting
of these to reference EB data at a temperature of 130 ◦C and a deformation rate of 1 s−1, yielded
values of T f 0 = 419 K, ∆T f = 7 K, εv

0 = 0.2, and r = 1.6. As observed in previous work the biaxial
stress–strain curves of PEEK [13], with increasing strain rate creating a larger and broader decrease
in post-yield stress levels (Figure 10) whilst increasing temperature is correlated with a decrease in
these stresses. Previous work in modelling the deformation behaviour of glassy polymers has noticed
the complexity of capturing the evolution of T f with increasing strain rate [30]. By probing Equation
(9) the parameter ∆T f was identified as that responsible for the magnitude of the drop observed in
post-yield stresses with increasing values of ∆T f producing elevated values of T f —resulting in a softer
material response after yielding and thus, lower associated true stress levels. Individual values of ∆T f
were then manually fitted to each test case of varying combinations of temperature and strain rate to
best represent the experimental data, with Figure 10 showing this dependence of ∆T f on strain rate
and temperature. It is clear from the Figure that with increased strain rate the value of ∆T f is seen to
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increase, correlated with an increased dip in stresses associated after yielding occurs, with the opposite
being true with increasing specimen temperature–as shown when individually plotted in Figure 11.
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One such method of potential implementation of this ∆T f evolution with strain rate and temperature
is through the method of time-temperature superposition (TTS). Equation (20) demonstrates the
calculation of a shift factor, α, with associated strain rate,

.
ε:

log10(α) =
C1

( .
ε−

.
εre f

)
C2 +

.
ε−

.
εre f

, (20)
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where C1 and C2 are constants, and
.
εre f is the reference strain rate chosen as 1 s−1. The constants in

Equation (20) were fitted in order to shift the temperature data above a strain rate of 1 s−1 in Figure 10
intending to create a linear relationship of ∆T f with shifted temperature. Values of −0.08915 and 5.905
for C1 and C2 respectively were derived resulting in Figure 12—a master curve of ∆T f against shifted
temperature, taking into account the rate of deformation. A strong linear relationship is exhibited in
which an R2 value of 0.9637 is exhibited. This relationship is defined by Equation (21), with shifted
temperature in Kelvin:

∆T f = −0.2525 . Tshi f ted + 109. (21)Polymers 2019, 11, x 15 of 30 

 

  
Figure 12. ∆Tf against shifted temperature following use of time-temperature superposition. 

3.3. Calibration of HGO Model in the Conformational Part 

As previously highlighted in Equation (1) the total stress is a result of the addition of two 
components: the bond stretching stress and conformational stress. In the traditional Buckley material 
model the conformational stress is predicted by an isotropic Edwards–Vilgis formulation, but as 
already discussed these current methods are unsuitable for the biaxial deformation behaviour 
observed with the extruded PEEK sheets used in our studies—which clearly demonstrate some 
orientation in the MD, demonstrated through the larger stress response in the MD direction 
compared to the TD. In order to model the post-yield deformation behaviour the simulated bond 
stretching stress must be subtracted from the total experimental stress, using the characterised 
parameters derived in the previous section. These equal-biaxial rubber-like stresses are shown in 
Figure 12 in the machine and transverse directions, at the reference temperature of 130 °C and strain 
rate of and 1 s−1. A least squares curve fitting procedure was then conducted to best fit the parameters 
in Equation (12) to the experimental conformational stresses, giving values of 𝜇 = 1.00 MPa, 𝑘  = 
2.16 MPa, 𝑘  = 1.50 × 10−2, 𝜌 = 0.585 and 𝛽 = 4.02 × 10−11 ⁰. The generated conformational stresses by 
the characterised HGO model is shown in Figure 13 at a temperature of 130 °C and strain rate of 1 s−1. 

 
Figure 13. Non-linear curve fitting of Holzapfel–Gasser–Ogden (HGO) model to conformational 
stresses at a temperature of 130 °C and strain rate of 1 s−1 

Figure 12. ∆Tf against shifted temperature following use of time-temperature superposition.

