Extended 2,2'-bipyrroles: new monomers for conjugated polymers with tailored processability

Robert Texidó¹, Gonzalo Anguera¹, Sergi Colominas³, Salvador Borrós^{1,2} and David Sánchez-García ^{1,*}

- ¹ Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; roberttexido@gmail.com (R.T.); gonzaloanguerap@iqs.url.edu (G.A.); salvador.borros@iqs.url.edu (S.B.G.)
- ² Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain
- ³ Electrochemical Methods Laboratory Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; sergi.colominas@iqs.url.edu (S.C)

Table of Contents

I. Synthesis	2
II. NMR spectra	5
III. Characterization of the polymers prepared by chemical oxidation	6
IV. Absorption and Fluorescence spectra	8
V. First cyclic voltammetry cycle vs Fc	9
VI. MALDI – TOF	10
VII. Chemical Structures of the polymers	10

I. Synthesis

Diethyl 5,5'-dibromo-4,4'-diphenyl-1*H*,1'*H*-[2,2'-bipyrrole]-3,3'-dicarboxylate (0.34 mmol) and 1-methyl-2-(trimethylstannyl)-1*H*-pyrrole (0.85 mmol) were dissolved in 20 ml of dry toluene. Then the solution was flushed with N₂ 20 min, Pd(PPh₃)₄ (0.12 g, 0.1 mmol) was added and flushed 5 min more. The mixture was stirred for 3 hours at 140 °C in a microwave instrument. The mixture was filtered to separate the precipitated catalyst and the solvent was removed under reduced pressure to obtain a brown oil. The product was obtained washing the brown oil with mixtures of AcOEt and Cy.

Fig. S1. Chemical structure of monomer 1c.

1c (98%, yellow powder) IR (KBr pellets)/cm⁻¹: 3432, 2982, 1654, 1444, 1410, 1177, 1021, 838, 723, 704. ¹H NMR (400 MHz, CDCl₃) δ: 13.36 (s, 2H), 7.27 – 7.16 (m, 10H), 6.55 (dd, J = 2.7, 1.8 Hz, 2H), 6.14 (dd, J = 3.7, 1.8 Hz, 2H), 6.09 (dd, J = 3.7, 2.7 Hz, 2H), 4.03 (q, J = 7.1 Hz, 4H), 3.24 (s, 6H), 0.84 (t, J = 7.1 Hz, 6H). ¹³C NMR (100.6 MHz, CDCl₃) δ: 168.60, 136.78, 130.51, 128.49, 127.54, 126.93, 126.19, 124.59, 123.10, 122.71, 111.17, 111.13, 107.88, 60.84, 34.72, 13.46, 0.15. Anal. C₃₆H₃₄N₄O₄ Calculated: C73.70 H 5.84 N9.55, Found: C73.68 H5.97 N9.51. UV-Vis λ_{max}/nm (ε/M⁻¹·cm⁻¹) CHCl₃: 383 (1.6 · 10⁴). m.p.: decomp. 245 °C.

General methodology for obtaining polymers by chemical coupling (P-1a-c)

Fig. S2. Chemical oxidative coupling of monomers 1a-c and chemical structure of polymers P-1a-c.

1a-c (1 eq.) was dissolved in 35 ml of dry chloroform and anhydrous $FeCl_3$ (50 eq.) was added in portions, then the solution was stirred for 2 days at room temperature under nitrogen. The solvent was removed under reduced pressure and the obtained solid was suspended in methanol and refluxed 20 min. The mixture was filtrated and solid washed with methanol to eliminate the FeCl₃.

The obtained solid was refluxed with THF and filtered to remove the insoluble part of the polymer. The filtrate was concentrated and the product was precipitated with the addition of methanol. Precipitate was cooled at 5 °C overnight and filtered to obtain a powder.

Monomer	$M_w{}^a$	M _n ^a	PDI ^a	Absorbance ^b	Emission ^c	Quantum Yield ^d
1a	2300	1100	2.18	369	512	<1%
1b	2600	1100	2.46	408	499	0.04
1c	2300	1000	2.21	457	507	0.12

Table S1: properties of weight, absorbance and fluorescence of polymers prepared by chemical oxidation.

