Supporting Information:

Polyaniline Nanofiber Wrapped Fabric for High Performance Flexible Pressure Sensors

Kangning Liu,^{a,b} Ziqiang Zhou,^{a,b} Xingwu Yan,^a Xiang Meng,^a Hua Tang ,^a Konggang Qu,^c Yuanyuan Gao,^a Ying Li,^{a*}, Junsheng Yu^b and Lu Li^{a*} ^aResearch Institute for New Materials Technology, Chongqing University of arts and sciences, Chongqing 402160, P. R. China ^bState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China ^cSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China Table S1. Sheet resistance of the polyaniline (PANI) coated fabric

Test samples	Concentration of HCl	Sheet resistance ($k\Omega/sq$)
Polyaniline fabric	0.5 mol/L	110.85 ± 16.20
Polyaniline fabric	1.0 mol/L	32.90 ± 8.81
Polyaniline fabric	2.0 mol/L	0.97 ± 0.25

Table S2. Comparison of reported flexible pressure sensors.

Device type	Active	Linear pressure	Sensitivity	Response	Ref.
	materials	range		time (ms)	
Resistive	CNT	<1.5 kPa	14.4 kPa ⁻¹ below 3.5 kPa, 7.8 kPa ⁻¹ for 3.5-15 kPa	24	1
Resistive	Graphene	0 to 10 kPa	8.5 kPa^{-1}	40	2
Resistive	ACNT/	0 to 0.3 kPa	19.8 kPa ^{-1} below 0.3 kPa, 0.27 kPa ^{-1} for	<16.7	3
	Graphene		0.3-5.8 kPa		
Resistive	CSilkNM	<0.5 kPa	34.47 kPa ^{-1} for 0.8-400 Pa, 1.16 kPa ^{-1} for	<16.6	4
			400-5000 Pa		
Resistive	Graphene	0 to 2.6 kPa	25.1 kPa ⁻¹	120	5
Resistive	Graphene	0 to 25 kPa	1.2 kPa^{-1}	-	6
Resistive	Graphene	0 to 0.2 kPa	110 kPa^{-1}	30	7
Resistive	CB/PVDF-	<1.2 kPa	$\approx 1.5 \text{ kPa}^{-1}$	2	8
	decorated				
	knitted fabric				
Resistive	SWCNT film	0.6 Pa to 300 kPa	1.8 kPa^{-1}	<10	9
Resistive	Carbonized	0 to 0.42 kPa	5.67 kPa ⁻¹	<30	10
	crepe paper				
Resistive	Laser-scribed	0 to 50 kPa	0.96 kPa ⁻¹ for 0-50 kPa, 0.005 kPa ⁻¹ for	72	11
	graphene		50-113 kPa		
Capacitance	CNT	0.38 Pa to 0.05	$0.034-0.05 \text{ kPa}^{-1}$ below 0.1 kPa,	≈63	12
	fiber/Ecoflex	kPa	0.5 MPa ⁻¹ above 10 kPa		
Resistive	PANI	0 to 1.6 kPa	<1 kPa ⁻¹	400	13
Resistive	PANI	<2.2 kPa	Maximum 0.89 kPa ⁻¹	-	14
Resistive	PANI	0 to 4.5 kPa	46.48 kPa ⁻¹	7	This
					work
CN	F. aanhan manatuk	A CNT: aligned and	han nonatyles CSillyNM, and arized sills non of han m		

CNT: carbon nanotube. ACNT: aligned carbon nanotube. CSilkNM: carbonized silk nanofiber membranes SWCNT: single-walled carbon nanotube. PVDF: polyvinylidene fluoride.

References:

- Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z. L. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. *Adv. Mater.* 2017, 29, 1703700.
- 2. Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim, D. H.; Chung, Y.; Cho, K. Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array. *Adv. Mater.* **2016**, 28, 5300-5306.
- Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. *Adv. Funct. Mater.* 2017, 27, 1606066.
- 4. Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. *Adv. Funct. Mater.* **2017**, 27, 1605657.
- Pang, Y.; Zhang, K.; Yang, Z.; Jiang, S.; Ju, Z.; Li, Y.; Wang, X.; Wang, D.; Jian, M.; Zhang, Y.; Liang, R.; Tian, H.; Yang, Y.; Ren, T.-L. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large. ACS Nano. 2018, 12, 2346-2354.
- Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. *Small.* 2018, 14, 1800819.
- Xia, K.; Wang, C.; Jian, M.; Wang, Q.; Zhang, Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. *Nano. Res.*, 2018, 11, 1124-1134.
- Luo, N.; Zhang, J.; Ding, X.; Zhou, Z.; Zhang, Q.; Zhang, Y. -T.; Chen, S. -C.; Hu, J. -L.; Zhao, N. Textile-Enabled Highly Reproducible Flexible Pressure Sensors for Cardiovascular Monitoring. *Adv. Mater. Technol.* 2017, 3, 1700222.
- Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. *Adv. Mater.* 2014, 26, 1336-1342.
- Chen, S.; Song, Y.; Xu, F. Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure. *ACS Appl. Mater. Interfaces*, 2018, 10, 34646-34654.
- Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. *Sci. Rep.*, **2015**, *5*, 8603.
- Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H.; Bao, Z. Stretchable Energy-Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. *Adv. Mater.*, 2014, 26, 7324.
- 13. Tang, X.; Wu, C.; Zhang, T.; Zhou, T.; Wang, H.; Xie, C.; Zeng, D. A Low-Cost

Polyaniline@Textile-Based Multifunctional Sensor for Simultaneously Detecting Tactile and Olfactory Stimuli. *Macromol. Mater. Eng.*, **2018**, 1800340.

14. Liu, H.; Wu, Y.; Chen, S.; Liu, S.; Wang, P.; Xue, F.; Liu, L. A flexible and multifunctional electronic nose using polyaniline/cotton fibrous membrane with a hierarchical structure. *J.Matlet.*, **2018**, 09, 046.