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Abstract: Silicone resin is a high-temperature resistant material with excellent performance.
The improvement of its thermal stability has always been the pursuit of researchers.
In this paper, a sequence of silicone resins containing trifluorovinyl ether groups were
prepared by the co-hydrolysis-polycondensation of methyl alkoxysilane monomers and
{4-[trifluorovinyl(oxygen)]phenyl}methyldiethoxysilane. The structures of the silicone resins were
characterized by FT-IR and 1H NMR. The curing process of them was studied by DSC and FT-IR spectra,
and results showed that the curing of the resins included the condensation of the Si-OH groups and
the [2 + 2] cyclodimerization reaction of the TFVE groups, which converted to perfluorocyclobutane
structure after curing. The thermal stability and thermal degradation behavior of them was studied
by TGA and FT-IR spectra. Compared with the pure methyl silicone resin, silicone resins containing
TFVE groups showed better thermal stability under both N2 and air atmosphere. Their hydrophobic
properties were characterized by contact angle test. Results showed that PFCB structure also improved
the hydrophobicity of the silicone resin.

Keywords: silicone resin; trifluorovinyl ether group; thermal stability; degradation

1. Introduction

Silicone resin is a highly crosslinked polysiloxane with a three-dimensional network, which
is usually prepared by hydrolytic polycondensation of polyfunctional organosilanes [1–3]. They
have many excellent properties, such as thermal stability, oxidation resistance, etc [4,5]. Therefore,
silicone resins have many applications, such as thermal protection materials, engine sealant, high
temperature-resistant adhesives, and light-emitting diode chips, etc [6–8]. Commonly, silicone resin
can be used for a long time below 250 ◦C, mainly because its Si–O bond (about 460.5 kJ/mol) backbone
has higher energy than the C–O bond (358.0 kJ/mol) and the C–C bond (304.0 kJ/mol) [9].

The development of high-performance polymers for aerospace has always been an important
area of polymer science. The search for materials with high thermal stability is a goal of this research.
Silicone resin has always been a good choice for high thermal stability materials. It has always
been the goal of researchers to further improve the high temperature resistance of silicone resins. In
order to meet higher requirements, researchers have proposed many methods to enhance the thermal
stability of them. SiO2 nanoparticles [10] and Al2O3 [11] could enhance the stability of silicone resins
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as fillers. The replacement of the pendant methyl groups by phenyl groups was also a conducive
method to improve their thermal stability [3]. Silphenylene units [12] and boron atom [13] were also
introduced into the skeleton of silicone resins for their thermal stability improvements. As shown
in Scheme 1, the back-biting degradation caused by Si-OH groups at the end of silicone resins at
high temperature [14,15] was the main reason for the degradation of them. Recent studies found
that POSS [16–18] could react with terminal Si-OH, thus eliminating back-biting depolymerization.
However, these improvements were limited to the method of changing the structure of silicone resins
and using additives. Therefore, the development of new methods to improve the thermal stability of
silicone resins is of great significance to their application.
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In addition to using additives and changing the main chain structure, the introduction of
cross-linkable functional groups on the side chain is also an effective method to improve the thermal
stability of silicone resins. For this method, the thermal stability of the cross-linked structure formed
by the side chain functional groups has an important influence on the improvement of the thermal
stability of the silicone resins. Therefore, the choice of side chain functional groups is very important.
Previous research has shown that trifluorovinyl ether (TFVE) groups could not only be easily attached
to polymers, but also could be converted into perfluorocyclobutane (PFCB) structures with excellent
thermal stability through {2 + 2} ring polymerization [19]. Up to now, TFVE groups have been
widely used in various materials to improve their thermal stabilities. Zhou et al. [20] introduced
TFVE group into phenolic resin and improved its thermal stability through post-crosslinking. In
addition, TFVE groups have also been introduced into other polymers, such as poly(arylene ether) [21],
poly(fluorene-co-sulfone)ether [22], phenylphosphine oxide materials [23] and so on. All the obtained
materials exhibited excellent thermal stability. Recently, Yuan et al. [24] also introduced it into linear
polysiloxane to improve their thermal stability. For branched silicone resins, the introduction of TEVE
groups should also be a very good choice to improve their thermal stability.

