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Abstract: A series of new environment-friendly plasticizers was synthesized from castor oil and used
to plasticize nitrile rubber (NBR). The test results showed that tensile strength, elongation at break,
and tear strength of NBR vulcanizates plasticized by castor oil-based plasticizers were found to be
better than that of dioctyl phthalate (DOP). The aging test taken demonstrated that the castor oil-based
plasticizers could improve the hot air and oil aging resistance of NBR vulcanizates. The thermal
stability test illustrated that castor oil-based plasticizers enhanced the thermal stability of NBR
vulcanizates, and the initial decomposition temperatures (T10%) were about 100 ◦C higher than that
of DOP. In general, the studies manifested that EACO and EBCO can replace DOP to plasticize NBR
and are used in fields that require high mechanical properties, aging resistance, and thermal stability.
This study emphasizes the effects of sustainable, cost-effective, and high-efficiency plasticizers on NBR.

Keywords: castor oil-based plasticizers; nitrile rubber; mechanical properties; aging resistance;
thermal stability

1. Introduction

Nitrile rubber (NBR) is an unsaturated copolymer prepared by the emulsion polymerization of
acrylonitrile and butadiene; it offers good oil, chemical, and abrasion resistance. It is mainly used to
manufacture various oil-resistant and sealing rubber products in the military, automotive, aviation,
and petroleum industries [1–4]. However, the polar cyano structure of NBR results in high viscosity,
which is unfavorable for processing and further use. Hence, it is necessary to add plasticizers to reduce
the viscosity and improve its processability [4]. The plasticizers commonly used in NBR are mainly
phthalate esters, which contain ester bonds that can form hydrogen bonds with the cyano groups in
the NBR molecule to make plasticizers; thus, offering the copolymer good compatibility [5]. However,
considering the direct and indirect threats of phthalate plasticizers to humans and the environment,
it is necessary to explore alternative renewable plasticizers for nitrile rubber [6].

Over decades, the use of vegetable oil in the field of plasticizers has increased because of
advantages such as wide distribution, non-toxicity, low price, environmental protection, and renewable
offerings [7]. Vegetable oils contain fatty acid glyceride bonds, which are polar and highly compatible
with NBR (high ACN content). Therefore, vegetable oils have great potential application value in
NBR [5]. However, a lot of vegetable oils, such as soybean oil, linseed oil, palm oil, olive oil, etc.,
were used in NR [4,8], SBR [9–11], EPDM [12,13], etc., while its use in NBR was relatively less [14–16],
which did not materialize the characteristics of vegetable oils naturally containing polar groups.
Consequently, castor oil, with more inartificial polar groups, has attracted our attention.
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Castor oil, known as oil grown on land, is an inedible oil mainly produced in Asia and Africa [17].
It is unique because it carries a special ricinoleic acid, which has an 18-carbon backbone with a hydroxy
group on the 12-carbon atom and a cis double bond between carbons 9 and 10. The hydroxyl in castor
oil molecule can undergo esterification to obtain more polar groups to improve its compatibility with
polar materials such as PVC and NBR. Therefore, when compared to other vegetable oils, castor oil has
more application potential in the plasticizer field. There are several studies on the plasticization of
PVC with castor oil-based plasticizers [18–20], but very few on NBR.

In this study, five environmentally friendly castor oil-based plasticizers were prepared through
simple esterification and epoxidation reactions, and used to plasticize NBR. The properties were
investigated and compared to commercial plasticizer DOP in order to explore the possibility of replacing
petrochemical-based phthalate plasticizers in NBR.

2. Experimental

2.1. Materials

Hydrogen peroxide, acetic anhydride, benzoyl chloride, acetic acid, calcium oxide, toluene,
sodium hydroxide, sodium carbonate, hydrochloric acid, and acetone was provided by Nanjing
Chemical Reagent Co., Ltd. (Nanjing, China); castor oil and cation exchange resin were provided
by Anhui Xinyuan Chemical Co., Ltd. (Huangshan, China). NBR (3345C) was provided by
LANXESS-TSRCChemical Industrial Co., Ltd. (Nantong, China).

