

Article Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing

Deck Khong Tan¹, Mohammed Maniruzzaman ^{2*} and Ali Nokhodchi^{1*}

- ¹ Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9Q, UK
- ² Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy | University of Texas at Austin, Austin, Texas 78712, USA
- * Corresponding authors: M. Maniruzzaman (<u>M.Maniruzzaman@austin.utexas.edu, M.Maniruzzaman12@gmail.com</u>) and A. Nokhodchi (<u>a.nokhodchi@sussex.ac.uk</u>)

Supplementary Data:

Filament of Formulation No.	Quality of Printing
F1	Printable & Good Quality
F2	Printable & Good Quality
F3	Printable, Acceptable Quality
F4	Printable, Poor Surface Finish

Supp. Table 1. FDM printability and quality of all four theophylline-loaded filaments.