3.3. Calibration of HGO Model in the Conformational Part

As previously highlighted in Equation (1) the total stress is a result of the addition of two
components: the bond stretching stress and conformational stress. In the traditional Buckley material
model the conformational stress is predicted by an isotropic Edwards–Vilgis formulation, but as
already discussed these current methods are unsuitable for the biaxial deformation behaviour observed
with the extruded PEEK sheets used in our studies—which clearly demonstrate some orientation in
the MD, demonstrated through the larger stress response in the MD direction compared to the TD.
In order to model the post-yield deformation behaviour the simulated bond stretching stress must
be subtracted from the total experimental stress, using the characterised parameters derived in the
previous section. These equal-biaxial rubber-like stresses are shown in Figure 12 in the machine and
transverse directions, at the reference temperature of 130 ◦C and strain rate of and 1 s−1. A least
squares curve fitting procedure was then conducted to best fit the parameters in Equation (12) to the
experimental conformational stresses, giving values of µ = 1.00 MPa, k1 = 2.16 MPa, k2 = 1.50 × 10−2,
ρ = 0.585 and β = 4.02 × 10−11 0. The generated conformational stresses by the characterised HGO
model is shown in Figure 13 at a temperature of 130 ◦C and strain rate of 1 s−1.
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3.4. Modelling Entanglement Slippage in the Conformational Part

In an extension to the constitutive model, Adams et al. [32] considered the inclusion of slippage to
model the deformation behaviour of aPET above Tg. The total conformational stretch is considered to
be multiplicative combination of network, λn, and slippage stretches, λs, expressed by Equation (22):

λi = λn
i λ

s
i (i = 1, 2, 3). (22)

Biaxial stretching of PEEK at all strain rates and temperatures equal to and above the Tg creates
a prolonged region of flowing behaviour creating a delay in strain hardening from occurring. It is
assumed that the conformational stresses simulated by the HGO model experience no slip. From
Equation (22) the slippage stretch can be calculated by division of the total stretch by the network
stretch at equal levels of true stress, as highlighted in Figure 14 for a strain rate of 1 s−1 at a temperature
of 150 ◦C.

By plotting the slippage stretch against total stretch, a parameter known as the critical network
stretch, λn

crit, can be found—the value at which entanglement slippage is considered to have fully
arrested, ceasing flow behaviour and allowing the strain hardening process to occur. When a polynomial
is fitted to the data, as shown in Figure 15, λn

crit is defined as the point where the slippage stretch
rate is equal to zero and derived when the gradient of the polynomial is horizontal. The critical
network stretch is then found by division of the total stretch by the slippage stretch at this point, as
defined by Equation (22). Plotting λn

crit as a function of temperature and strain rate yields the plot
observed in Figure 16, with increasing temperature and deformation rate inducing a proportional
effect on the critical network stretch. Data at a temperature of 155 ◦C regarding strain rates above 4 s−1

proved difficult due to dynamic oscillatory effects appearing on the stress–strain plots as a result of
dramatically softened material behaviour and is therefore not included.
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Figure 16. (a) Critical network stretch against temperature and (b) critical network stretch against
shifted temperature following time-temperature superposition (TTS), between strain rates of 1–16 s−1

for EB stretching in the machine direction.

Adoption of the TTS method was chosen, similar to that used in Section 3.2 to create a linear
relationship between shifted temperature and critical network stretch. Following a least squares curve fit
of the data shown in Figure 16, values of 0.2132 and 6.469 were characterized for C1 and C2 respectively
in Equation (20). A linear relationship of R2 value equal to 0.986 is given in Equation (23), relating the
critical network stretch and shifted temperature with little variation seen between material directions:
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The slippage viscosity as a function of temperature, γ0, as seen in Equation (23) is modelled by a
Vogel–Tammann–Fulcher relationship [26–28]:

γ0 = γ∗0 exp
(

Cs

T − T∞
−

Cs

T∗ − T∞

)
. (23)

Similar to Equation (7), Cs and T∞ are the Cohen–Turnbull constant and Vogel temperature
governing the temperature dependency of the dashpot. γ∗0 is the slippage viscosity at the reference
temperature, T∗ and must also be direction dependant due to anisotropy observed when stretching
samples. These parameters were fitted to post-Tg conformational stresses between deformation rates
of 1–16 s−1, with the values of best fit equal to Cs = 3296.50 K, T∞ = 5.95 K and γ∗0 = 1.68 MPa and
0.20 MPa for the machine and transverse directions. Fits for the conformational stresses in both the
MD and TD at a temperature of 150 ◦C are shown in Figure 17.
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4. Modified Model Prediction and Discussion

The characterised material parameters of the Buckley material model, including modifications,
are listed in Table 3.

The biaxial deformation behaviour can be predicted by the modified Buckley material model by
employing the above characterised constants under differing combinations of experimental variables
typical to those observed within the processing window. A comparison of the modified model with
the original Buckley material model, the capabilities of which previously detailed in Figure 3, is now
shown in Figure 18. The accuracies of the predicted material deformation behaviour compared with
those observed experimentally are quantitatively analysed through calculation of the normalised root
mean square error (NRMSE). This error, expressed as a percentage, is calculated by Equations (24)
and (25):

% NRMSE =

[
RMSE

ymax − ymin

]
× 100%, (24)

RMSE =

√∑n
i=1(ŷt − yt)

2

n
, (25)
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where ŷt is the simulated stress value as predicted by the model and yt is the experimental stress value
over the total number of strain data points, n. Table 4 details the %NRMSE values comparing the
predictions of the modified model to the original Buckley model shown in Figure 18.

