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Abstract: In this paper compressive strength and ultimate strain results in the current database of
fiber-reinforced polymer (FRP)-confined concrete are used to determine the reliability of their design
space. The Lognormal, Normal, Frechet, Gumbel, and Weibull distributions are selected to evaluate
the probabilistic characteristics of six FRP material categories. Following this, safety levels of the
database are determined based on a probabilistic model. An iterative reliability method is developed
with conjugate search direction for evaluating the reliability. The results show that Lognormal and
Gumbel distributions provide best probability distribution for model errors of strength and strain
enhancement ratios. The developed conjugate reliability method provides improved robustness over
the existing reliability methods owing to its faster convergence to stable results. The results reveal
that the part of the database containing normal strength concrete (NSC) heavily confined (i.e., actual
confinement ratio (flu,a/f’co) > 0.5) by low and normal modulus carbon fibers (i.e., fiber elastic modulus
(Ef) ≤ 260 GPa) and moderately confined (i.e., 0.3 ≤ flu,a/f’co ≤ 0.5) by aramid fibers exhibits a very high
safety level. The segments of the database with a low and moderate safety level have been identified
as i) NSC moderately and heavily confined by higher modulus glass fibers (i.e., Ef > 60 GPa), ii) high
strength concrete (HSC) moderately and heavily confined (i.e., flu,a/f’co > 0.3) by glass fibers, iii) HSC
lightly confined (i.e., flu,a/f’co ≤ 0.2) by carbon fibers, and iv) HSC lightly confined by aramid fibers.
Additional experimental studies are required on these segments of the database before they can be
used reliably for design and modeling purposes.

Keywords: fiber-reinforced polymer (FRP); safety level; reliability analysis; model error;
FRP-confined concrete

1. Introduction

Using fiber-reinforced polymer (FRP) in enhancing seismic performance of concrete members
has been extensively studied [1,2]. Lateral confinement of concrete using FRP wrap or tube causes
an improvement in the ductility and strength of concrete [3–5]. Numerous studies were performed
to investigate the compressive strength (f′cc) and ultimate axial strain (εcu) of FRP-confined concrete
(e.g., [6–12]). Different confinement models were developed to predict f′cc and εcu (as the ultimate
condition) using experimental datasets for design guidelines and practical applications [13–18]. In these
models, the properties of FRP material, such as fiber type and thickness, have been considered as the
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most important parameters in the prediction of f′cc and εcu of concrete confined by FRP layers [9].
Nevertheless, the accuracy and robustness of them depended on the size and reliability of the database
of test results they were developed from.

Reliability analysis is an essential tool for ensuring robust design and evaluating safe condition of
a structural element [19]. There are several probabilistic methods to evaluate the uncertainty using
the reliability analysis theory, e.g., the analytical approaches using first-order/second-order reliability
method (FORM/SORM) [20–27], Monte Carlo simulation (MCS) [28], weighted average simulation [29],
and subset simulation [30]. Although the MCS method is commonly used to evaluate the reliability
index owing to its accuracy and simplicity, this approach needs a large number of data points to obtain
an accurate reliability index of a very small failure domain [31]. On the other hand, the FORM is
extensively utilized in the engineering reliability analysis because of the good balance it offers between
accuracy and time efficiency [21,26]. The other simulation methods have the complex formulation to
approximate the failure domain and need extra details for evaluating the safe/failure domain [32].

Several iterative schemes have been used to estimate the reliability index of different problems
based on the FORM. Val [33] used the original FORM formula to study the reliability of FRP-confined
reinforced concrete columns and found the reliability of these columns highly dependent on the
confinement level. Sadeghian et al. [34] also used the original FORM for analysis of reliability of
FRP-confined reinforced concrete beams under flexural loading. Rasheed et al. [35] conducted the
reliability analysis of girders of China-Pakistan Economic Corridor bridge using the original FORM
formula. Gong and Yi [22] used Hasofer-Lind and Rackwitz-Fiessler (HL-RF) [36] and finite-step
length (FSL) methods to determine the reliability index of shear strength of bridge structures and found
that HL-RF converges faster than FSL. Liu and Der Kiureghian [37] introduced a more robust version
of HL-RF as improved HL-RF (IHL-RF). Yang [21] used the stability transformation method (STM)
with chaos control (CC) and reported that this method controlled the chaos and periodic oscillation
of the FORM iterative algorithm. Keshtegar [26] and Keshtegar and Miri [38] used conjugate HL-RF
(CHL-RF) for analyzing corroded pipes and conical structure and found that CHL-RF improved the
convergence speed of FORM for nonlinear problems. Baji et al. [39] conducted reliability analysis of
reinforced concrete columns retrofitted with FRP wrap under eccentric axial loading. They applied the
advanced first-order Second moment method for reliability analysis. Zhang et al. [40] used HL-RF
method for reliability analysis of FRP-to-concrete bonded joints. The efficiency of these methods in
achieving stable results from an iterative algorithm makes the FORM reliable in the estimation of the
failure probability. IHL-RF, CC, and FSL algorithms showed a more robust performance compared to
HL-RF, however, they provided inefficient computational burden for highly nonlinear problems [26].
The CHL-RF method [38] is an efficient and robust method providing stable results for highly nonlinear
problems [26], but it provides inefficient computational burden for highly nonlinear problems. These
improved FORM versions based on steepest descent search direction were formulated for enhancing
the accuracy of the original FORM. However, the efficiency of FORM is dependent on the parameters
used in the reliability analysis.