2.2. Synthesis of Epoxy Castor Oil (ECO)

Accurately weighed quantitative castor oil, acetic acid, toluene, and cation exchange resin catalyst
were added to a four-necked flask equipped with a stirrer, a thermometer, a constant pressure funnel,
and a ball condenser; 30% hydrogen peroxide was added dropwise into the reaction after 2 h and
stirred at 60 ◦C for 5 h. Then, the reaction mixture was filtered to recycle the cation exchange resin,
and the remaining fluid was washed to be neutral with sodium carbonate solution and distilled water.
The water and solvent were distilled under reduced pressure to obtain ECO. The epoxy value, hydroxyl
value, viscosity, and glass transition temperature (Tg) of the synthetic castor oil-based plasticizers and
DOP are given in Table 1.

Table 1. Physical properties of plasticizers.

Plasticizers Epoxy Value
(mol/100 g)

Hydroxyl Value
(mKOH/g)

Viscosity at 25 ◦C
(mPa.s)

Tg
(◦C)

DOP — — 80 −71.6
ECO 0.23 — 2850 −52.2
ACO — 10.06 150 −73.3

EACO 0.22 — 450 −64.5
BCO — 12.99 500 −60.1

EBCO 0.18 — 2200 −45.2

2.3. Synthesis of Acetylated Castor Oil (ACO)

Accurately weighed quantitative castor oil and acetic anhydride was placed in a four-necked
flask, and stirred at 140 ◦C for 2 h. The reaction mixture was then neutralized with sodium carbonate
solution and distilled water. Water was removed by vacuum distillation.

2.4. Synthesis of Epoxy Acetylated Castor Oil (EACO)

Accurately weighed quantitative castor oil and acetic anhydride were placed in a four-necked
flask and stirred at 140 ◦C for 2 h. The reaction mixture was then cooled to 60 ◦C, and toluene and
cation exchange resin catalyst were added. 30% hydrogen peroxide was then added dropwise after 2 h
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and stirred for 5 h. Finally, the reaction mixture was treated as per the ECO preparation method to
obtain EACO.

2.5. Synthesis of Benzoyl Castor Oil (BCO)

Accurately weighed quantitative castor oil, benzoyl chloride, calcium oxide, and toluene were
placed in a four-necked flask and stirred at 110 ◦C for 3 h. The reaction mixture was then treated as per
the ACO preparation method to gain BCO.

2.6. Synthesis of Epoxy Benzoyl Castor Oil (EBCO)

Accurately weighed quantitative BCO, acetic acid, toluene, and cation exchange resin catalyst
were placed in a four-necked flask and heated. 30% hydrogen peroxide was added dropwise after 2 h
and stirred at 60 ◦C for 5 h. The reaction’s post-treatment mixture was the same as that for the ECO
preparation method to obtain EBCO.

2.7. Processing of Plasticized Compounds

The formulation of the materials (phr): NBR 100, carbon black N550 50, carbon black N770
50, plasticizer 20, ZnO 5, Stearic acid 1.2, antioxidant poly(1,2-dihydro-2,2,4-trimethyl-quinoline)
(RD) 1.3, sulfur 1.2, accelerator tetramethylthiuram disulfide (TMTD) 0.5, accelerator
n-cyclohexyl-benzothiazole-2-sulfonamide (CBS) 1.5.

First, raw NBR and carbon black (N550, N770) were blended on the two-roll mill (XK-160,
Guangdong Zhanjiang Machinery Factory, Zhanjiang, Guangdong Province, China) at 25 °C for 5 min.
Then, the plasticizer, ZnO, stearic acid, RD, TMTD, CBS, and S were added into the above NBR,
respectively. The mixture was blended on the mill for about 40 min to gain homogeneous NBR
compounds. Eventually, the NBR compounds were vulcanized through a compression molding press
at 170 ◦C, 15 MPa. The NBR vulcanizates plasticized by different castor oil-based plasticizers were
respectively named as NBR-DOP, NBR-ECO, NBA-ACO, NBA-EACO, NBA-BCO, and NBR-EBCO.