Table 3. Characterised constants for modified Buckley material model through biaxial testing methods.

Property Value Unit

Bond Stretching Part

Shear Modulus, Gb 250 MPa
Bulk Modulus, Kb 6250 MPa

Shear Activation Volume, Vs 1.74 × 10−3 m3 mol−1

Pressure Activation Volume, Vp 1.41 × 10−4 m3 mol−1

Reference Viscosity, µ∗0 92.7 MPa
Activation Enthalpy, ∆H0 301 kJ mol−1

Limiting Temperature, T∞ 465 K
Viscosity Constant, Cv 399 K

Initial Fictive Temp, T f 0 419 K
Reference Fictive Temp, T∗f 423 K

C1 − Tshi f ted −0.0892
C2 − Tshi f ted 5.90

Strain Induced Increase, ∆T f −0.253 × Tshi f ted + 109 K
Rejuvenation Strain Range, εv

0 0.0058 × SR + 0.181
Fitting Parameter, r 1.60

Conformational Part

µ 1.00 MPa
k1 2.16 MPa
k2 0.0150
ρ 0.585
β 4.02 × 10−11 0

Reference Slippage Viscosity, γ∗0
1.68
0.20

MPa (MD)
MPa (TD)

Limiting Temperature, T∞ 5.94 K
Viscosity Constant, Cv 3296 K

C1 − λ
n
crit 0.213

C2 − λn
crit 6.47

Critical Network Stretch, λn
crit 0.0128 × Tshi f ted − 4.30 K
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Table 4. Comparison in observed root mean squared errors (%RMSE) between predicted and observed
stress–strain behaviour, for the modified and original Buckley material model, at a temperature of 130 ◦C.

Model
Machine Direction Transverse Direction

Strain Rate (s−1) Strain Rate (s−1)
1 16 1 16

Original 5.874% 19.91% 21.42% 36.08%
Modified 5.294% 10.73% 11.87% 5.340%

The improved ability of the proposed modified Buckley material model is in Table 4. At a strain
rate of 1 s−1, the original and modified Buckley material model configurations are comparable in the
machine direction, it is only when probing larger strain rates and material directions that the superiority
of the modified model is demonstrated. In the transverse direction the associated errors with the
original Buckley model is markedly greater, with the addition of the HGO hyperelastic element proving
pivotal in replicating the post-yield anisotropic response of the PEEK films subject to biaxial loading.
Previous use of the material model also showed no consideration of modelling the rate dependency of
the post-yield dip in stress associated with necking below the Tg, as shown in the machine direction at
a strain rate of 16 s−1 with an error of almost 20%. When dealing with a combination of these two
factors of high strain rates in the transverse direction, the error values seem to be compounded—with
%NRMSE reaching values as large as 36%, warranting the adoption of the HGO conformational element
and TTS for the accurate modelling of the specific material deformation behaviour.

Figure 19 demonstrates the temperature dependence of equal-biaxial deformation in the machine
and transverse directions respectively, at the reference strain rate of 1 s−1. The suitability of the modified
Buckley model is clear from the Figure with initial stiffness, yielding, necking, and strain hardening
stages of the biaxial deformation behaviour seen to be simulated well with only slight inaccuracies
shown by underestimations of predicted yield stress levels at temperatures of 135 and 140 ◦C—16.3%
and 10.1% deviation respectively. This correlates with the plot shown in Figure 9, where the modelled
limiting viscosity governing the yield stress at these temperatures is less than the experimental values
causing stress levels after yield to be slightly lower than those seen experimentally.

Figure 20 shows the %NRSME values over the temperature range of 130–155 ◦C at a strain rate of
1 s−1. The average error between predicted and actual stress plots were 6.92% and 10.52% in principal
directions respectively, showing simulations were more accurate in the machine direction. A minimum
error of 5.29% at 130 ◦C and maximum of 14.20% at a temperature of 140 ◦C is in agreement with the
above hypothesis concerning the modelling of limiting viscosity at this temperature.

Post-yield stress disparities are visually correlated appropriately with the observed biaxial
deformation behaviour of PEEK specimens, highlighting the applicability and future promise of the
HGO model in capturing anisotropic effects at all temperatures considered. Simulation of slippage at
temperatures at the reference strain rate above the glass transition is captured effectively through use
of TTS. Although minor deviation is only observed once above a strain of 1, overall the characterised
material model is seen to qualitatively agree with the temperature dependency at all stages of the
equal-biaxial deformation behaviour of PEEK.
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stress–strain behaviour between temperatures of 130 and 155 ◦C, at a strain rate of 1 s−1.

