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Abstract: This paper utilizes the advanced potential of pseudodynamic three-dimensional
finite-element modeling to study the axial mechanical behavior of square and rectangular reinforced
concrete columns, confined with fiber reinforced polymer (FRP) jackets and continuous composite
ropes in seismic applications. The rigorous and versatile Riedel-Hiermaier-Thoma (RHT) material
model for concrete is suitably calibrated/modified to reproduce the variable behavior of characteristic
retrofitted columns with deficient internal steel reinforcement detailing, suffering nonuniform local
concrete cracking and crushing or bulging and bar buckling. Similarly, the 3D FRP jacket or rope
confinement models may account for damage distribution, local fracture initiation and different
interfacial bonding conditions. The satisfactory accuracy of the reproduced experimental stress-strain
envelope behavior enables the analytical investigation of several critical design parameters that are
difficult to measure reliably during experiments. Additional parametric analyses are conducted to
assess the effects of steel quality. The significant variation of the field of developed strains on the FRP
jacket at the ultimate and of the developed strains and deformations on steel cages among different
columns are thoroughly investigated. This advanced analytical insight may be directly utilized to
address missing critical parameters and allow for more reliable FRP retrofit design of seismic resistant
reinforced concrete (RC) columns. Further, it allows for arbitrary 3D seismic analysis of columns
(loading, unloading, cyclic or loading rate effects or preloading) or addresses predamages.

Keywords: finite element method; RC concrete columns; FRP; confinement; RHT model

1. Introduction

Advanced fiber reinforced polymer (FRP) materials made of carbon, glass or aramid fibers,
and structural fiber ropes, are widely used in several structural retrofit applications worldwide or
as an internal reinforcement [1–18]. Concrete columns designed according to early code provisions,
take no special care of the effect of strong seismic excitations and corresponding ductility demands or
detailing of reinforcement. Existing earthquake-prone columns often need to be strengthened in order
to meet the modern design codes. One common technique for the strengthening of these elements is
the use of externally bonded FRP sheets. To estimate the effectiveness of this strengthening technique,
numerous investigations have been carried out concerning columns with or without internal steel
reinforcement having circular cross sections (for example [4,17–22]). Significant research has also been
done for square/rectangular reinforced concrete (RC) or plain concrete columns under monotonic axial
loading [1,23–30] among others. Similar work has been carried out for FRP-confined concrete columns
under cyclic axial loading for circular specimens [31–37] and rectangular ones [2,3,28,35,38–48], with or
without transverse and longitudinal steel reinforcement. In a previous work by Parvin et al. [49],
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there was a literature review on FRP-confined concrete columns strengthened to increase the axial,
shear and flexural capacities for a variety of reasons such as lack of confinement, eccentric loading,
seismic loading and corrosion. Further, structural fiber ropes have been widely investigated as external
or internal reinforcement of columns and RC beams [10–16,47]. Recent studies have focused on the
use of composite fiber ropes made of vinylon, polypropylene or basalt as external reinforcement
to confine concrete cylinders [11,12,14] and prisms [13,47]. Additionally, carbon fiber-reinforced
polymer ropes have been used for retrofitting beams with near surface-mounted (NSM) and embedded
through-section (ETS) methods [15] and as internal transverse shear reinforcement [10,16].

All these experimental investigations have led to the proposal of a large amount of semi empirical
models trying to predict with accuracy the ultimate stress and strain behavior of concrete columns
when subjected to monotonic axial loading [50–58] and few expressions have been proposed to predict
the cyclic response [59–62]. Ozbakkaloglu et al. [63] proposed a probabilistic model for the prediction of
ultimate stress and strain of FRP confined columns. In addition to these, the behavior of FRP confined
concrete in the microstructural level has been investigated through finite-element (FE) analysis focused
on the analysis of solid FRP confined concrete cylinders and rectangular specimens as well [64–68].
Concrete was usually modeled as a Drucker-Prager-type material or as the modified plastic-damage
model within the theoretical framework of the concrete damaged plasticity model (CDPM) and a lot of
studies have been conducted proposing modified models, trying to reliably predict the behavior of
these confined columns.

Yu et al. [64] made a critical review and assessment of the performance of the existing
Drucker-Prager (D-P) type concrete plasticity models using both experimental observations and
numerical results. They proposed a modified D-P type model, which includes these three features:
(a) a yield criterion including the third deviatoric stress invariant; (b) a hardening/softening rule, which
is dependent on the confining pressure and (c) a flow rule, which is dependent not only on the confining
pressure but also on the rate of confinement increment. Following this work, the same researchers [65]
presented a modified plastic-damage model for the modeling of confined concrete including the
three features by [64]. Teng et al. [66] presented a 3D FE approach for modeling the behavior of
the FRP-confined plain and RC concrete cylinders based on Yu et al.’s plastic-damage model [65].
This FE approach used details such as end restraints and discrete transverse steel reinforcement for
the modeling. Earlier, Rousakis et al. [67,68] modeled concrete as a Drucker-Prager-type material,
which was suitably modified and calibrated including an advanced and yet simple dilation and
damage parameter approach capable of describing hardening and softening behavior of concrete under
uniform confinement. Similarly, Karabinis et al. [69] applied this material to 3D FE models of concrete
cylinders or RC deficient columns retrofitted with FRPs. The agreement of analytical predictions
with experimental behavior of plain and steel reinforced columns, externally confined with FRP was
satisfactory in most of the above-mentioned studies.

The extensive investigation of the recent experimental and analytical databases by
Fanaradelli et al. [70,71] suggest that several existing design models for plain concrete columns
of the rectangular section confined with FRPs could be suitably modified to provide reliably the
maximum axial stress and the axial stress at failure for the corresponding concrete columns with
internal steel reinforcement. The average absolute error (AAE) of predicted axial stress compared
against the experimental results for RC columns under axial concentric compressive monotonic or
loading-unloading-reloading cycles of increasing compressive deformation (see Figure 1) was around
15%. In real practice, the seismic redesign of deficient RC columns in existing structures involves
highly the prediction of the axial strain at failure (at the ultimate condition). Based on the axial
strain ductility of concrete at failure (obtained commonly by axial concentric compression tests on
FRP confined plain concrete columns for new structures), the curvature ductility at the section level
and the displacement ductility at the member level may be assessed [72,73] among others. However,
the AAE of the prediction of the axial strain at failure even for plain concrete non-circular columns
confined by FRP under axial compression (monotonic or cyclic) is higher than 50% [70,71]. Further,



Polymers 2020, 12, 2546 3 of 25

in existing structures, RC columns may reveal several deficiencies (inadequate internal steel detailing
among else) that limit the axial strain at failure. Therefore, it is of high importance to validate the
accuracy of any new axial strain models at failure, against the experimental results of RC columns with
a variety of geometrical, mechanical and detailing characteristics, aiming at addressing missing critical
design parameters.