^a Estimated from GPC (eluent THF, polystyrene standards). ^b All spectra were recorded in THF at a concentration of 0.1 mg/ml. ^c Emission spectra were measured with excitation at the maximum absorption of each polymer. ^d Quantum yields were determined in THF using a solution of quinine in 0.05M H₂SO₄ ($\Phi_F = 0.546$) as fluorescence standard.

Fig. S3. Chemical structure of polymer P-1a (R=Et).

1a (5%) IR (KBr pellet)/cm⁻¹: 3413, 2926, 1719, 1548, 1465, 1384, 1269, 1184, 1093, 1022, 968, 843, 795, 771, 700. UV-VIS: $\lambda_{max} = 369$ nm, absorption up to 600 nm.

Fig. S4. Chemical structure of polymer P-1b (R=Et).

1b (21%) IR (KBr pellet)/cm⁻¹: 3433, 2922, 1669, 1614, 1448, 1419, 1174, 1020, 863, 756, 695. ¹H-NMR (400 Mhz, d₆-DMSO) δ : 12.53 (brs, 1H), 9.20 – 8.98 (m, 2H), 7.64 – 7.36 (m, 6H), 4.34 – 3.86 (m, 10H), 1.18 (m, 6H). UV-VIS: $\lambda_{max} = 408$ nm, absorption up to 600 nm.

Fig. S5. Chemical structure of polymer P-1c (R=Et).

1c (17%) IR (KBr pellet)/cm⁻¹: 3432, 2924, 1658, 1418, 1181, 1063, 930, 794, 770, 699. ¹H-NMR (400 Mhz, d₆-DMSO) δ : 12.31 (m, 2H), 7.49 – 7.35 (m, 6H), 7.30 – 7.15 (m, 6H), 6.97 (m, 2H), 3.83 (m, 4H), 0.83 (m, 6H). UV-VIS: $\lambda_{max} = 457$ nm, absorption up to 515 nm.

II. NMR spectra

Fig. S6. 1 H-NMR (a) and 13 C-NMR (b) spectra of 1c in CDCl₃.

III. Characterization of the polymers prepared by chemical oxidation

Fig. S8. ¹H-NMR spectrum of P-1b in DMSO-d₆.

Fig. S9. ¹H-NMR spectrum of P-1c in DMSO-d₆.

IV. Absorption and Fluorescence spectra

Fig. S10. Absorption and Fluorescence spectra normalized for polymers P-1b and P-1c in THF.

V. First cyclic voltammetry cycle vs Fc

Fig. S11. First cyclic voltammetry of 1a-c 2,2'-bipyrrole monomers overlapped with Ferrocene/Ferrocenium couple.

VI. MALDI – TOF

m/z	1a
558.2	Monomer
814.2	Monomer + Tetra butyl ammonium
919.0	Monomer + Tetra butyl ammonium perchlorate
1116.4	Dimer
1370.7	Dimer + Tetra butyl ammonium
1684.7	Trimer
1927.9	Trimer + Tetra butyl ammonium
2227.9	Oligomer $n = 4$
2786.1	Oligomer $n = 5$

Table S2: possible fragmentation peaks

m/z	1b
586.2	Monomer
656.3	Monomer + Perchlorate - Ethyl group
707.1	Monomer + Perchlorate -2 Ethyl groups
810.3	Monomer + Tetra butyl ammonium
847.3	Monomer + 3Perclorate groups - Esther group
1012.4	Dimer - 2 Phenyl groups - 2 Esther groups
1091.4	Dimer - Phenyl group
1170.5	Dimer
1276.6	Dimer + Perchlorate

m/z	1c
592.2	Monomer
672.0	Monomer + Perchlorate
810.3	Monomer + Tetra butyl ammonium
972.2	Monomer + Tetra butyl ammonium perchlorate - Ethyl group
1182.3	Dimer
1285.3	Dimer + Perchlorate
1443.4	Dimer + Tetra butyl ammonium

VII. Chemical Structures of the polymers

Fig. S12. Chemical structures of 2,2'-bipyrrole based polymers P-1a-c (R=Et).