Figures 21–23 show the predicted true stress–nominal strain behaviour of PEEK specimens
between strain rates of 1–16 s−1, at temperatures of 130–150 ◦C in both directions. Again, a good
qualitative fit is exhibited by the characterised material model in replicating the aforementioned
four stages of the deformation behaviour at elevated strain rates. Any differences observed between
simulated and measured behaviour is typically focussed on modelling yield stress levels at the highest
strain rate of 16 s−1, with maximum percentage differences of 6.28%, 12.2% and 12.7% recorded at
the yield points of 130, 140, and 150 ◦C, respectively. By reviewing the Eyring plots in Figure 7 it is
important to note that the values for Vs and Vp, responsible for the magnitude in yield stresses, were
calculated from an average of the individual gradients of the temperature plots. As the mean value of
0.0167 MPa K−1 was chosen, which is less than the value of the gradients at 130 and 140 ◦C but greater
than that at 150 ◦C, this explains the simulated underestimation in yield stresses at a strain rate of
16 s−1 shown at temperatures of 130 and 140 ◦C, yet an overestimation for 150 ◦C at the highest strain
rate. Although a larger value for the gradient to calculate the activation volumes would accommodate
a more representative prediction for temperatures 130 and 140 ◦C, an average of all temperatures is
used in order to ensure accurate modelling over the entire processing window.
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Figure 23. Predicted EB deformation behaviour by modified Buckley model for strain rates between 1
and 16 s−1, at a temperature of 150 ◦C in the (a) machine direction and (b) transverse direction.

Figures 24–26 show the calculated %NRSME values over the strain rate range of 1–16 s−1 at
temperature intervals of 130, 140, and 150 ◦C in machine and transverse directions. The figures
demonstrate the quantitative agreement of the modified model over the broad processing range, with
maximum error levels not seen to exceed 15%. In general, the deformation behaviour was modelled
more accurately in the machine direction—the maximum average percentage difference in principal
directions being equal to only 4%.
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5. Conclusions

In this work the constitutive biaxial deformation behaviour of thin PEEK specimens was
successfully modelled extending extensive displacement-controlled biaxial tests over a temperature
window of 130–155 ◦C and strain rate range of 1–16 s−1. The capability of the original Buckley
material model was shown to capture linear elastic, and yielding behaviour associated with that
observed during in-plane biaxial tests, although could not account for anisotropic effects revealed
after yielding between the principal directions. The Holzapfel–Gasser–Ogden hyperelastic model
was seen to successfully replicate the anisotropic stress-strain response of arterial tissues, and as a
result, was substituted in place of the Edwards–Vilgis hyperelastic element within the conformational
arm. The post yield divergence in true stresses observed in equal-biaxial tests of PEEK specimens
was successfully modelled, resulting in an almost 10% decrease in the error levels associated with
the inability to replicate this post-yield anisotropy in the original model, at a temperature of 130 ◦C.
When concerning the discernible dependencies of the magnitude in post-yield stress declines at large
strain rates, as suggested in previous literature, the time-temperature superposition principal has
shown promise in effectively computing the evolution of fictive temperature subject to the forming
temperature and deformation rate.

Using the modified model, following step-by-step definition of the 26 parameters and relationships,
it was shown that the simulated equal-biaxial deformation behaviour compared qualitatively well
to the experimental data at temperatures and strain rates analogous to the forming process. It was
possible to predict the initial stiffness, yielding, necking, and anisotropic strain hardening stages of
deformation over the wide temperature window and strain rate range. Errors concerning the simulated
magnitude of yield stress, presented at temperatures of 135 and 140 ◦C at the reference strain rate and
at temperatures at the highest strain rate of 16 s−1, is presumed to be as a result of the modelled limiting
viscosity due to averaged gradients of Eyring plots. The proposed modified material model is seen to
be in good overall quantitative agreement with the displacement-controlled biaxial data in principal
directions, showing minimum and maximum errors of 4.74% and 14.2% respectively—insignificant
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when compared to the 36.1% error associated with the prediction of the original Buckley material
model at a temperature of 130 ◦C and strain rate of 16 s−1, in the transverse direction.

Considering the applicability of the characterised model in replicating the biaxial deformation
of PEEK films, as the first of its kind in literature, the use of the modified Buckley material model is
promising for future implementation into finite element simulations for the prediction of material
deformation during forming. In addition, not only is the modified Buckley material model solely
applicable for the modelling of PEEK films but following appropriate characterisation, can provide a
stable basis for the replication of the biaxial forming behaviour of any amorphous polymeric materials
exhibiting post-yield anisotropic behaviour as a result of material fabrication or processing.
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