The approach followed herein is the utilization of several characteristic existing experimental
efforts of columns under axial concentric loading-unloading-reloading cycles of increasing compressive
displacement (commonly used to assess the axial strain performance of columns in seismic resistant
applications [2,3,20,28]) in order to cover the effects of a wide range of critical parameters of the retrofit
of RC columns with FRPs (slenderness of bars, sparse stirrups, steel quality and quantity, type and
layers of FRP jacket, type of impregnation resins and reinforcing fibers, corner radius, concrete strength,
predamages, etc.). Then, these carefully chosen columns are modeled and analyzed for the first
time pseudodynamically with three-dimensional finite elements (3D FEs). They provide numerous
analytical insights into the effects of different critical parameters to allow for the enrichment of the
existing databases with significant missing variables. Special attention is given to take into account
the effects of impregnation epoxy polymers used in FRP jackets, with suitable modifications of the
properties of the materials. The retrieved characteristic analytical parameters may be directly utilized
to propose more reliable design models for the prediction of the failure (ultimate) axial strains of
such columns. Therefore, the hybrid experimental-analytical approach is followed (similar to the one
already applied successfully in RC beams strengthened with FRPs in shear in Rousakis et al. [74]).
Furthermore, the developed versatile and rigorous 3D FE pseudodynamic models may serve for more
demanding analyses for seismic resistant applications and preloading effects or to address predamages.

2. Materials and Methods

2.1. Experimental Database

The final database by Fanaradelli and Rousakis [71] gathers the geometrical and mechanical
characteristics of the specimens. It also includes the maximum axial stress of confined concrete at the
peak of the stress-strain curve (fcc) and the corresponding axial strain (εcc) and the ultimate axial stress
(fcu) and strain (εcu) of confined concrete at the failure of the column. These characteristic values are
depicted in Figure 1. For columns with ascending branches usually there is FRP fracture and thus it was
considered that the ultimate stress (at failure) is fcu = fcc. For columns with descending second branches,
based on the loading control (and loading rate) followed during the tests, very low axial stress values
may be recorded at failure. However, based on the existing design recommendations [72,73], the failure
of the column was defined at the point (after the maximum bearing axial stress) that the bearing
stress drops not lower than 0.85 × fcc (=fcu, ultimate axial stress). Therefore, the failure (ultimate)
stress may be fcu = 0.85 × fcc if there is a gradual load drop (because of inadequate FRP confinement
or longitudinal bar buckling, etc.) or higher than 0.85 × fcc and lower than fcc if there is an abrupt
FRP fracture. Based on this approach the corresponding εcc and εcu are defined at the same points,
see also [17,19,53,58,63].

As already mentioned, the prediction of εcu for all the columns of the corresponding database
presents AAE higher than 50%. This paper suggests that the gathered characteristics and experimental
results are not adequate in order to accurately predict the strain at failure. Therefore, 3-dimensional
FE models of characteristic columns were developed and analyzed pseudodynamically, aiming at
addressing unidentified design parameters through thorough assessment of the analytical results
at regions that the corresponding experimental results were not available or impossible to measure
(see a similar approach in [74]). RC square and rectangular concrete columns externally confined with
FRP materials, subjected to cyclic axial compressive load were selected from the studies by Rousakis
and Karabinis [2], Ilki et al. [20] and Isleem et al. [28]. All the test specimens include conventional
longitudinal and transverse steel reinforcement. The columns were externally confined with Carbon
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Fiber Reinforced Polymers (CFRP) jackets and the direction of the fibers was perpendicular to the
column axis. The geometrical and the nominal mechanical data for the 11 chosen specimens are
presented in Table 1, following the labels of the original papers.
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2.2. Pseudodynamic Finite Element Models and Analyses

The rigorous and versatile 3-dimensional pseudodynamic finite-element modeling was used for
the first time to study the axial mechanical behavior of square and rectangular RC columns, confined
with FRP jackets and continuous composite ropes for seismic resistant applications. Advanced material
models for concrete, composites and steel are suitably calibrated to conduct numerous analyses.
ANSYS Explicit Dynamics [75] was used to construct the advanced models, execute the analyses and
for post-processing of results.

2.2.1. Concrete

The Riedel-Hiermaier-Thoma (RHT) model [76–78] was used (ANSYS Autodyn [75]). RHT is a
constitutive model for brittle materials and is a combined plasticity and shear damage model in which
the deviatoric stress in the material is limited by a generalized failure surface of the form:

f(P,σeq, θ,
.
ε) = σeq −YTXC(P) × FCAP(P) ×R3(θ) × (F)RATE(

.
ε) (1)

This failure surface can be used to represent the following aspects of the response of geological
materials: pressure hardening, strain hardening, strain rate hardening in tension and compression,
third invariant dependence for compressive and tensile meridians, strain softening (shear induced
damage) and coupling of damage due to porous collapse. It enables the reproduction of monotonic,
repeated or cyclic imposed displacements (usually met in seismic resistant assessment or retrofit
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of columns) highly inelastic behaviors, damage redistribution effects and highly local degrading
behavior. The RHT model was suitably calibrated through extensive and comprehensive investigations
to eliminate the effect of the rate of axial loading and to provide satisfactory hardening or softening or
crashing behavior of concrete under triaxial loading and the effects of predamaged concrete core and
damage redistribution. Table 2 includes the used values for the compressive concrete strengths.

Table 2. Mechanical data used in the 3-dimensional finite element (FE) models.

