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Abstract: Soybean meal-based adhesives are attractive potential environmentally friendly
replacements for formaldehyde-based adhesives. However, the low strength and poor water resistance
of soybean meal-based adhesives limit their practical application. This study was conducted to develop
a natural fiber-reinforced soybean meal-based adhesive with enhanced water resistance and bonding
strength. Pulp fiber (PF), poplar wood fiber (WF), and bagasse fiber (BF) were added as fillers into the
soybean meal-based adhesive to enhance its performance via hydrogen bonding between the PF and the
soybean meal system. The enhanced adhesive exhibited a strong crosslinking structure characterized
by multi-interfacial interactions wherein PF served as a bridging ligament and released residual
stress into the crosslinking network. The crosslinked structure and improved interfacial interactions
were confirmed by Fourier transform infrared (FTIR) spectrophotometry, thermogravimetric analysis
(TGA), and scanning electron microscopy (SEM) measurements. Plywood bonded with 4 wt %
PF-containing soybean meal-based adhesive exhibited a wet shear strength (1.14 MPa) exceeding that
of plywood bonded with the control group by 75.4% due to the stable crosslinking network having
efficiently transformed stress and prevented the permeation of water molecules.

Keywords: soybean meal-based adhesive; natural fiber-reinforced; filler; hydrogen bonding;
crosslinked structure; bonding strength

1. Introduction

Soybean meal (SM)-based adhesive is a noteworthy substitute for formaldehyde-based adhesives
due to its environmental friendliness and biodegradability [1–4]. The inherently low strength and
low water resistance of SM-based adhesives, however, hinders its practical application [5–7]. Many
chemical/physical modification methods have been used to strengthen and waterproof SM-based
adhesives such as soy protein structure modification [8], crosslinking agent modification [9,10], and
organic or inorganic blending [11–13]. In the soy protein structure modification method, soy protein
molecules are unfolded after using denaturation agents. The organic or inorganic blending method
allows mixing of the inorganic phases with the organic phases to increase the strength of the matrix.
However, the enhancement effect of these two methods is not obvious. Crosslinking agent modification
may be a particularly effective method for improving the water resistance and mechanical strength
of SM-based adhesives. For example, epoxy compounds, natural gellan, and genipin have been
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successfully employed as modifying crosslinkers [5,14,15]. Introducing a crosslinking agent greatly
increases the cost of the adhesive, while also increasing its brittleness.

Fiber-reinforced composites have attracted much attention because fibers can increase the strength
and toughness of composites. Glass fiber and ceramic fiber can be added to adhesives as fillers for this
purpose [16–18], but they are expensive and non-degradable; some chemical fibers are even harmful to
the human body. Natural fibers are widely used to strengthen composite materials as they are low
cost, renewable, lightweight, and flexible, and have good mechanical properties, unique acoustic, and
thermal insulating performances, and show less safety and health concerns (no skin irritations) [16–18].
Kenaf fiber [19], for example, enhances the mechanical properties of composites but adding it is a
relatively complex and expensive process which is ill-suited to industrial applications. Researchers
have added cheaper natural fibers (e.g., pulp fiber, poplar wood fiber, bagasse fiber, hemp fiber, and
flax fiber) to composites to successfully increase their strength and elasticity as well.

Pulp fiber (PF) is a type of natural fiber that has high elasticity, strong toughness, rich yields,
and a favorable strength-to-weight ratio. It resembles spider silk—it is not easy to age and tends to
react with other reagents. Yang et al. used PF to effectively enhance the tensile and bending strength
of polylactic acid composites [20]. Natural poplar wood fiber (WF) also has relatively high strength.
Nourbakhsh et al. added PF and several other fibers to nanotube composites and found that WF
outperformed the other fibers [21]. Bagasse fiber (BF) [22], a waste product from sugar processing, has
also been used to successfully reinforce the strength of cardanol-formaldehyde composites.

In this study, inspired by reinforced-concrete structures and the potential added value of biomass
materials, a value-added, environmentally friendly, high-strength, and cost-effective resin which
contains natural fiber fillers was explored. Firstly, three kinds of natural fibers were pretreated with
alkali and then added to SM with a green cross-linking agent. A crosslinking network structure
formed in the SM-based adhesive system which can be attributed to the physiochemical interaction
between soy molecules and natural fibers. The chemical structures of natural fibers and SM-based
adhesives were analyzed, and the mechanical properties, water resistance, micromorphology, and
thermal stability were determined as discussed below.