The purpose of this work was to improve the thermal stability of silicone resins by the introduction
of TFVE groups. In this work, a sequence of silicone resins containing different contents of TFVE
groups was synthesized. The curing process of the new silicone resins was investigated by DSC and
FT-IR. The effect of the amount of TFVE groups on the thermal stability and the degradation process
of the silicone resin was investigated. This study could provide a new strategy for the research of
high temperature-resistant silicone resins, and the research on the curing mechanism and degradation
process could provide theoretical support for the application of this kind of silicone resin.
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2. Materials and Methods

2.1. Materials

4-bromophenol was purchased from Shanghai Jiuding Chemical Technology Co., Ltd. (Shanghai,
China), and 1,2-dibromotetrafluoroethane was purchased from Sichuan Shangfu Technology Co.,
Ltd. (Sichuan, China). Methyl triethoxysilane (MTES) and dimethyl diethoxysilane (DMDES) were
purchased from Shanghai Mclean Biochemical Technology Co., Ltd. (Shanghai, China). Other materials
were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Unless
otherwise specified, all chemical reagents are used without further purification.

2.2. General Characterization

1H NMR, 19F NMR and 13C NMR spectra were measured on AVANCE II 400 instrument (Bruker,
Billerica, MA, USA). FT-IR spectra were recorded on a Nicolet spectrometer (Nicolet, Thermo Fisher
Scientific, Waltham, MA, USA) with KBr pellets. Differential scanning calorimetry (DSC) analysis was
performed using a differential scanning calorimeter (DSC Q10, TA Instruments, New Castle, DE, USA)
at a heating rate of 10 ◦C/min and a N2 flow rate of 50 mL/min. Thermogravimetric analysis (TGA) was
measured on a thermogravimetric analyzer (Mettler Toledo, Columbus, OH, USA) at a heating rate of
10 ◦C/min. The water contact angle was measured by DSA25 contact angle tester (KRUSS, Hamburg,
Germany).

2.3. Synthesis of the Intermediates and the Silane Monomer

The synthesis of the intermediates and the silane monomer is shown in Scheme 2. The preparation
of these compounds was based on the previously reported method [19,24,25].
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2.3.1. Synthesis of 4-[2-Bromotetrafluoroethoxy]bromobenzene (M1)

To a 1 L, three-neck flask equipped with a condenser and a magneton was added 4-bromophenol
(86.50 g, 0.50 mol), m-xylene (85 mL), dimethylsulfoxide (350 mL), and cesium carbonate (179.20 g,
0.55 mol). The mixture was heated to 120 ◦C. After the cesium carbonate dissolved, the azeotrope
of m-xylene/water in the reaction was removed. The reaction was kept at 120 ◦C for 36 h and then
cooled to room temperature. After that, 1, 2-dibromotetrafluoroethane (142.90 g, 0.55 mol) was added
dropwise and the mixture was stirred at room temperature for 4 h, then the temperature was raised to
50 ◦C and kept for 16 h. One liter of distilled water was added to the mixture and then extracted with
dichloromethane. The organic phase was washed with 5% sodium carbonate solution and distilled
water and then dried with anhydrous sodium sulfate and filtered. The crude product was obtained by
distillation, which was purified by chromatography using n-hexane as eluent to afford 89.72 g (51.0%)
of M1 as a colorless liquid. 1H NMR (CDCl3), δ (ppm): 6.95 (2 H, aromatic ring) and 7.43 (2 H, aromatic
ring); FT-IR: 1484, 1205, 1164, 1130, and 941 cm−1.
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2.3.2. Synthesis of 4-[Trifluorovinyl(oxygen)]bromobenzene (M2)

Activated zinc powder (20.47 g, 0.31 mol) and acetonitrile (160 mL) were added into a 250 mL
three-neck flask and stirred at room temperature, then M1 (87.95 g, 0.25 mol) was dropped into
the mixture. The mixture was heated to reflux and maintained for 24 h. After cooling to room
temperature, acetonitrile was removed by distillation, then n-hexane was added to extract the product.
The mixture was filtered and concentrated to afford a yellow liquid. The above liquid was distilled
under reduced pressure to obtain 40.28 g (63.7%) of a colorless liquid. 1H NMR (CDCl3) δ (ppm): 6.95
(2 H, aromatic ring) and 7.43 ppm (2 H, aromatic ring); FT-IR: 1833 (CF=CF2), 1484, and 825 cm−1.