Specimen fco,FE
(MPa)

fy,long,FE
(MPa)

fy,long,FE
(MPa)

EFRP,gt,FE
1

(MPa)
EFRP,ga,FE

2

(MPa)*
tFRP,FE

Poisson
Ratio FE

Shear
Modulus
FE (MPa)

εFRP,FE

BS1C1C [2] 25.5 600 600 59,160 7500 0.475 0.3 17,500 0.015
BS1C3C [2] 25.5 600 600 59,160 7500 1.424 0.3 17,500 0.015
BS1C5C [2] 25.5 600 600 59,160 7500 2.373 0.3 17,500 0.015
BS2C1C [2] 25.5 600 600 59,160 7500 0.475 0.3 17,500 0.015
BS2C3C [2] 25.5 600 600 59,160 7500 1.424 0.3 17,500 0.015
BS2C5C [2] 25.5 600 600 59,160 7500 2.373 0.3 17,500 0.015

LSR-R-1-3-10b [20] 10.83 345 476 59,160 7500 1.924 0.3 17,500 0.015
LSR-R-1-3-20b [20] 10.83 345 476 59,160 7500 1.924 0.3 17,500 0.015
LSR-R-1-3-40b [20] 10.83 345 476 59,160 7500 1.924 0.3 17,500 0.015

R2.0H2CL3 [28] 46.3 360 345 59,160 7500 2.032 0.3 17,500 0.015
R2.0H2CL4 [28] 46.3 360 345 59,160 7500 2.710 0.3 17,500 0.015

1 EFRP,gt,FE is the elastic modulus in the global transverse axis; 2 EFRP,ga,FE is the elastic modulus in the global
axial axis.

2.2.2. Longitudinal and Transverse Steel

In these pseudodynamic analyses, plastic deformation is computed by reference to the Von Mises
yield criterion. Therefore, the local yield condition is

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y2 (2)

where Y is the yield stress in simple tension.
The onset of yielding (plastic flow) is purely a function of the deviatoric stresses (distortion).

A bilinear isotropic hardening model was used to define the yield stress (Y) as a linear function of
plastic strain, εp

Y = Y0 + A× εp (3)

where Y0 is the yield strength and A the tangent modulus.
Table 2 includes the used values for the yield stress of the steel bars.

2.2.3. Fiber Reinforced Polymer Jacket

The model for structural reinforced polymer composites was suitably calibrated taking into
consideration the common properties of epoxy resins used for fiber sheet impregnation and bonding
on concrete. Therefore, the analyses may reproduce local damage initiation of the jacket (local
fracture) and thus consider the effects of the corner radius of the section. Full bonding of the jacket on
concrete was considered in all cases (debonding is not critical for the confinement applications under
consideration). As the fibers in the FRP jackets, considered in the present study, were all oriented in
the hoop direction, the stiffness (both tensile and compressive) in the axial direction (i.e., the loading
direction of the column) was negligibly small. Therefore, the elastic lamina option was used to model
an orthotropic elastic material. A local coordinate system was assigned to the FRP jacket, and the hoop
direction and the axial direction were adopted as the first principal and second principal material
orientations, respectively.

The modulus of elasticity in the axial direction and the shear modulus were both assumed to have
lower values than the ones provided by the manufactures for the net fiber sheet, because they take
into account the impregnation with the epoxy resin. For example, for the carbon fibers for specimen
series BS1C/BS2C of Table 1, the manufacturer’s elastic modulus was 240,000 MPa. The orthotropic
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elasticity properties used for the analyses were reduced to 59,160 MPa for the modulus of elasticity in
the directions perpendicularly to global loading (along the direction of carbon fibers). The thickness
of the jacket was suitably increased to 0.475 per layer, taking into account the thickness of the epoxy
resin. The modulus of elasticity multiplied by the thickness of the jacket, in both cases (considering the
resin or not) gives the same axial rigidity value. Further, the jacket was modeled with the mechanical
properties of the resin alone at the direction parallel to global loading. The suitable consideration of the
resin besides the reinforcing fibers may reproduce the realistic damage accumulation in the composite
jacket. Table 2 presents the used values. Displacement compatibility was considered between concrete
and composite material at their interface.

FE analysis includes the following steps: (1) the geometric characteristics of the members of
the model were determined, (2) the properties of the materials were defined, (3) the connections
and contacts among members were assigned and (4) the type of discretization of the model and the
density of discretization was determined depending on the number of seeds in each surface and the
suitable meshing technique (always dependent on the specific application). Seeds are constant nodes,
placed along the perimeter of the cross sections. They control the precise location of the meshing nodes.
Thus, special care was taken for the seed distribution, in order to take into account, the curvature of
the edges and crucial detailing of the specimens. The main target of meshing is the compatibility of the
nodes between the concrete core and the FRP jacket in order to avoid convergence problems during
analysis, (5) the mode of imposed displacement over time was defined to simulate pseudodynamic
application. Monotonic axial displacement was forced at the top of the column, directly on the concrete
core and not on the FRP jacket and (6) the boundary conditions of the model were determined. “Fixed
Support” was chosen at the base of the column. The monotonic mode can provide the envelope
analytical load-displacement curve and thus avoid the extremely time-consuming cyclic mode, as the
experimental response between identical columns subjected to monotonic or cyclic loading was fairly
close to each other.

2.2.4. Boundary Conditions and Contacts

Two body interactions were created. All the elements adopted the “Frictionless” type. This type
simulated friction conditions between all the elements. For the second “Body Interaction”, only the
elements that made up the longitudinal and transverse reinforcement were selected and for the
integration of the reinforcement within the concrete core. When an element consists of several parts,
it is necessary to determine the connections between the elements. Based on numerous investigations
with five available contact options, the interaction surface between the FRP and the concrete that is in
contact was considered fully “bonded” for all specimens. All the nodes of bodies included in bonded
interactions were tied to faces of involved bodies.

2.2.5. Mesh

Explicit mesh was followed to form accurate 3D grid. Six-node elements (hexahedral solid
elements; Figure 2a were considered for the concrete body. In addition, at the corner regions of the
concrete bodies, four-node tetrahedral solid elements were used to efficiently model the curvature of
the edges (Figure 2b). The CFRP sheets were modeled similarly with hexahedral and tetrahedral solid
elements to account for their global and local effects. For the internal steel reinforcement 2-node beam
(line) elements (Figure 2c) were chosen, with the potential to develop large axial deformations.
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2.2.6. Element Sizing

Dense meshing is necessary mostly because of the dimensions of the corner radius and to better
introduce the interactions of the steel reinforcement cage and of the FRP jacket with the concrete
core. These aspects are very important for FRP retrofitted large scale specimens with internal steel
reinforcement in order to better reproduce the observed modes of failure. Therefore, for specimen
series BS1C and BS2C by [2], the average element size was 10 mm (Figure 3a). The element size for
specimens R2.0H2CL3 and R2.0H2CL4 by [28] was 5 mm (Figure 3b). For specimen LSR-R-1-3-10b
by [20], the element size was again 5 mm (Figure 3c). A similar element size was chosen for specimens
LSR-R-1-3-20b and LSR-R-1-3-40b by [20]. For all these columns, detailed sensitivity analyses with
15 mm and 25 mm element sizes were also conducted (not presented herein).