2.8. Tests

FT-IR spectra were acquired in the range of 400 to 4000 cm−1 recorded on the Nicolet FTIR-360
(Nicolet Instrument Crop., Madison, WI„ USA) Fourier transform infrared spectrophotometer. 1H NMR
spectra were recorded by using an AVANE400 (Brucker Biospin Company, Fällanden, Switzerland)
with deuterated chloroform as a solvent. The Mooney viscosity test of unvulcanized rubber was
measured using the GT-7080S2 Mooney viscometer (Gotech Testing Machines (Dongguan) Co., Ltd.,
Dongguan, China) based on GB/T1232.1-2000. Cure characteristics were examined according to
GB/T16584-1996 with M2000AN rotorless rheometer (Gotech Testing Machines (Dongguan) Co., Ltd.,
Dongguan, China). The temperature was set at 160 ◦C, and the time at 8 min. Hardness (Shore A)
of the samples was determined as per GB/T531.1-2008. Tensile and tear strength were determined
according to GB/T528-2009 and GB/T529-2008, respectively, using the AI-7000M microcomputer tensile
testing machine (Gotech Testing Machines (Dongguan) Co., Ltd., Dongguan, China) with an applied
load of 500 mm/min. The tensile strength, elongation at break, and tear strength were calculated from
the average of 5 samples. Compression set (CS) values were determined according to GB/T7759.1-2015.
Samples with 13 mm thickness and 29 mm diameter were compressed to constant strain (~25%) and
kept at 100 ◦C for 72 h. For the hot air aging test, the samples were kept for 72 h at 100 ◦C. Finally,
changes in material behavior were characterized by hardness, mass, volume, and tensile testing.
According to GB/T1690-2010, the samples were immersed in ASTM 1 oil and then kept at 100 ◦C
for 72 h. After that, the changes in material behavior of hardness, mass, volume, and tensile testing
were characterized for oil aging resistance. The glass transition temperature (Tg) of the samples
were measured by DSC (NETZSCH 214 POLYMA, Freistaat Bayern, Germany). The temperature was
increased from −100 to 120 ◦C at a rate of 10 ◦C per minute. Thermogravimetric analysis of the samples
was carried out on DTG-60AH TGA thermal analysis instruments (Netzsch Instrument Crop., Freistaat
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Bayern, Germany) in an N2 atmosphere (50 mL/min) at a heating rate of 10 ◦C/min from 30 to 900 ◦C.
The fracture surface morphology of the NBR blends after tensile fracture was taken by the Hitachi
S-4800 (Hitachi, Tokyo, Japan) scanning electron microscope (SEM) operated at 25 kV.

3. Results and Discussion

3.1. FTIR and NMR Characterization of the Synthesized Plasticizers

The FT-IR spectra of CO, ECO, ACO, EACO, BCO, and EBCO are shown in Figure 1. In all the
spectra curves, the methylene at 2930, 2850 cm−1 and carbonyl at 1735 cm−1 indicated the integrity of the
main chain of the castor oil molecule. In the spectra of ACO, EACO, BCO, and EBCO, the hydroxyl group
at 3400 cm−1 almost disappeared, illustrating that an acylation reaction had occurred. At 710 cm−1 is
the bending vibration peak of the hydrocarbon in the monosubstituted benzene ring after benzoylation
reaction. The carbon-carbon double bond of CO, ACO, and BCO at around 3010 cm−1 disappeared,
while the epoxy group at 1068 cm−1 appeared in the spectra of ECO, EACO, and EBCO, demonstrating
that the carbon-carbon double bonds were oxidized into epoxy groups.
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Figure 1. FT-IR spectra of CO and plasticizers synthesized.