2.3.3. Synthesis of {4-[Trifluorovinyl(oxygen)]phenyl}methyldiethoxysilane (M3)

Magnesium turnings (4.40 g, 0.18 mol), MTES (37.44 g, 0.21 mol), iodine (0.001g), and THF
(220 mL) were added into a round bottom flask, which was equipped with a condenser tube and a drip
funnel. M2 (40.00 g, 0.16 mol) in dry THF (20 mL) was added dropwise into the round bottom flask at
65 ◦C. The mixture was stirred at this temperature for 24 h. Then THF was removed by evaporation,
and 100 mL of n-hexane was added to the mixture to extract the product. The solid was removed
by filtration, and the filtrate was concentrated by distillation. The crude product was distilled under
reduced pressure to obtain 21.50 g (44.4%) of a colorless liquid. 1H NMR (CDCl3), δ (ppm): 0.36
(3H, Si-CH3), 1.25 (6H, O-CH2-CH3), 3.76–3.87 (4H, O-CH2-CH3), 7.13 (2H, aromatic ring), 7.65 (2H,
aromatic ring); 19F NMR (CDCl3), δ (ppm): −134.1 to −134.4, −126.2 to −126.9, −119.8 to −120.8; 13C
NMR (CDCl3), δ (ppm): −4.17, 18.26, 58.56, 116.08, 131.65, 135.27, 143.92, 146.71, 147.40, 156.51. FT-IR:
2973, 1833 (CF=CF2), 1592, and 1280 cm−1 (Si-CH3).

2.4. Synthesis of the Silicone Resins

The methyl silicone resin (M-SR) and the silicone resins containing TFVE groups (F-SRs) were
synthesized by the co-hydrolysis-polycondensation method [24]. The synthetic route was shown
in Scheme 3. According to the content of TFVE groups, the samples were named as M-SR, F-SR-1,
F-SR-2, F-SR-3, and F-SR-4. Detailed synthesis data are listed in Table 1. As shown in Table 1, the ratio
of organic groups to silicon atoms (R/Si) of all silicone resins was 1.5. RF/R was the ratio of TFVE
groups to all the organic groups. Take the synthesis of F-SR-2 as an example. A mixture of MTES
(2.67 g, 15 mmol), DMDES (1.11 g, 7.5 mmol), M3 (2.30 g, 7.5 mmol), and glacial acetic acid (18.00 g,
0.30 mol) was heated to reflux and kept at this temperature for 24 h. After cooling to room temperature,
the solvent and small molecular substances were removed by evaporation. Then 50 mL of ethyl acetate
was added. The mixture was washed with distilled water to remove the residual acid and dried with
anhydrous calcium chloride. Finally, ethyl acetate was evaporated by vacuum to give a yellow, viscous
liquid (3.23 g, yield: 82.7%).
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Table 1. Details of the silicone resins synthesis.

Sample
No.

R/Si MTES
(mmol)

DMDES
(mmol)

M3
(mmol)

RF/R Yield (%)
Designed Found *

M-SR 1.5 15 15 0 0 0 81.5
F-SR-1 1.5 15 10 5 0.11 0.10 80.4
F-SR-2 1.5 15 7.5 7.5 0.17 0.17 82.7
F-SR-3 1.5 15 5 10 0.22 0.23 81.1
F-SR-4 1.5 15 0 15 0.33 0.31 82.0

*: calculated from the 1H NMR data of the sample.

2.5. Curing of the Silicone Resins

The curing of silicone resins are shown in Figure 1. The silicone resin was put into a crucible,
then the crucible was placed in an oven for gradient heating and curing. The temperature was raised
stepwise and maintained at 90 ◦C for 0.5 h, 120 ◦C for 1 h, 150 ◦C for 1 h, 180 ◦C for 1 h, 210 ◦C for 1 h,
240 ◦C for 1 h, and 270 ◦C for 2 h respectively.
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3. Results and Discussion

3.1. Characterization of the F-SRs

The FT-IR spectra of the F-SRs with different contents of TFVE groups are shown in Figure 2.
All silicone resins showed a broad peak near 1000 cm−1 belonging to Si–O–Si bond, which indicates
the formation of Si–O–Si main chain in the silicone resins. The characteristic peak near 1260 cm−1

indicated the presence of Si–CH3, and the peak at 2969 cm−1 belonged to the C–H bond of Si–CH3

groups. The formation of Si–OH groups in the silicone resins could be confirmed by the characteristic
peak at 3400 cm−1. Compared with M-SR, F-SRs showed a characteristic absorption peak at 1833 cm−1

belonging to the vibration of CF=CF2 of TFVE groups. Moreover, the intensity of this absorption
peak gradually increased with its content. Correspondingly, the absorption peak at 3010 cm−1, which
belonged to the C-H bond of the benzene ring in TFVE groups, also gradually increased.
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Figure 2. FT-IR spectra of F-SRs.