Polymers 2020, 12, x 7 of 26 

 

LSR-R-1-3-20b and LSR-R-1-3-40b by [20]. For all these columns, detailed sensitivity analyses with 15 
mm and 25 mm element sizes were also conducted (not presented herein). 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) “Hexahedral Solid Elements”; (b) “Tetrahedral Solid Elements” and (c) “Beam (Line) 
Elements”. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Mesh of specimens: (a) Series BS1C/BS2C by [2]; (b) Series R2.0H2CL by [28] and (c) Series 
LSR-R-1-3 by [20]. 

3. Analytical Results 

3.1. Stress-Strain Curves 

The monotonic numerical analyses can serve as the envelope stress-strain curves of the 
experimental ones (imposed to repeated loading-unloading of increasing imposed displacement) and 
present satisfactory convergence with the experimental results up to the ultimate conditions of the 
column series BS1C, as shown in Figure 4a. The analysis for specimen BS1C1C provides the ultimate 
stress of 34.99 MPa compared to the experimental one of 31.74 MPa at the experimental axial strain 
of 0.00795. Specimen BS1C3C presents an ultimate axial stress of 42.65 MPa at a strain of 0.01163, 
while the experimental stress was 34.85 MPa. The numerical analysis presents a good convergence 
with the experimental results for ultimate conditions of the specimen BS1C5C providing 53.10 MPa, 
compared with a corresponding experimental stress of 53.60 MPa at a strain of 0.01083. 

The performance of the FE analytical models for the columns with steel stirrups spaced at 95 
mm (BS2C series) was similar, as presented in Figure 4b. Specimen BS2C1C confined with 1 layer of 
CFRP shows the ultimate analytical stress of 44.81 MPa, while the experimental stress was 39.37 MPa 
at the strain of 0.01144. For specimen BS2C3C confined with 3 layers of CFRP the ultimate stress from 
the FE analysis was 52.18 MPa at a strain of 0.0129 whilst the experimental ultimate stress was 50.68 

Figure 3. Mesh of specimens: (a) Series BS1C/BS2C by [2]; (b) Series R2.0H2CL by [28] and (c) Series
LSR-R-1-3 by [20].

3. Analytical Results

3.1. Stress-Strain Curves

The monotonic numerical analyses can serve as the envelope stress-strain curves of the
experimental ones (imposed to repeated loading-unloading of increasing imposed displacement)
and present satisfactory convergence with the experimental results up to the ultimate conditions of the
column series BS1C, as shown in Figure 4a. The analysis for specimen BS1C1C provides the ultimate
stress of 34.99 MPa compared to the experimental one of 31.74 MPa at the experimental axial strain
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of 0.00795. Specimen BS1C3C presents an ultimate axial stress of 42.65 MPa at a strain of 0.01163,
while the experimental stress was 34.85 MPa. The numerical analysis presents a good convergence
with the experimental results for ultimate conditions of the specimen BS1C5C providing 53.10 MPa,
compared with a corresponding experimental stress of 53.60 MPa at a strain of 0.01083.
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Figure 4. FE analysis predictions versus experimental stress-strain results for (a) specimen series BS1C
by [2]; (b) specimen series BS2C by [2]; (c) specimen series LSR-R-1-3 by [20]; (d) specimen R2.0H2CL3
by [28]; (e) specimen R2.0H2CL4 by [28] and (f) specimen BS2CL3 by [2].

The performance of the FE analytical models for the columns with steel stirrups spaced at 95 mm
(BS2C series) was similar, as presented in Figure 4b. Specimen BS2C1C confined with 1 layer of
CFRP shows the ultimate analytical stress of 44.81 MPa, while the experimental stress was 39.37 MPa
at the strain of 0.01144. For specimen BS2C3C confined with 3 layers of CFRP the ultimate stress
from the FE analysis was 52.18 MPa at a strain of 0.0129 whilst the experimental ultimate stress was
50.68 MPa. Finally, the FE analysis for specimen BS2C5C confined with 5 layers of CFRP presents
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a good convergence with the experimental ultimate conditions, providing the analytical stress of
52.76 MPa compared to the experimental one of 59.21 MPa, at a strain of 0.00917.

The performance of the FE models against the experimental behavior of RC columns of the
square concrete section of very low concrete strength and with a different corner radius with steel
reinforcements of intermediate quality are presented in Figure 4c. For specimen LSR-R-1-3-10b confined
with 3 layers of CFRP, at the ultimate condition, the experimental stress was 26.6 MPa and the analytical
was 21.31 MPa, at a strain of 0.078. For specimen LSR-R-1-3-20b the ultimate experimental stress was
31.21 MPa and the analytical was 28.35 MPa, at a strain of 0.066. Finally, for specimen LSR-R-1-3-40b
the experimental stress was 48.07 MPa and the analytical was 42.27 MPa, at the ultimate strain of 0.068.

The comparisons for the RC columns of rectangular section with steel reinforcements of lower
quality and sparse stirrups are presented in Figure 4d,e. For specimen R2.0H2CL3 confined with
3 layers of CFRP, at the ultimate condition, the experimental stress was 46.24 MPa and the analytical
was 58.85 MPa at a strain of 0.005. For specimen R2.0H2CL4 confined with 4 layers of CFRP, at the
ultimate condition, the experimental stress was 49.13 MPa and the analytical was 58.76 MPa at a strain
of 0.006. Figure 2 suggests the advanced FE models can capture the general stress-strain behavior
with hardening or softening post-elastic branches, recorded in the experiments. The accuracy of the
prediction of the stress levels at different strain levels and at the ultimate condition conditions was also
satisfactory. Figure 4f also suggests that the FE models could capture with great accuracy the loading
and unloading path of these cyclic axial loaded columns.

3.2. Characteristic Concrete Damage and FRP and Steel Deformation Variation

Based on the advanced and reliable FE analyses, several aspects of the behavior of the retrofitted
RC columns may be further investigated. The RHT model for concrete may provide quantification of
the local damage initiation, extent and development within the concrete core through the index named
after the damage coefficient (0 for no damage and 1 for full damage or for 100% damage, i.e., tensile or
compressive, etc., in the 3-dimensional stress-strain state) at different levels of imposed displacements.
Figure 3 presents the variation of the RHT concrete damage coefficient at the whole concrete body and
at characteristic section levels (at and in between the steel stirrups). Further, the tensile strains on the
FRP jacket were evaluated at the same characteristic levels and at the corner of the sections or at the
middle of the sides. These characteristic areas may capture the significant variation of the FRP strains
all over its interface with the concrete. This variable tensile strain field on the FRP is owed to the
deformed internal steel cage and to the non-circular concrete section. Finally, the FE analyses provided
the corresponding variation of strains on the steel bars and stirrups, and their lateral deformations at
characteristic positions.