Figure 2 shows the 1H NMR of CO, ECO, ACO, EACO, BCO, and EBCO respectively. Compared
to CO 1H NMR spectra, the signals in the 2.01 ppm of ACO and EACO spectra were associated with the
shifted methyl hydrogen of the acetyl group and the proton signals in the 7.45–7.55 ppm and 8.1 ppm of
BCO and EBCO spectra were associated with the hydrogen on the benzene ring, which demonstrated
the acetylation and benzoylation reactions. The signals in the 5.45–5.55 ppm of ECO, EACO, and EBCO
spectra were associated with weakening of the carbon-carbon double bands, while the signals in
the 2.95–3.15 ppm were associated with the epoxy groups bands, which indicated that most of the
carbon-carbon double bonds had been oxidized into epoxy groups during the epoxidation reaction.
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3.2. Mooney Viscosity Test

The Mooney viscosity of different NBR compounds are given in Figure 3. The Mooney viscosity
of the NBR-DOP compound was 95.52, while that of the NBR-ACO compound was 96.81, which meant
that the plasticizing effect of the ACO plasticizing NBR compound was close to that of the DOP.
The Mooney viscosity of NBR compounds plasticized by other four plasticizers was higher than that of
DOP, indicating that the plasticizing efficiency is lower than DOP, which may be related to the viscosity
of the plasticizer [21]. As shown in Table 1, the viscosity of DOP was 80, and the viscosities of ACO,
EACO, BCO, and EBCO increased sequentially, as did the NBR compounds. Nevertheless, ECO was
an exception, mainly because of the hydroxyl groups in ECO, which improved the compatibility of the
plasticizer and NBR, and reduced the Mooney viscosity of the mixed rubber.
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3.3. Cure Characteristics

In the production of rubber molding products, machinability research is very important, which can
be determine vulcanization characteristics, such as maximum torque MH, minimum torque ML, scorch
time tc10, and positive vulcanization time tc90 [22]. The vulcanization characteristics data of different
NBR compounds are summarized in Table 2. It can be seen that the MH and ML of NBR vulcanizates
plasticized by different plasticizers have little difference, and the change is similar to the Mooney
viscosity. The tc10 represents the operating time of the compound and the Tc10 of NBR-DOP was
1.57 min. The tc10 of the NBR-ACO and NBR-BCO compounds were close to NBR-DOP, while NBR-ECO
and NBR-EACO containing epoxy groups were longer, which may be due to the presence of epoxy
groups promoting the crosslinking of NBR and the vulcanizing agent during the vulcanization
induction period. The positive vulcanization time tc90 represents the processing time of the compound
in the molding production, and the tc90 of NBR-DOP was 2.97 min. The tc90 of the NBR-ACO
and NBR-BCO compounds were much higher than that of NBR-DOP, while that of the NBR-ECO,
NBR-EACO, and NBR-EBCO compounds reduced, which demonstrated that the existence of epoxy
groups promotes the vulcanization process of NBR.

Table 2. Vulcanization characteristics data of different NBR compounds.

Samples MH
(Nm)

ML
(Nm)

tc10
(min)

tc90
(min)