2. Experimental Procedures

2.1. Materials

SM powder, with a 45.2% soy protein content (5.0% moisture content, 6.46% ash, 0.56% fat, and
38.12% carbohydrate) was purchased from Xiangchi Grain and Oil Company (Shandong, China) and
milled to 200 mesh in a laboratory grinder. PF was purchased at Yangrun Trading Co., Ltd. (Dalian,
China). WF was purchased from the Hongren Mineral Processing Plant (Shijiazhuang, China), and
were chopped into portions of approximately 4–5 mm in length. BF was purchased from the Aigou
Agricultural Products Department (Nanning, China) and then sifted into fibers of 4–5 mm in length.
The crosslinking agent solution (69% solid content) was bought from Tianjin Heowns Biochem Co.,
Ltd. (Tianjin, China). Other chemical reactants were purchased from Beijing Chemical Reagents Co.,
Ltd. (Beijing, China).

2.2. Pre-Treatment of Natural Fibers

The three types of fibers (PF, WF, and BF) were each alkali pre-treated in the same manner. The
fiber (40 g) was placed into NaOH solution (5%) then held in a high temperature sealed reactor for
2.5 h with mechanical stirring. After cooling, the treated fibers were washed with distilled water to
neutralize the pH, then dried in an oven at 80 ◦C to a constant weight.

2.3. The SM-Based Adhesive Preparation

The CSM adhesive was made from the SM-based adhesive only modified by the crosslinking
agent. Thirty grams of SM and 0.87 g of the crosslinking agent were dispersed sequentially in distilled
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water (70 g) under constant stirring for 30 min at 20 ◦C. The ratio of crosslinking agent weight to the
SM weight was 1:50.

PCSM adhesives (PCSM-1,2,3); CSM adhesives modified by PF, were made by uniformly dispersing
a predetermined amount of PF (2, 4, and 6 wt % rate of PF to SM weight) in the CSM (100 g) adhesive,
and then stirring the mixture vigorously for 10 min at 20 ◦C. WCSM adhesives (WCSM-1,2,3); CSM
adhesives modified by WF, and BCSM adhesives (BCSM-1,2,3), CSM adhesives modified by BF, were
prepared similarly.

The modified SM-based adhesives with crosslinking agents (CSM adhesive) and PCSM, WCSM,
and BCSM adhesives were prepared according to the formulations shown in Table 1.

Table 1. Experimental Formulations of SM-Based Adhesives (Since the amount of SM, deionized water
and the crosslinking agent is the same in all samples, they are not listed in the table).

Sample Fiber

CSM 0
PCSM-1 2 wt % of PF
PCSM-2 4 wt % of PF
PCSM-3 6 wt % of PF
WCSM-1 2 wt % of WF
WCSM-2 4 wt % of WF
WCSM-3 6 wt % of WF
BCSM-1 2 wt % of BF
BCSM-2 4 wt % of BF
BCSM-3 6 wt % of BF

2.4. Triple-Layered Plywood Specimen Preparation

The as-prepared adhesives were used to prepare three-layered plywood specimens at a spreading
rate of 180 g/cm2 for each layer. The three-layered plywood was then hot-pressed at a temperature of
120 ◦C under a pressure of 1 MPa for 315 s (4.5 mm thick plywood) [23]. The obtained samples were
stored at 20 ◦C and 60% relative humidity for 12 h before further testing.

2.5. Characterization of PF, WF, BF, and the Adhesive Samples

2.5.1. ATR-FTIR Spectroscopy

The samples of the modified SM-based adhesives were completely cured in an oven (120 ± 2 ◦C)
until reaching a constant weight and then ground into powder (200 mesh). The ATR spectra tests of
the modified SM-based adhesives were observed on a Nicolet 7600 spectrometer (Nicolet Instrument
Corp., Madison, WI, USA) equipped with an ATR accessory. The spectra were recorded over the range
of 4000–650 cm−1 with a 4 cm−1 resolution using 32 scans [24].

2.5.2. Thermogravimetric Analysis

The thermal stabilities of CSM/PCSM/WCSM/BCSM adhesives were recorded respectively on a
TGA instrument (TA Q50, WATERS Company, New Castle, DE, USA). About 6 mg of adhesive sample
powder was weighed in a platinum cup, then heated from 25 to 610 ◦C at a rate of 10 ◦C min−1 in a
constant nitrogen atmosphere (100 mL min−1) [25]. Changes in weight were recorded throughout the
whole process.