To further confirm the structure of F-SRs, 1H NMR measurement was also used for their structure
confirmation. As shown in Figure 3, the characteristic signals of 7.6 and 7.2 ppm belonged to
the benzene rings in TFVE group, and the signal at 0–0.5 ppm was due to the hydrogen of Si–CH3.
Moreover, the characteristic signal of Si–O–CH2CH3 was not observed at 1.2 and 3.8 ppm, indicating
that the hydrolysis reaction was complete. Additionally, the actual values of RF/R calculated by nuclear
magnetic data were close to the theoretical values (Table 1). This further indicated that F-SRs were
successfully synthesized as expected.
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3.2. Curing Behavior of the F-SRs

DSC was used to study the curing behavior of this kind of silicone resin, and the results are shown
in Figure 4. Compared with the methyl silicone resin (M-SR), other F-SRs showed obvious exothermic
peaks in the temperature range of 160 ◦C to 300 ◦C. As described in previous reports, the peak was
attributed to the cyclization reaction of TFVE groups [25–27]. Additionally, the exothermic peaks
of silicone resins with different TFVE group contents were slightly different. With the increase of
the TFVE group contents, the temperature corresponding to the maximum peak position gradually
decreased. In the curing process, the cyclization reaction required the TFVE groups to be close to each
other. As a result, the reaction became easier with the increase of the content of TFVE groups. In order
to confirm the degree of the cyclization reaction, the cured silicone resins were retested by DSC. As
shown in Figure 4b, the exothermic peaks on DSC curves disappeared [25,28], which indicated that
the cyclization reaction of the TFVE groups was complete.
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To further investigate the structural changes of F-SRs after curing, the FT-IR spectra of the cured
resins were tested and shown in Figure 5. Compared with the uncured silicone resin, the characteristic
peak of CF=CF2 at 1833 cm−1 disappeared and the characteristic peak of the PFCB ring structure
appeared at 961 cm−1 in the cured one, indicating the occurrence of cyclization reaction and the formation
of the PFCB structure. Moreover, the characteristic peak of PFCB ring became obvious with the increase
of the TFVE content, which was consistent with the previous analysis. In addition, the characteristic
peak of Si–OH around 3400 cm−1 disappeared in the cured F-SRs, which demonstrated that F-SRs
also underwent dehydration condensation reaction of Si–OH during the curing process like common
silicone resins.
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3.3. Thermal Properties and Degradation of F-SRs

The thermal stability of silicone resins was studied by TGA. The TGA and DTG curves of them
under N2 atmosphere are shown in Figure 6. Table 2 showed the characteristic data of all these curves.
It could be seen that with the increase of TFVE group content, the temperature for 5% mass loss (T5%)
increased from 374 ◦C to 461 ◦C and the temperature for 10% mass loss (T10%) increased from 415 ◦C to
500 ◦C, which was comparable to other silicone resins that have been reported [9,12,17]. From the DTG
curves (Figure 6b), it could be found that the degradation of silicone resins was mainly divided into two
stages, T5% was in the first stage range. Additionally, the temperatures for the maximum degradation
rate in the first stage (Tmax1) of the F-SRs (F-SR-1, F-SR-2 and F-SR-3) were higher than that of M-SR,
and this stage did not exist for F-SR-4. According to the previous reports, the degradation in this stage
was mainly due to the back-biting reaction caused by the residual Si–OH groups in the cured silicone
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resins [29–31]. The increase of T5% and Tmax1 indicated that the formation of the PFCB structure
inhibited the occurrence of back-biting reaction and improved the thermal stability of F-SRs. As
the back-biting reaction was suppressed, the degradation of F-SRs at this stage was not obvious.
This could be confirmed by the FT-IR spectra of the silicone resin after heat treatment at this stage
(Figure 7). The FT-IR spectrum of F-SR-4 treated at 400 ◦C was almost unchanged compared with that
of the untreated one, indicating that the structure of it was stable at this temperature. The temperature
of the maximum mass loss rate in the second stage (Tmax2) was in the range of 537–547 ◦C, which was
much higher than that of M-SR (490 ◦C). The degradation at this stage was mainly caused by the main
chain breakage. As the PFCB structure had high thermal stability and the increase of the crosslinking
degree could inhibit the thermal degradation of the main chain, the thermal stability of F-SRs at this
stage was greatly improved. As shown in Figure 7, the characteristic peak of Si–CH3 groups of F-SR-4
was still obvious after being treated at 540 ◦C, which indicated that the existence of PFCB structure
greatly inhibited the degradation of the silicone resin. The improvement of the thermal stability at
this stage also led to an increase of the char yield. Correspondingly, the char yield of silicone resins
increased from 10.8% to more than 50%. After the second stage, the structure of F-SRs was severely
damaged at higher temperature. As shown in Figure 7, the characteristic peaks of organic groups in
the FT-IR spectra of F-SR-4 treated at 800 ◦C completely disappeared.
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Table 2. TGA data of the silicone resins under N2 atmosphere.