NBR-DOP 23.27 2.16 1.57 2.97
NBR-ECO 19.61 2.50 1.28 2.23
NBR-ACO 19.42 2.55 1.53 3.68

NBR-EACO 21.48 2.57 1.43 2.60
NBR-BCO 21.40 2.61 1.60 4.72

NBR-EBCO 23.62 2.73 1.50 2.62

3.4. Physical and Mechanical Properties

The hardness, compression set, tensile strength, elongation at break, stress at 100% strain and
tear strength of NBR vulcanizates are given in Table 3. The tensile strength and elongation at break
of NBR-DOP were 17.18 MPa and 240.25%. The tensile strength and elongation at break of NBR
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vulcanizates plasticized by five castor oil-based plasticizers were higher than those of NBR-DOP,
which indicated that the NBR spline plasticized by the synthetic castor oil-based plasticizers were more
resistant to tensile failure than DOP, and the stretch effect was better than DOP. The higher tensile
strength may be because the castor oil molecules have polar groups such as ester bonds and epoxy
groups compared to DOP molecules, which increases the force between the molecules and the cohesive
force of the rubber compounds. At the same time, the interaction between the rubber macromolecular
chains and fillers were reduced, which led to improvements in the plasticizing effect. On the other
hand, the long molecular chain of castor oil also increases the ductility of the NBR spline. The tear
strength of the NBR-DOP spline was 57.94 MPa, while the tear strength of other five NBR splines
were higher than that of NBR-DOP, which manifested that castor oil-based plasticizers can improve
the ability of NBR to resist crack expansion and cracking. The hardness of NBR-EACO, NBR-BCO,
and NBR-EBCO were found to be higher than that of NBR-DOP, showing that they have a higher
crosslinking density. The compression set of NBR-DOP was 38.72%, while NBR-EACO, NBR-BCO,
and NBR-EBCO were 38.47%, 38.52% and 39.14%, respectively, which represented that these three
plasticizers have possible applications in rubber sealing products. However, the compression set
of NBR-ECO and NBR-ACO was much higher than that of NBR-DOP, reaching 57.68% and 49.85%,
which meant that the recovery ability of these two NBR products was weak.

Table 3. Physical and mechanical properties of NBR vulcanizates.

Samples TSa
(MPa)

EB
(%)

S100
(MPa)

TSb
(N/mm)

H
(Sh A)

CS
(%)

NBR-DOP 17.18 ± 0.68 240.25 ± 19.16 6.56 ± 0.26 57.94 ± 2.36 72.5 38.72
NBR-ECO 17.48 ± 0.23 289.40 ± 11.00 6.04 ± 0.18 63.12 ± 1.16 69.2 57.68
NBR-ACO 17.52 ± 0.41 272.62 ± 11.68 6.50 ± 0.36 58.06 ± 2.58 70.8 49.85

NBR-EACO 17.66 ± 0.54 256.37 ± 12.63 7.22 ± 0.23 60.43 ± 2.34 74.9 38.47
NBR-BCO 18.30 ± 0.72 245.22 ± 10.64 7.12 ± 0.22 61.91 ± 1.88 73.2 38.52

NBR-EBCO 18.94 ± 0.43 257.73 ± 3.51 7.78 ± 0.33 63.89 ± 2.18 75.0 39.14

TSa—tensile strength, EB—elongation at break, S100—stress at 100% strain, TSb—tear strength, H—hardness,
CS—compression set.

3.5. Hot Air Aging Properties

The NBR vulcanizates were aged for 72 h in a circulating hot air environment at 100 ◦C,
and then changes in hardness, mass, and volume of the samples were measured as shown in Figure 4;
the mechanical properties after aging are listed in Table 4. The mass, volume, and hardness changes of
the NBR-DOP vulcanizate after hot air aging were −1.51%, −0.51% and 7.8 A, respectively. Compared
with NBR-DOP, the mass loss of vulcanizates plasticized by five castor oil-based plasticizers were
less, which shown that the compatibility of the five castor oil-based plasticizers with NBR is better
than that of DOP. This is because the synthetic plasticizers contain a large number of ester bonds and
epoxy groups, which make plasticizers have more compatibility with NBR than DOP. Based on the
mass, volume, and hardness change data, NBR-EACO had better heat-resistant air aging performance.
The change rates of mass, volume, and hardness were −0.10%, 0.26% and 4.5 A, respectively, and less
than that of NBR-DOP. After hot air aging, the tensile strength of the vulcanizates increased, but the
elongation at break decreased significantly. This was mainly because during the hot air aging process,
the samples continued to be vulcanized and crosslinked [23]. The change rates of tensile strength and
elongation at break of NBR-DOP were 10.48% and −46.50%, while other vulcanizates had a smaller
change in elongation at break and a wide variation in tensile strength. In general, the hot air aging
performance of the NBR vulcanizates containing epoxy group plasticizers was significantly better than
that of DOP.
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Table 4. The mechanical properties of NBR vulcanizates after hot air aging.