3.2.1. Specimen Series BS1C

The FE analyses suggest that the first local damage for BS1C1C initiated at the concrete located at
the middle-side regions of the specimen at its middle-height, between the two steel stirrups and the
FRP jacket (Figure 5a) at 0.00703 axial strain. The strain of the FRP at the mid-height of the specimen
was about 0.0108 (less than the material failure; Figure 6a). For the ultimate total strain of the specimen
of 0.00795, significant damage spreading into the concrete was observed in its middle area. Figure 5b–d
shows the critical area where the highest damage coefficient occurred. At the final step, the maximum
strain of the FRP was about 0.0123, which was also less than its capacity (Figure 6b,c).

Similarly, specimen BS1C3C shows first local damage in the concrete at the center of the specimen,
between the two steel stirrups and the FRP jacket (Figure 5e) at the 0.009375 axial strain of concrete.
The highest tensile strain of the FRP was located in the same area (Figure 6d) around 0.0128, lower than
its capacity. Figure 5f–h shows the critical area where the highest degree of damage occurred at failure.
In this final step, at the 0.01163 axial strain of concrete, the corresponding tensile strain of the FRP
was about 0.0149, very close to its capacity (Figure 6e). Specimen BS1C5C confined with 5 layers
of CFRP behaved differently than the other two columns of this series. During the last step of the
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axial loading, there was extremely high damage coefficient at the mid-height of the specimen, but the
concrete, despite being close to, did not exceed the total local damage initiation (Figure 5i). The highest
CFRP strain for all reference points was 0.0125, less than the material strain limit of 0.0155 (Figure 6f).Polymers 2020, 12, x 10 of 26 
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Figure 5. Variation of the concrete damage of specimen BS1C1C (a) one step after the first concrete
damage; (b) at the ultimate condition; (c) at the level of the stirrup and (d) between two stirrups;
BS1C3C (e) one step after the first concrete damage; (f) at the ultimate condition; (g) at the level of the
stirrup and (h) between two stirrups and BS1C5C (i) at the ultimate condition.

These analyses suggest that in experiments the effects of slender bars could be more pronounced
(for the FRP jacket to reach its capacity) as the bars are in reality self-anchored inside the column and
not fixed on the bottom and top boundaries as in the FE models. However, no unstable behavior of the
bars under compression was recorded in the FE analyses up to the ultimate axial strain. It seems that
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there might be an interaction between the local damage of the concrete and the FRP fracture that needs
further experimental and numerical investigation.

Figure 7a–c highlights the corresponding deformational state of the steel cage for the BS1C series.
For specimen BS1C1C the maximum stirrup strain was 0.001532, for BS1C3C it was 0.001992 and for
BS1C5C it was 0.00202. It seems that the maximum compressive strain on the slender bars was higher
than the concrete average axial strain at the ultimate condition for all three different levels of confinement
and the stirrup strain was close to yielding. Additionally, the minimum strain of the longitudinal steel
bars and the strain at their middle point coincided for all specimens. So, for column BS1C1C this strain
was −0.01136, for specimen BS1C3C it was −0.016156 and for BS1C5C it was −0.014118.
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spacing (BS2C series) shows that the concrete failed locally and the FRP also reached its local failure. 
For BS2C1C, for axial strain of 0.009375, the concrete local failure started at the corner region of the 
mid-height stirrup (Figure 8a–c). At this point the strain of the FRP was about 0.0156 (Figure 9a). 
When the total strain of the specimen was 0.01144, significant damage in the concrete was observed 
in its middle-height area. The damage accumulated around the mid-height stirrup and extended in 
the area above and below it. Figure 8b shows the critical area where the highest degree of damage 
occurred (more than 90% of full damage). At the final step, the strain of the FRP was higher than the 
material failure in the FE analyses (Figure 9b). 

Figure 6. Variation of the Carbon Fiber Reinforced Polymers (CFRP) strain and characteristic values of
specimen BS1C1C (a) one step after the first concrete damage at the mid-height of the column; (b) at
the ultimate condition at the mid-height of the column and (c) at the ultimate condition at the level of
the stirrup; BS1C3C (d) one step after the first concrete damage at the mid-height of the column and
(e) at the ultimate condition at the mid-height of the column and (f) BS1C5C at the ultimate condition
at the mid-height of the column.
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3.2.2. Specimen Series BS2C

The analytical elaboration for the specimens BS2C1C and BS2C3C with stirrups at 95 mm spacing
(BS2C series) shows that the concrete failed locally and the FRP also reached its local failure. For BS2C1C,
for axial strain of 0.009375, the concrete local failure started at the corner region of the mid-height stirrup
(Figure 8a–c). At this point the strain of the FRP was about 0.0156 (Figure 9a). When the total strain of
the specimen was 0.01144, significant damage in the concrete was observed in its middle-height area.
The damage accumulated around the mid-height stirrup and extended in the area above and below it.
Figure 8b shows the critical area where the highest degree of damage occurred (more than 90% of full
damage). At the final step, the strain of the FRP was higher than the material failure in the FE analyses
(Figure 9b).
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Figure 8. Variation of concrete damage of specimen BS2C1C (a) one step after the first concrete damage;
(b) at the ultimate condition and (c) at the level of the stirrup; BS2C3C (d) at the ultimate condition and
BS2C5C (e) at the ultimate condition and (f) at the level of the stirrup.

The FE results for BS2C3C were similar with the initiation of local failure within the concrete
but without simultaneous local FRP failure. However, at the ultimate condition, the damage spread
further within the concrete and FRP strain at the ultimate condition was again higher than its capacity
(Figures 8d and 9a–c).

Specimen BS2C5C behaved differently than the other two specimens of this series. Specimen
BS2C5C had 5 layers of CFRP and the concrete did not exhibit local damage. It is observed that in
the last step of the loading, there was severe damage at the corners of the middle stirrup, but the
concrete did not fail locally (Figure 8e,f). The CFRP’s strain for all reference points was less than 0.0155
(Figure 9d). It is observed that the specimen confined with the 5 layers of CFRP (BS2C5C) did not
suffer any severe crushing in the concrete core. On the contrary, BS2C1C was crushed to a great extent
over its perimeter. It is also observed that the highest strain of the CFRP was developed at the corner
regions, at the middle stirrup on all three specimens.