Sample
No.

Temperature
for 5% Mass

Loss (◦C)

Temperature
for 10% Mass

Loss (◦C)

Temperature for
the Maximum Rate of

Mass Loss (◦C)

Residue at
800 ◦C (%)

M-SR 374 415 490 10.8
F-SR-1 400 452 537 58.3
F-SR-2 418 478 538 57.4
F-SR-3 409 470 541 56.5
F-SR-4 461 500 547 51.9
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TGA and DTG curves of all the silicone resins in air atmosphere are shown in Figure 8. The detailed
data are shown in Table 3. With the increase of TFVE groups content, T5% increased from 362 ◦C to
392 ◦C and T10% increased from 389 ◦C to 447 ◦C. According to the DTG curves, the degradation of
them under air atmosphere included three stages. At the first stage, the temperature was not very
high, and the structure of the silicone resin was relatively complete, so the dissolution and diffusion of
oxygen in the system were not easy. It was believed that the degradation caused by the back-biting
reaction was still the main reason for the degradation of this stage rather than the oxidation reaction.
The degradation of the second stage was mainly caused by the oxidation reaction, which was mainly
affected by the dissolution and diffusion of oxygen in the material [32]. The cross-linking degree
and the intermolecular force of F-SRs had been improved due to the formation of PFCB structure, so
the dissolution and diffusion of oxygen in F-SRs became more difficult compared to M-SR. Therefore,
the temperature for maximum mass loss rate of the F-SRs (492–502 ◦C) was much higher than that of
M-SR (392 ◦C). As shown in Figure 9, F-SR-4 still contained a small amount of organic groups after
being treated at 500 ◦C, which was further proof that the oxidative degradation of F-SRs was inhibited.
Thereafter, the remaining organic groups were further oxidized at the higher temperature. Finally,
the silicone resin was completely oxidized to silica. As a result, the char yield of them decreased
from 73.2% to 32.6% with the increase of the TFVE amount. Compared with other reported silicone
resins [3,15], F-SRs showed better thermal stability in air atmosphere.
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Table 3. TGA data of the silicone resins under air atmosphere.

Sample
No.

Temperature
for 5% Mass

Loss (◦C)

Temperature
for 10% Mass

Loss (◦C)

Temperature for
Maximum rate of

Mass Loss (◦C)

Residue at
850 ◦C (%)

M-SR 362 390 391 73.2
F-SR-1 362 402 493 50.0
F-SR-2 372 425 498 48.5
F-SR-3 370 422 502 42.5
F-SR-4 392 447 499 32.6
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3.4. Hydrophobicity of the F-SRs

Hydrophobicity can give materials some new additional functions, on the basis of which many
new surface technologies can be developed. Because F-SRs contain a large amount of elemental
fluorine, this makes them a basis for hydrophobic materials. The hydrophobicity of the cured F-SRs
was measured by water contact angle test, and the results are shown in Figure 10. The water contact
angle of the silicone resins increased from 113.8◦ to 128.3◦ with the increase of TFVE content. This
indicated that, to a certain extent, the hydrophobicity of F-SR could be controlled by the content of
PFCB structure.
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4. Conclusions

In summary, a series of silicone resins containing TFVE groups have been successfully prepared
by a co-hydrolysis-polycondensation method. During the curing process, TFVE groups in F-SRs
underwent [2 + 2] cyclodimerization reaction and formed PFCB structure. The effect of PFCB structure
on the thermal stability of the silicone resin was studied. The contact angle test showed that the water
contact angle of F-SRs was up to 128.3◦, which was a potential hydrophobic material that could be
used in the fields of waterproof, anti-fogging, self-cleaning, etc.
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