2.5.3. Scanning Electron Microscopy

A Hitachi S-3400N (Hitachi Science System, Ibaraki, Japan) SEM was used to observe the
morphologies of the fiber surface and the fractured cross-sections of the CSM/SM-based adhesives
modified by the three types of fibers. Adhesive samples were completely cured in an oven (120 ± 2 ◦C),
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then fractured into several pieces to obtain cross-sections. The fiber surfaces and adhesive cross-sections
were coated with 10 nm Au/Pd film before microscopy [26].

2.5.4. Apparent Viscosity Measurement

The viscosity of the CSM/PCSM/BCSM/WCSM adhesives was measured using a rheometer with a
parallel plate fixture (20 mm diameter). The distance was set to 1 mm, and the spinning rate was 2 rpm
during the measurements. Six replicate measurements were performed for each kind of sample.

2.5.5. Residue Rate Test

The residue rates of the adhesives were determined by gravimetric analysis. Adhesive samples
were dried in an oven set at 120 ± 2 ◦C until a constant weight (m1), then immersed in water for six h in
an oven s at 60 ± 2 ◦C and dried at 105 ± 2 ◦C for three h to a constant weight (m2). The residue rate was
calculated as m1/m2 and reported as a percentage. All of the measurements were made in triplicate.

2.5.6. Dry and Wet Shear Strength Measurements

The dry and wet shear strengths of the interior used plywood (Type II plywood, ≥0.7 MPa) and
were tested on an electronic universal testing machine and evaluated according to the China National
Standard GB/T 17657-2013. Each plywood panel was cut into 14 plywood specimens (100 mm × 25 mm).
The dry shear strengths of the specimens were tested at an operating speed of 20.0 mm min−1 on the
testing machine. The plywood specimens were immersed in water at 63 ◦C for 3 h, dried for 10 min at
room temperature, and tested for the wet shear strength. The speed of the crosshead was 10 mm min−1.
The values were calculated as follows:

Dry/wet shear strength(MPa) =
Force (N)

Gluing area (mm2)
(1)

2.5.7. Statistical Analysis

The differences among specimens were compared by Duncan’s multiple range test at p = 0.05.
Experiments were repeated at least six times, and the variance was analyzed accordingly [27].

3. Results and Discussion

3.1. Structural Analysis of the Adhesives

3.1.1. ATR-FTIR Spectroscopy Results

The possible structures between different fibers and SM-based adhesives were investigated by
ATR-FTIR spectroscopy. ATR-FTIR spectra of the cured CSM adhesive and hybrid adhesives are shown
in Figure 1.

In the spectra of the CSM adhesive, a broad absorption band in the range of 3500–3200 cm−1

corresponds to the bending vibrations of free and bound O–H and N–H groups. The peak observed
at 2928 cm−1 can be attributed to the symmetric and asymmetric stretching vibrations of the –CH2

groups [28]. The absorption bands near 1399 and 1040 cm−1 can be respectively attributed to the
stretching vibration of COO– and C–O. Dominant peaks were observed at approximately 1645, 1515,
and 1240 cm−1 as attributed to C=O stretching (amide I), N–H deformation (amide II), and C–N
stretching and N–H vibration (amide III), respectively [29]. In the crosslinking agent spectrum, the
peaks at 2918 and 2872 cm−1 corresponded to the vibration of –CH2, and the peaks at 1092 and 843 cm−1

were attributed to the C–O–C and free epoxy group skeleton vibrations, respectively. The peak at
843 cm−1 of the epoxy groups disappeared in all the SM-based adhesives. This outcome was expected
because the crosslinking agent could form covalent bonds/hydrogen bonds with the amino group of
the SM by the ring opening reaction [28].
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After adding PF, the hydroxyl peak shifted to a lower wavenumber in the spectrum of the PCSM
adhesive; that of PCSM shifted from 3284 to 3267 cm−1 indicating that the –OH groups in the PF
participated in the adhesive system via intermolecular hydrogen bonding [30]. In addition to the
above, the C=O groups (1645 cm−1) of amide I shifted toward a higher wavenumber (PCSM was at
1652 cm−1) in the spectrum of the PCSM, which further indicates the formation of hydrogen bonds
between the fibers and adhesive molecules [28]. The peaks of –C–NH2 bending (at 1040 cm−1) also
moved to higher frequencies; that of PCSM shifted to 1051 cm−1. The peak at 1399 cm−1 attributed to
the COO– groups shifted to lower frequencies; that of PCSM shifted to 1386 cm−1, which indicates the
construction of multiple reactions between the fibers and adhesive molecules [4,31]. The addition of
PF enhanced the mechanical strength of the adhesive. A crosslinking model of the PCSM adhesive is
provided in Scheme 1.