The ratio of strain at the corner of the middle stirrup to strain of the corner in-between the two
stirrups in the BS2C1C specimen was close to 3, while in the other two specimens the same ratio was
about 2. This is a consequence of the first development of concrete cracks at the corner, at the level
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of the middle stirrup as is shown in the corresponding figures. The ratio of the maximum strain at
the corner, at the level of the middle stirrup to the minimum strain of the mid-side at the same level
for all these specimens, was close to 1. It seems there was more uniform strain distribution along
this axis for the three specimens. It seems that there was a more pronounced interaction between the
local damage of the concrete and the FRP fracture at the corners that needs further experimental and
numerical investigation.

Figure 10a–c highlights the corresponding deformational state of the steel cage for BS2C series.
It seems that the maximum compressive strain on the slender bars was far higher (around 2 times) than
the concrete average axial strain at the ultimate condition for all three different levels of confinement
and located at the stirrup level. In particular, for specimen BS2C1C this strain was −0.02276, for BS2C3C
it was −0.027022 and for BS2C5C it was −0.01823. Thus, the axial strains of the bars at the level
in-between the stirrups were close to the average axial strains of concrete. In particular, for specimen
BS2C1C this was is−0.011486, for BS2C3C it was−0.01211 and for BS2C5C it was−0.009354. The stirrup
strains were far beyond the yielding in all cases. For specimen BS2C1C it was 0.007565, for BS2C3C1 it
was 0.006863 and for BS2C5C it was 0.00461.
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level of the stirrup and it is extended to more than the half height of it. The first local damage was 
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3.2.3. Specimen Series LSR-R-1-3

The FE analyses for specimen LSR-R-1-3-10b, with a very low corner radius of 10 mm, suggest that
the first local damage initiates at the concrete located at the four corners of the specimen at the level of
the stirrup and it is extended to more than the half height of it. The first local damage was shown for
an axial strain of 0.045 (Figure 11a). It is observed that the concrete was completely damaged during
the axial loading and up to the ultimate axial strain of 0.07767 (Figure 11b,c). There was a more or less
uniform distribution of the CFRP strain along the height of the specimen LSR-R-1-3-10b. However,
there were multiple regions where the FRP jacket was locally bulged and fractured, because of the
local concrete damage (multiple bulging of concrete) and the tensile strains by far exceeded its capacity
(Figure 12a).
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The FE analytical behavior of column LSR-R-1-3-20b was similar. The concrete local failure 
initiated at the 0.033 axial strain and it was located at the same concrete area (Figure 11d). The 
concrete was completely damaged during the axial loading and up to the ultimate axial strain of 0.066 
(Figure 11e). There were multiple regions that the FRP jacket was locally bulged because of the local 
concrete damage (multiple bulging of concrete) and the tensile strains by far exceeded their capacity 
(Figure 9b,c). 

Figure 11. Variation of concrete damage of specimen LSR-R-1-3-10b (a) one step after the first concrete
damage; (b) at the ultimate condition and (c) without areas with damage; LSR-R-1-3-20b (d) one step
after the first concrete damage and (e) without areas with damage and LSR-R-1-3-40b (f) at the ultimate
condition; (g) at the level of the stirrup; (h) between two stirrups and (i) without areas with damage.
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Figure 12. Variation of the CFRP strain and characteristic values of specimen LSR-R-1-3-10b (a) at the
ultimate condition at the level of the stirrup; LSR-R-1-3-20b at the ultimate condition (b) at the level of
the stirrup and (c) at the mid height of the specimen and LSR-R-1-3-40b at the ultimate condition (d) at
the level of the stirrup and (e) at the mid height of the specimen.

The FE analytical behavior of column LSR-R-1-3-20b was similar. The concrete local failure initiated
at the 0.033 axial strain and it was located at the same concrete area (Figure 11d). The concrete was
completely damaged during the axial loading and up to the ultimate axial strain of 0.066 (Figure 11e).
There were multiple regions that the FRP jacket was locally bulged because of the local concrete damage
(multiple bulging of concrete) and the tensile strains by far exceeded their capacity (Figure 9b,c).

Specimen LSR-R-1-3-40b shows similar damage development inside the concrete core
(Figure 11f–h). There were again multiple regions that the FRP jacket was locally bulged because of the
local concrete damage (multiple bulging of concrete) but outside of the corner region (Figures 11i and
12d). Again, the tensile strains by far exceeded its capacity at the corner region but in this case of a
high corner radius the tensile strain was higher at the corner area at the level in-between the stirrups
(Figure 12d,e). In this series, the interaction between the local damage of the concrete and the FRP
fracture was more pronounced. This may be attributed to the low concrete strength and low corner
radius of the concrete section.

Figure 13a–c highlights the corresponding deformational state of the steel cage. It seems that the
maximum compressive strain on the slender bars was extremely high for the specimen with 10 mm
corner radius and denotes unstable behavior of the bars due to the severely damaged concrete and FRP
at the corner region. The axial strains of the bars at the level in-between the stirrups were far higher
than the average axial strains of concrete for 10 mm corner radius (−0.19194). However, the same axial
strains for the bars in specimens with a 20 mm (−0.08103) and 40 mm (−0.06685) corner radius were
closer to the average axial strains of the columns. The stirrup strains were similar in all cases and
higher than the yielding ones in all cases (for LSR-R-1-3-10b it was 0.01245, for LSR-R-1-3-20b it was
0.01074 and for LSR-R-1-3-40b it was 0.01535).
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3.2.4. Specimen Series R2.0H2CL

The FE analysis shows that local damage initiated at the concrete located at the area around the
longitudinal steel bars at the level of the stirrup (Figure 14a,b) in specimen R2.0H2CL3. The tensile
FRP strain was higher at the corners of the specimen at the level of the stirrup, as in specimens of the
BS2C series (Figure 14c). This analysis had a stress-strain curve with a descending inelastic (second)
branch (i.e., fcu < 0.85 × fcc < fcc) and the ultimate stress fcu was less than 15% of the maximum bearing
stress. So, there was a revision of the ultimate value to the 0.85 × fcc and of the corresponding value for
εcu compared to the experimental stress-strain curves of the test results. The analytical results were
evaluated for the ultimate axial strain equal to 0.005.
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Figure 14. Variation of concrete damage (a) at the ultimate condition condition; (b) at the level of the
stirrup; (c) CFRP strain and characteristic values at the ultimate condition at the level of the stirrup and
(d) εstirrup_max, εlong_mid and εlong_min for specimen R2.0H2CL3.
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Specimen R2.0H2CL4 exhibited similar behavior to the previous column. The concrete area located
around the longitudinal steel bars at the level of the stirrup was crucial (Figure 15a,b). The highest FRP
strain was recorded at the corners of the specimen at the level of the stirrup (Figure 15c). The analytical
results were similarly evaluated for an axial strain equal to 0.006.
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Figure 15. Variation of concrete damage for specimen (a) at the ultimate condition; (b) at the level of
the stirrup; (c) CFRP strain and characteristic values at the ultimate condition at the level of the stirrup
and (d) εstirrup_max, εlong_mid and εlong_min for specimen R2.0H2CL4.