Sample TS
(MPa)

EB
(%)

TSCR
(%)

EBCR
(%)

NBR-DOP 18.98 ± 0.99 128.54 ± 9.80 10.48 −46.50
NBR-ECO 18.70 ± 0.96 185.63 ± 16.35 6.98 −35.86
NBR-ACO 19.64 ± 0.56 153.59 ± 6.36 12.10 −43.66

NBR-EACO 19.10 ± 1.06 159.60 ± 17.97 8.15 −36.42
NBR-BCO 20.60 ± 1.35 158.80 ± 8.42 12.57 −35.24

NBR-EBCO 20.60 ± 0.74 168.43 ± 11.87 8.76 −34.65

TS—tensile strength, EB—elongation at break, TSCR—tensile strength change rate, EBCR—elongation at break
change rate.

3.6. Oil Aging Resistance

After immersing the NBR vulcanizate samples in ASTM 1 oil and aging at 100 ◦C for 72 h,
the changes in hardness, mass, and volume of the samples are shown in Figure 5. The mass and volume
of the NBR vulcanizates after hot oil aging varied greatly, which was because the plasticizers migrated
to the oil when the samples were immersed in the polar ASTM 1 oil. The changes of NBR-DOP in
mass, volume, and hardness after hot oil aging were −7.15%, −8.68%, and 12.7 A. The mass, volume,
and hardness changes of vulcanizates plasticized by five castor oil-based plasticizers were smaller than
those of NBR-DOP, which indicated that the NBR vulcanizates containing castor oil-based plasticizers
have better oil migration resistance. According to Table 5, the tensile strength of the vulcanizates
increased, but the elongation at break greatly reduced. This was mainly because in the process of
hot oil aging, there also was the migration of plasticizers in addition to the thermal cracking of the
crosslinking network. The change rates of tensile strength and elongation at break of NBR-DOP were
15.48% and −46.51%. Meanwhile, the variation of mechanical properties of other samples were almost
less than that of NBR-DOP. All the oil aging properties manifested that castor oil-based plasticizers can
improve the thermal oil aging stability of NBR vulcanizates.
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Table 5. The mechanical properties of NBR vulcanizates after hot oil aging.

Samples TS
(MPa)

EB
(%)

TSCR
(%)

EBCR
(%)

NBR-DOP 19.84 ± 1.19 128.52 ± 13.14 15.48 −46.51
NBR-ECO 18.82 ± 0.26 190.55 ± 4.62 7.67 −34.16
NBR-ACO 19.00 ± 0.68 154.02 ± 7.78 8.45 −43.50

NBR-EACO 19.82 ± 0.92 155.23 ± 3.07 12.23 −38.16
NBR-BCO 19.04 ± 1.93 123.33 ± 17.40 4.04 −49.71

NBR-EBCO 20.40 ± 1.21 147.20 ± 13.06 7.71 −42.89

TS—tensile strength, EB—elongation at break, TSCR—tensile strength change rate, EBCR—elongation at break
change rate.

3.7. Glass Transition Temperature

The glass transition temperature (Tg) of NBR vulcanizates was measured by DSC; the DSC
thermograms are presented in Figure 6. Obviously, the DSC thermogram of every sample exhibited an
inflection point, which showed that the plasticizers were compatible with NBR. The Tg of NBR-DOP
was −32.5 ◦C, while the samples containing castor oil-based plasticizers were slightly higher than
that of DOP. This might be due to the higher Tg of the castor oil-based plasticizers than DOP (shown
in Table 1, except ACO, −73.3 ◦C). On the other hand, the castor oil-based plasticizers contained
carbon-carbon double bonds and epoxy groups, which might participate in the vulcanization process.
Therefore, the plasticizers were distributed in the vulcanizates in the state of chemical crosslinking [16].
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3.8. Thermogravimetric Analysis