Interestingly, the hydroxyl peak shifted to higher wavenumbers, and C=O group peaks shifted to
lower wavenumbers in the spectra of the WCSM and BCSM adhesives, which means that there was
less hydrogen bonding than in the PCSM adhesive. This also indicates that the addition of WF and BF
reduced the hydrogen bonds in the adhesive and did not effectively enhance the material’s mechanical
strength. Dense crosslinking structures were formed by hydrogen bonding between PF and SM in the
PCSM adhesive, which enhanced the strength and water resistance of adhesive. The WF and BF did
not form the effective crosslinking structures with the SM-based system and destroyed the structures
of the material itself, which was detrimental to the strength of the adhesive.
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Scheme 1. Schematic illustration of the PCSM adhesive crosslinking mechanism.

3.1.2. Thermogravimetric Analysis

To further investigate the chemical structures between different fibers and SM-based adhesives,
we examined their thermal behavior by TGA as shown in Figure 2. The thermal degradation data
is also listed in Table 2. The thermal degradation process can be roughly divided into two stages:
100–250 ◦C (stage 1), and 250–500 ◦C (stage 2). Two peaks were observed for the CSM adhesive in
the DTG curve. The first peak (222 ◦C) at stage 1 can be attributed to the loss of micromolecules and
decomposition of unstable chemical bonds [32]. The second peak (305 ◦C) at stage 2 occurred due to
the skeleton structure degradation of the adhesive [33]. Some weight was lost before the first stage as
the protein broke down and the water evaporated. Further heating beyond the second stage caused
the C–C, C–N, and C–O linkages to break [34].

After adding WF and BF, the peak value at stage 2 shifted to a lower temperature compared to the
CSM adhesive in the DTG curve. The carbon residue rate also reduced significantly in the TG curve,
which indicated that the thermal stability of WCSM and BCSM adhesives was lower than that of CSM.
This is likely because WF and BF broke the crosslinking network of the adhesive and weakened the
interface interaction. After incorporating the PF modifier, the peak value at stage 2 of the PCSM shifted
to a higher temperature in the DTG curve compared to the CSM curve where the carbon residue rate of
the PCSM also increased significantly compared to that of the CSM. This suggested that the thermal
stability of the PCSM adhesive was higher than that of the CSM adhesive, which may be attributable to
the construction of multiple interactions and the increase in crosslinking robustness after PF addition.

We also found that the peak value of PCSM was the lowest and its carbon residue rate was the
highest among all SM-based adhesives. This suggested that the thermal stability of the adhesive with
PF was the best among all samples. Proper PF loading appeared to result in a firm crosslinking structure
that enhanced the thermal stability of the adhesive. The dense crosslinking structure, enhanced thermal
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stability, and superiority of PCSM adhesives over WCSM and BCSM adhesives as-evidenced by TGA
were also supported by the ATR-FTIR spectroscopy results.
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BCSM adhesives.

Table 2. Thermal degradation of CSM and PCSM, WCSM, and BCSM adhesives.

Sample Tmax1 (◦C) Tmax2 (◦C) Residual Mass (wt %) at 600 ◦C

CSM 220.51 304.53 26.14
PCSM 223.58 313.82 29.92
WCSM 216.98 301.75 22.48
BCSM 216.35 297.61 20.38

3.1.3. Micromorphological Analysis

The surface micromorphological analysis was applied to observe the structures in the matrix
among different fibers and SM-based adhesives. The fracture surfaces of the cured CSM adhesives and
hybrid adhesives were observed by SEM, as shown in Figure 3. The CSM adhesive (Figure 3(CSM))
showed a relatively loose and discontinuous fracture surface with several holes and cracks. These
defects were caused by the amorphous features of the CSM adhesive, which is easily penetrated by
water [35]. After adding WF and BF (WCSM, BSCM), the cracks and holes remained. As shown in
Figure 3(WCSM), some WF were shredded in the adhesive. In effect, the WF did not establish an
effective crosslinking structure with the adhesive layer resulting in its destruction under stress. The
lack of an effective crosslinking structure may have been due to the relatively loose surface of the WF.