For predicting the properties of FRP-confined concrete at ultimate accurately, it is important to use
a large test database. However, using a large test database in not enough for accuracy of a proposed
model and it is also necessary to establish the reliability of such a database using an efficient reliability
method [41]. Recently, the conjugate search direction with adaptive formulation was developed for
enhancement of the accuracy and efficiency of the FORM [42–44]. The literature review has shown that
no study has been conducted to date on the application of a conjugate search direction method based
on FORM (CFORM) on the reliability analysis of test databases of FRP-confined concrete.

In this study, a CFORM is developed with more robust and efficient performance, in terms of accuracy
and computational time, in comparison to the existing methods to determine the reliability index of the
current database of FRP-confined concrete and identify its segments that require improvements. Four safety
levels are suggested based on the reliability analysis of the data as the reliability levels of the database to
provide guidance in the design and modelling of FRP-confined concrete.
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2. Research Significance

The focus of this study is (i) developing a new conjugate reliability method with a higher robustness
over the existing reliability methods for highly nonlinear problems and (ii) using the developed method
to determine the safety level of the current database of f′cc and εcu of FRP-confined concrete columns.
Results of this research make a significant contribution towards determining the reliability of the
database, and establishing which parts of the database require additional experimental studies before
they can be used reliably for design and modeling of FRP-confined concretes.

3. Reliability Analysis-Based Conjugate Search Direction

The main aim of FORM is finding the most probable point (MPP) as the nearest point on the limit
state surface to the origin in the normal standard space. HL-RF as the traditional iterative FORM
produces unstable and chaotic results [21,25,26,45]. On the other hand, the modified version of FORM
requires a line search rule to compute a step size based on the Armijo [38,46], Wolfe condition [25],
or merit function [37]. Thus, these improved FORM versions are more robust compared to HL-RF,
however, they require additional iterations for evaluating a suitable step size, especially for highly
nonlinear problems. FSL [22] and CC [21,45] methods are computationally inefficient as they require
a smaller step size than that in HL-RF (i.e., less than 1) for stable results. CHL-RF algorithm is based
on a conjugate search direction using Fletcher and Reeves (FR) conjugate scalar factor, providing stable
results for highly nonlinear problems more inefficiently than FSL and HL-RF [47]. The CHL-RF is
improved based on a limited FR (LFR) and dynamical chaotic finite-step size in chaotic conjugate
control (CCC) to enhance its efficiency. However, the basic formulation of the conjugate search direction
is extended by the FR scalar factor and therefore the effects of the previous and new grained vectors are
not considered in computing the conjugate search direction [47]. An iterative FORM algorithm based
on conjugate search direction is developed in this section for the improvement of the efficiency and
robustness of FORM without utilizing line search rules. This algorithm is validated by three nonlinear
limit state functions and the converged results from the proposed CFORM are compared with those
of HL-RF, CC, FSL, directional stability transformation method (DSTM), CHL-RF, CCC, and LFR to
illustrate its performance.

3.1. Conjugate Iterative Formula of FORM

The failure probability (Pf) in the reliability analysis is estimated by Equation (1) [25].

P f =

∫
g(X)≤0

. . .

∫
fX(x1, . . . , xn)dx1 . . . dxn = Φ(−β), (1)

in which g(X) is the limit state function, separating the domain of design into failure (g(X) < 0) and
safe (g(X) > 0) regions with respect to various uncertainties using the random variables of X = (x1,x2,
. . . ,xn)T. fX is the joint probability density function of random variables, Φ is the standard normal
cumulative distribution function, and β is the reliability index. The iterative CFORM formula to search
MPP is given as follows [26,38]:

Uk+1 =
∇

T g(Uk)Uk − g(Uk)

∇T g(Uk)α
C
k+1

αC
k+1 (2)

in which U is the vector of normal standard random variables and αC
k+1 is the vector of conjugate unit

normal at design point of Uk. For reducing the parallel risk of the unit normal vector (αk+1) with the
search direction vector, αk+1 is proposed based on the conjugate search direction by αC

k+1, which is
computed as:

αC
k+1 =

d(Uk)∣∣∣∣∣∣d(Uk)
∣∣∣∣∣∣ (3)
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where d(Uk) states the point-based conjugate search direction and is defined by Equation (4).

d(Uk) = Uk + dk (4)

where dk is the vector of conjugate search direction defined as:

dk = −∇g(Uk) +

∣∣∣∣∣∣∇g(Uk)
∣∣∣∣∣∣2 − 0.1∇T g(Uk)∇g(Uk−1)∣∣∣∣∣∣∇g(Uk−1)

∣∣∣∣∣∣2 dk−1 (5)

where ∇g(U) = [∂g/∂u1, ∂g/∂u2, . . . , ∂g/∂un]
T is the gradient vector of limit state function at point U.