The TGA curves of different NBR vulcanizates are shown in Figure 7 and the thermal performance
data, including the weight loss of 10% (T10%), weight loss of 50% (T50%), and the residue at 900 ◦C are
summarized in Table 6. The thermal weight loss of each vulcanizate was divided into two sections.
The first section at 300–400 ◦C was the volatilization and decomposition of small molecules such as
plasticizers, and the second section at 400–500 ◦C was the decomposition of the polymer molecular
chain [24]. The first thermal weight loss temperature of NBR-DOP was 297.3 ◦C, while the NBR
vulcanizates containing castor oil-based plasticizers had a peak temperature of 390–405 ◦C, which was
about 100 ◦C higher than that of NBR-DOP. The higher temperature of initiation of degradation of
these mixes was possibly because there were more physical and chemical crosslink points between the
synthetic castor oil-based plasticizer and NBR, which was attributed to the interaction between the oils
and NBR [15,25]. On the other hand, the castor oil-based plasticizers have a large molecular weight and
a high vaporization point then that of DOP. It can be seen from Table 6 that the second thermal weight
loss peak temperature of each vulcanizate was relatively close, and NBR-DOP was only about 5 ◦C
lower than that of the other samples, which was mainly due to the heat resistance of the ester bonds
in the castor oil-based plasticizers. At 900 ◦C, the residue of NBR-DOP was about 4–6% lower than
others, which demonstrated that castor oil-based plasticizers can improve the thermal stability of NBR.
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Table 6. TGA data of NBR vulcanizates.

Sample T10%
(◦C)

Tp1
(◦C)

Tp2
(◦C)

Residue
(%)

NBR-DOP 297.3 252.3 457.3 44.12
NBR-ECO 402.1 382.1 462.1 48.99
NBR-ACO 392.1 347.1 462.1 49.26

NBR-EACO 392.4 352.4 462.4 49.56
NBR-BCO 394.2 344.4 464.4 50.81

NBR-EBCO 392.0 387.0 462.0 50.93

3.9. Fracture Surface Morphology Analysis

The fracture surface morphology of NBR blends after tensile fracture are exhibited in Figure 8.
Scanning electron microscopy provides direct evidence to evaluate the effect of plasticizers on the
dispersion of carbon black. In Figure 8a, it can be seen that the addition of DOP slightly improved
the dispersion of carbon black particles and the adhesion between carbon black particles and matrix
NBR (the domain size range from 5.72 to 15.16 µm). However, for NBR-ECO (Figure 8b), carbon
black particles seemed to be packed into agglomerates of smaller size between 5.37 and 13.68 µm,
which indicated that the polar groups in the plasticizers promoted the dispersibility of carbon black
particles in NBR. When compared to ACO and BCO, the carbon black particles in NBR-EACO and
NBR-EBCO were smaller in size and had more even distribution. This suggested that the presence
of polar groups made castor oil-based plasticizers act as interfacial agents, reducing the interfacial
tension and, consequently, a reduction in particle size [26,27].
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4. Conclusions

Five new environment-friendly plasticizers were synthesized using castor oil as raw material.
The synthetic plasticizers were used to plasticize NBR and then compared to commercial plasticizer
DOP. The mechanical properties of the vulcanizates illustrated that tensile strength, elongation at
break, and tear strength of the NBR vulcanizates plasticized by castor oil-based plasticizers were all
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found to be improved, when compared to DOP. The aging test demonstrated that the castor oil-based
plasticizer could improve the hot air and oil aging resistance of NBR vulcanizates. Thermal stability
tests showed that castor oil-based plasticizers enhanced the thermal stability of NBR vulcanizates,
and their initial decomposition temperature T10% was about 100 ◦C higher than that of DOP. In summary,
EACO and EBCO had better physical, mechanical, and aging resistance properties, and they can
replace DOP in plasticizing NBR in fields that require high mechanical properties, aging resistance,
and thermal stability.
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