In Figure 3(BCSM), a small amount of BF detached from the adhesive surface. This reflects the
weak interactions between the fibers and resin—the fiber did not play a role in strengthening the
adhesive. The weak interaction may be due to the fact that the BF surface was porous and absorbed
water and the steam generated during hot-pressing destroyed the interaction between the BF and
the resin.

Fewer holes and cracks were observed after PF addition, and the fracture surface became more
compact. In other words, the mechanical properties of the adhesive were improved by PF. Few fibers
were pulled out in the PCSM, which reflected a strong interface between the matrix and the PF. This
interaction was closely related to the favorable surface morphology of PF. In the Figure 3(PCSM)



Polymers 2019, 11, 967 8 of 14

sample, the PF acted like twisted steel embedded in the resin. When microcracks propagated through
the PF in the resins, the PF acted as a bridging ligament to deflect it as the strength of the fiber was
much larger than that of the adhesive matrix. The PF effectively released the residual stress and
inhibited the extension of microcracks [36], thus resulting in improved mechanical performance.
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The micro-topographies of PF, WF, and BF were next observed to determine why different fibers
caused different adhesive surface morphologies (Figure 4). As shown in Figure 4(WF), the WF had a
loose surface covered in debris. These fibers were likely to reduce interface interactions and resulted
in poor interface contact. The BF surface also appeared to be very porous (Figure 4(BF)); the pores
absorbed large amounts of water and produced a great deal of water vapor during the heating
process. By contrast, the surface of the PF was very compact (Figure 4(PF)). The PF has a larger
length-to-diameter ratio than the other fibers (the “twisted steel” property mentioned above), which
facilitated strong interactions with other molecules in the adhesive. The surface morphology of PF
allowed for a solid crosslinking structure that improved the strength of the adhesive.
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The micromorphological analysis results were effectively validated by the above analysis of PF,
WF, and BF micro-topographies. The crosslinking structures of the adhesives with PF were denser—PF
served as a bridging ligament and released the residual stress in the crosslinking structure, which
effectively improved the adhesive strength and water resistance of the material. The WF surface was too
loose and the BF surface too porous to effectively construct the desired adhesive crosslinking network.
The micromorphological analysis also supports the ATR-FTIR spectroscopy and TGA analysis results.

3.1.4. Apparent Viscosity Analyses

The apparent viscosity of the adhesive largely reflects the penetration and flow capacity of the
adhesive. The too high viscosity of the adhesive would cause difficulty in distributing the adhesive
evenly on the wood surfaces, while the too low viscosity of the adhesive would lead to over-penetration.
Therefore, the adhesive strength could be reduced by either a too high or too low viscosity of the
adhesive. As a well-known rule of thumb, the optimal values of viscosity should range from 5000 to
25,000 MPa s for composite adhesives. As shown in Table 3, the viscosity of CSM was low, which proved
that the crosslinking density of CSM was low, which would cause the problem of over-penetration.
After the 0–4 wt % PF addition, the viscosity of the adhesive was increased. This behavior proved
that the PF had multiple interactions with the adhesive molecules and strengthened the crosslinking
network. The reinforcement of the crosslinking network reduced the flow capacity of the adhesive.
However, the excessive addition of PF resulted in the decrease of adhesive viscosity, which was because
the excessive PF broke the crosslinking network. It can be observed that the viscosity of the adhesive
decreased after adding WF and BF, which can be because WF and BF did not effectively bind with the
adhesive molecules.

Table 3. The apparent viscosity of CSM and PCSM, WCSM, and BCSM adhesives.

Sample Viscosity (MPa s)

CSM 9524
PCSM-1 14,654
PCSM-2 23,398
PCSM-3 22,268
WCSM-1 9029
WCSM-2 7901
WCSM-3 6502
BCSM-1 8168
BCSM-2 6945
BCSM-3 6201

3.1.5. Residue Rate Analyses

The residue rate is an important parameter in evaluating the hydrolysis stability of adhesives. It
reflects the density of the crosslinked structure in the adhesive to a certain extent, as well as the detailed
structures of different fibers and SM-based adhesives. As shown in Figure 5, the CSM adhesive has a
residue rate of 74.70%. The addition of WF to the CSM adhesive decreased the residue rate from 74.70%
to 70.74% (WCSM-1). The residue rate of the adhesive decreased from 74.70% to 70.45% (BCSM-2)
after the addition of BF. These characteristics may be attributable to the porous and loose surfaces of
WF and BF preventing crosslinking between the fibers and the adhesive molecules.