It seems that in both cases, due to the high side ratio (equal to 2), the effectiveness of the confinement
provided by the steel stirrups and the FRP jacket was too low to enhance the deformability and strength
of the plain concrete or to restrict the unstable behavior of slender steel bars. Therefore, there was a
degrading post-peak stress-strain behavior and the bearing stress was more or less stabilized at very
low levels for structural applications (lower than (0.80–0.85) × fcc). The maximum tensile strains on the
FRP were similarly low around 0.004–0.0064.

Figures 14d and 15d highlight the corresponding deformational state of the steel cage. It seems
that the maximum compressive strain on the slender bars was far higher (around 2 times) than the
concrete average axial strain at the ultimate condition for the two different levels of confinement and
located at the stirrup level. The axial strains of the bars at the level in-between the stirrups were close
to the average axial strains of concrete (for R2.0H2CL3 it was −0.005263 and for R2.0H2CL4 it was
−0.006152). The stirrup strains were far beyond the yielding in all cases (for R2.0H2CL3 it was 0.002243
and for R2.0H2CL4 it was 0.0026).

3.3. Parametric Study

The presented FE analyses did not deal with the effect of the quality of steel reinforcement on the
effectiveness of the external FRP confinement. Additional FE analyses were performed for conventional
longitudinal bars of 14 mm diameter with nominal yield strengths: 360 MPa, 450 MPa and 560 MPa.
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Figure 16a presents the FE analytical results for the BS2C3C specimen with the 3 layers of CFRP.
The other features of the specimen remained the same. The nomenclature of the analyses was as follows:

• BS2C3C (the original specimen with yield stress of longitudinal steel 560 MPa).
• BS2C3C_360 (yield stress of longitudinal steel 360 MPa).
• BS2C3C_450 (yield stress of longitudinal steel 450 MPa).
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Figure 16. (a) FE analysis predictions versus experimental stress-strain results for the parametric study
of specimen BS2CL3; variation of the CFRP strain and characteristic values of specimen (b) BS2C3C_360
at the level of the middle stirrup and (c) BS2C3C_450 at the level of the middle stirrup; variation of
concrete damage of specimen (d) BS2C3C_360 at the ultimate condition and (e) BS2C3C_450 at the
ultimate condition; variation of εstirrup_max, εlong_mid and εlong_min for specimen (f) BS2C3C_360 and
(g) BS2C3C_450.
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All different analyses were terminated for the same ultimate tensile strain of the FRP at the
corner, at the level between two stirrups, as assessed for specimen BS2C3C (0.009179). For specimen
BS2C3C_360, the ultimate stress from the FE analysis was 46.5 MPa at a strain of 0.01125 and specimen
BS2C3C_450 provided analytical stress of 48.71 MPa at a strain of 0.01195.

The analytical elaboration for the specimens BS2C3C_360 and BS2C3C_450 show that the material
that finally fails was again the concrete, as in specimen BS2C3C. For BS2C3C_360, the tensile FRP strain
at the ultimate condition, at the corner region of the mid-height stirrup was 0.01308 and at the corner
of this stirrup it was 0.01398 (Figure 16b). For specimen BS2C3C_450, the FRP strain at the corner
region of the mid-height stirrup was 0.01355 and at the corner of this stirrup was 0.01513 (Figure 16c).
Figure 16d,e shows the critical area where the highest degree of damage occurred. At this final step,
the strain of the FRP was close to the material failure in the FE analyses, but it did not exceed it.

It is also observed that the differences in the characteristic values for the strain of the FRP and
longitudinal and transverse steel reinforcements among these specimens were marginal. Figure 16f,g
highlights the corresponding deformational state of the steel cage for this series. It seems that the
maximum compressive strain on the slender bars was far higher (around 2 times) than the concrete
average axial strain at the ultimate condition and located at the stirrup level. In particular, for specimen
BS2C3C_360 this strain was −0.02299 and for BS2C3C_450 it was −0.02447. Thus, the axial strains of the
bars at the level in-between the stirrups were close to the average axial strains of concrete. In particular,
for specimen BS2C3C_360 the strain was −0.012059 and for BS2C3C_450 it was −0.01206. The stirrup
tensile strains were far beyond the yielding in all cases. For specimen BS2C3C_360 the strain was
0.007512 and for BS2C3C_450 it was 0.00746.

Comparing the FE results of these three RC columns, it seems that the axial stress-strain capacity
of the columns was marginally decreased due to the lower yield stress of the steel bars. The bars
of lower yield stress marginally affected the axial deformability levels of the columns, exhibiting a
decrease of axial strain ductility.

3.4. FE Models for Columns Confined with Composite Ropes

Analyses were performed on cylindrical columns confined with Ropes of Polypropylene by
Rousakis [12] (Figure 17a). These concrete cylinders had a 150 mm diameter and 300 mm height.
The average cylindrical concrete strength during the tests was 15.56 MPa.
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Figure 17. (a) Specimen VinL1v1R1 by [12] after the final cycle of loading; (b) specimen 500PPL4 by [13]
before loading and (c) specimen RCPPL4 by [47] before loading.

The vinylon fiber ropes (VFRs) of the study consisted of three Z-twisted fiber strands (Kurasoku
Kensetsu Consultant Co. Ltd., Tokyo, Japan). They had a low E-modulus of 15,900 MPa, a tensile
strength of fVFR = 738 MPa and a tensile elongation at a failure of 4.6%. The first column had one layer
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with 5.83 mm spiral spacing (v1, full confinement), the second one had one layer with 13.18 mm spiral
spacing (v2, one rope section, clear spiral spacing) and the third had one layer with 20.06 mm spiral
spacing (v3, two rope sections, clear spiral spacing). The columns of the v1 group had stopped early
for safety reasons before the fracture of the confining means.