Conversely, the addition of 0–4 wt % PF into the CSM adhesive improved the residue rate of
the latter from 74.70% to 82.91%. The residue rate of PCSM-2 was the highest among the samples,
exceeding that of CSM adhesives by 11%. PF participated in the crosslinking reaction to afford multiple
interactions with the adhesive molecules, which improved the crosslinking density and water resistance
of the adhesive and thus the residue rate. However, the continued increase in fiber addition to 6 wt %
(PCSM-3) decreased the adhesive residue rate to 77.65%. If the adhesive crosslinking network was
damaged by excessive fibers, the water resistance of the adhesive would decrease. The appropriate
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PF addition can effectively produce a crosslinking structure with other molecules in the adhesive via
multi-interfacial interactions, which improves the water resistance of the adhesive. The addition of WF
and BF, as discussed above, did not result in the construction of a dense crosslinked structure thus
reducing the water resistance of the adhesive. The residue rate analysis results are in accordance with
the results from previous tests.
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3.2. The Effect of Different Fibers on SM-Based Adhesive Mechanical Properties

Dry and Wet Shear Strength Measurements

The dry and wet shear strengths of plywood samples fabricated with different adhesive
formulations were assessed to further explore their mechanical properties, as shown in Figure 6.
The dry and wet shear strengths of the CSM adhesive were measured at 1.34 and 0.65 MPa, respectively.
The wet shear strength did not meet the interior use requirement (≥0.7 MPa) according to the China
National Standard (GB/T 9846.3-2004). The dry and wet shear strengths of plywood bonded with
PCSM adhesives (PCSM-1, PCSM-2, and PCSM-3) were significantly higher than those of the CSM
adhesive, and do meet the interior use requirement. When 4% PF was added to the adhesive (PCSM-2),
the dry and wet shear strengths reached a peak of 1.78 and 1.14 MPa, respectively, marking an increase
of 56.1% (dry), and an increase of 75.4% (wet) compared to the CSM adhesive.

The enhancements discussed above could be explained according to two main factors. First, PF
formed physical and chemical interactions with the adhesive molecules [37,38]. The strong interactions
ensured the construction of a stable crosslinking network and enhanced the ability of the plywood
to resist moisture intrusion. Second, PF played a bridging role and released residual stress in the
crosslinking network of the adhesive, allowing the plywood bonded by the PF-enhanced SM-based
adhesive to bear more stress. The excessive addition of PF (6 wt %) reduced the dry and wet shear
strengths of the PSCM adhesives, likely because an excess of fiber led to an increase in harmful friction
between the adhesive components which damaged the crosslinking network.

We also found that the dry and wet shear strengths of the WCSM and BCSM adhesives were lower
than those of the CSM adhesive in general due to the loose and porous structural characteristics of WF
and BF. The loose structure in the WCSM adhesives caused the crosslinking unstable and was easy to
be broken by tension. The pores in the BCSM adhesives reduced the contact area for other substances
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and resulted in the fiber absorbing a lot of water. Bad bonding was produced during hot-pressing
which resulted in a decrease in the residue rate and strength.

The qualities of the PF in terms of crosslinking structure, strength, and water
resistance—particularly compared to the mechanical effects of WF and BF addition—suggest that PF
can be used to fabricate high-performance hydrogels, bio-films, and bio-adhesives.
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4. Conclusions

In this study, a new formulation of a sustainable, biomass-based, and fiber-reinforced adhesive
was established. Three kinds of fibers (PF, WF, and BF) were added as fillers to the crosslinking agent
modified adhesive CSM. We found that adding PF effectively enhanced the mechanical strength of the
adhesive, while WF and BF reduced the mechanical strength of the adhesive. The wet shear strength
reached a maximum of 1.14 MPa after the addition of 4% PF, marking a 72.3% increase over that of
the CSM adhesive. The PF-containing hydroxyl groups served as reinforcing material for interfacial
hydrogen bonds and a crosslinking network between PF and adhesive molecules, as confirmed by
FTIR and SEM analyses. These multiple interactions contributed to the significant improvement in the
adhesion, water resistance, and thermal stability of the adhesive.
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Nomenclature

SM Soybean meal
CSM SM-based adhesive only modified by the crosslinking agent
PCSM adhesives CSM adhesives modified by pulp fiber
WCSM adhesives CSM adhesives modified by poplar wood fiber
BCSM adhesives CSM adhesives modified by bagasse fiber
ATR-FTIR Attenuated total reflection–Fourier transform infrared spectroscopy
TGA Thermogravimetry
DTG Derivative thermogravimetry
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