The concrete was modeled using the RHT concrete model. The compressive strength for specimen
VinL1v1R1 was 17.9 MPa and the tensile strength ratio ft/fc was 0.1 (where ft is the tensile strength and
fc is the compressive strength [75]). The composite rope was modeled as an equivalent hexahedral
solid element with a “frictionless” interaction with the concrete core. For the properties of the ropes,
an isotropic elasticity model was used. The modulus of elasticity of vinylon was 15,900 MPa in all the
directions and the Poisson’s ratio was 0.3.

The analytical stress-strain curve for specimens of the VinL1v1 group subjected to axial compression
is depicted in Figure 18a. The FE analysis may capture satisfactorily the general stress-strain behavior
of the column, the temporary load drop and stabilization after extensive concrete cracking and the
subsequent load increased up to very high axial strains. Figure 18b shows the total deformation of the
composite rope at the stage of rope fracture and Figure 18c shows the damage variation of the concrete
core after failure.
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Figure 18. (a) Experimental vs. analytical stress-strain curves for columns of the VinL1v1 group
wrapped with one full layer of Vinylon Fiber Ropes (VFR); (b) deformation of composite ropes for
column VinL1v1 and (c) variation of damage of the concrete core for columns VinL1v1.

Finally, analyses were carried out on square RC columns confined with ropes of polypropylene
by [13,47] (Figure 17b,c). These specimens had a 150 mm side and 750 mm height. They had internal
longitudinal steel bars 4Φ8 (B500C) and transverse Φ5.5/100 mm (S220). They were externally wrapped
with 4 layers of elastic polypropylene fiber rope (PPFR, products of Thrace Plastic Co. S.A, Alimos,
Greece) of ultra-high deformability. For specimen 500PPL4, the average cylindrical concrete strength
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during the tests was 14.2 MPa and had sharp corners. Specimen RCPPL4 had the average cylindrical
concrete strength, during the tests of the column, and was 19 MPa and the corner radius of the section
was 17 mm.

For the simulation of PPFR, which is a Z-twisted two-strand rope, the ultimate stress was 405.3 MPa,
the tensile modulus of elasticity was 2.0 GPa and 20.36% elongation at failure. The yield strength of the
longitudinal steel and stirrups was fy,long = 500 MPa and fy,stirrup = 220 MPa, respectively. The modulus
elasticity of steel was Es = 200,000 MPa and the Poisson’s ratio ν = 0.3.

Figure 19a shows the analytical stress-strain curve for specimen 500PPL4 subjected to axial
compression and Figure 19b shows the analytical stress-strain curve for specimen RCPPL4 subjected to
axial compression.
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4. Conclusions

Three-dimensional finite-element modeling was used herein to study the axial mechanical behavior
of square and rectangular RC columns, confined with FRP jackets and continuous composite ropes.
The pseudodynamic approach was utilized for the first time to enable for the reproduction of monotonic,
repeated or cyclic imposed displacements (usually met in seismic resistant assessment or retrofit of
columns). It may capture demanding inelastic behaviors, damage redistribution effects and local
degrading behavior. The analytical models of the small and real scale columns under investigation
were developed based on suitably calibrated material models, realistic representation of all the internal
steel detailing and the external FRP jacketing, suitably designed FE meshing and interactions among
different materials and interfaces and proper body interactions (necessary for the pseudodynamic
process). The analytical results of RC columns confined with composites compared well with the
experimental stress-strain curves of several characteristic RC columns of the square or rectangular
concrete section with varying concrete strength, corner radius, FRP jacket mechanical properties or
non-bonded composite rope confinement. In particular, the FE analyses follow closely the experimental
curves for specimen series BS1C/BS2C and LSR-R-1-3 with ascending curves and for specimen series
R2.0H2CL with descending second branches. All the analyses were stopped at the experimental
ultimate axial displacement while the corresponding ultimate axial stress in all cases exhibited an AAE
of 13%. Therefore, the proposed validated pseudodynamic modeling approach enabled for the first
time to investigate analytically several critical design parameters and conduct parametric analyses.

The advanced FE models considered the effects of the slenderness of bars, deficient stirrups or
local crushing of the concrete and therefore were used as a basis to investigate the effects of steel
reinforcement quality on the stress-strain behavior of the columns. Several parametric analyses
were investigating the influence of different yield stress of longitudinal steel and stirrups (360 MPa,
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450 MPa and 560 MPa). It is observed that the bars of lower yield stress affected marginally the axial
deformability levels of the columns, exhibiting a decrease of axial strain ductility.

FRP jacket fracture is widely accepted as the failure criterion for most of the experimentally
investigated cases and for the proposed design models. Further, the contribution of steel bars and
stirrups may be variable. This study focused on the significant variation of the field of developed
strains on the FRP jacket at the ultimate condition and on the developed strains and deformations
on steel cages among different columns. Eventually, all steel bars under compression exhibited and
maintained strains higher than the yield one with high variation along the axis. All stirrups under
tension exceeded their yield strain or achieved strains very close to it. The measured deformations
suggest nonuniform bulging of the retrofitted column both axially and transversely. The critical position
to place strain gauges in order to measure the representative axial strain of the steel reinforcement
under axial compression in experiments (close to the average one for the column), may be in the
middle-height of the area of interest (far from end boundaries) and at the mid-distance between
successive stirrups (probably two or four strain gauges, symmetrically placed, are the best option if the
bar buckles significantly) and not at the area close to the stirrups. The investigated variable field of
FRP strains suggest that there was, in some cases, local fracture of the jacket at the corner region (even
local concrete crushing at the corner region) while the global behavior of the column did not reach the
ultimate failure. This aspect was captured due to the suitable composite jacket modeling among others.
The measured FRP tensile strains were higher at the corner region at the height of the stirrups for
most of the specimens. For lower FRP confinement and for lower corner radius there was a high local
damage development in the concrete and local bulging in both the concrete and FRP. It seems there
was an interaction between the local damage of the concrete and the FRP fracture that needs further
investigation. Finally, the advanced parametric FE analyses confirm previous investigations [66–68]
and better quantify the marginal but earlier failure of the retrofitted RC columns when the yield stress
of the longitudinal bars was lower.

All these investigated critical parameters will significantly enrich the extensive experimental
databases for such retrofitted columns gathered in [70,71]. The analytical values retrieved from this
study are believed to address missing critical parameters in an advanced experimental-analytical
database (hybrid approach, see [74]) for retrofitted RC columns under axial compression and provide
more reliable models for failure axial strains.
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