The iterative formula given in Equation (3) is used to compute the unit normal vector at Uk based on the
conjugate search direction. Figure 1 shows schematically a cycle of the conjugate search direction vector
in 2D normal space. It is illustrated that αC

k+1 is not parallel to αk+1, meaning that the new point using
CFORM formula is not placed on the previous points. On the other hand, the new point is tended on
the previous point Uk. Therefore, the CFORM may converge rapidly in comparison with FORM-based
steepest descent search direction. In addition, the vector αk+1 is not parallel to the direction of d(Uk)
point. Therefore, stable results with no oscillations can be provided through this formulation for highly
nonlinear limit state functions while the αk+1 and αk−1 may locate on a same direction in HL-RF and
provide Uk+1 = Uk−1. This means that the HL-RF, the FSL with very large finite-step size, and CC
having a large chaos control factor tended to 1 may provide unstable results for highly nonlinear
problems. However, the proposed method provides stable results. Because the iterative FORM formula
in Equation (2) is simply developed without any step size, the reliability index is directly computed
without merit function [37], Wolfe conditions [25], sufficient descent condition [25,46], or Armijo
rule [38,45]. Therefore, this method is simpler than the other modified versions of FORM formula.
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3.2. CFORM Algorithm

The reliability index is approximated according to the proposed conjugate search direction using
the following steps:

Step 1: Transforming basic random variables in X-space (X is the original random variable vector)
to U-space (U is the standard normal vector) using Rosenblatt transformation as u = Φ−1[FX(x)] [47,48].

Step 2: Searching MPP (U∗ = (u∗1, u∗2, . . . u∗n)
T) through the use of conjugate iterative process of

FORM as:

Uk+1 =
∇

T g(Uk)Uk − g(Uk)

∇T g(Uk)α
C
k+1

αC
k+1 (6)

Step 3: Calculating βk+1 =
∇

T g(Uk)Uk−g(Uk)

∇T g(Uk)α
C
k+1

and checking the convergence criterion as∣∣∣∣∣∣Uk −Uk−1

∣∣∣∣∣∣< 10−6 for the next iteration of FORM formula. The proposed iterative formula to
search MPP is simple formulation and its iterative information is directly computed based on the
previous results from Equation (6).
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3.3. Validation of the Conjugate Reliability Analysis

In this section, the performance of the developed CFORM is compared with other algorithms
including HL-RF, CC, FSL, CHL-RF, DSTM, conjugate FORM-based LFR, and CCC through the use
of three nonlinear limit state functions. β and iterations are utilized to present the efficiency and
robustness of the proposed CFORM. Parameters of different reliability algorithms are set as: finite-step
length (λ) = 50 and adjusted factor (c1) = 0.8 for FSL, λ = 0.1 and involutory matrix (C) = I for two
algorithms of CC and DSTM, initial finite step length (λ0) = 50 and c1 = 0.8 for CHL-RF, λ0 = 50 and
limited conjugate factor (δ) = 1 for LFR, and logistic function with parameters of initial value of 0.375
and chaos scalar factor (a) = 4 for CCC. Three reliability examples are considered as follows:

Example 1: A highly nonlinear reliability problem with non-normal limit state function of Equation
(7) is considered [26].

g(X) = x4
1 + x2

2 − 50 (7)

where x1 presents the Lognormal distributed variable with the mean (µ) of 5 and standard deviation (σ)
of l, and x2 presents the Gumbel distribution with µ of 10 and σ of 10. The converged β was robustly
obtained by CFORM after 11 iterations as β = 3.259, while β obtained by MCS with 1.2×106 samples
was 3.501. Therefore, CFORM was more robust and efficient in solving Equation (7) compared to MCS.
Figure 2 shows the iterative histories of β obtained from HL-RF, CC, FSL, CHL-RF, and the proposed
CFORM. It is shown in the figure that HL-RF method yields to 4-periodic solutions as β = (2.512,
1.855, 2.386, 1.597). CC and FSL robustly converged to the same β of 3.259, but they are less efficient
than the DSTM, LFR, CCC, CHL-RF, and CFORM. Unlike the CC, DSTM, and FSL, the formulation
of HL-RF is iterated without chaos feedback control factor. Therefore, as can be seen in Figure 2,
the HL-RF provides periodic solutions but the improved versions of steepest descent algorithms as
CC, DSTM, and FSL are robustly converged. On the other hand, the conjugate search direction in
CHL-RF, CFORM, CCC, and LFR is provided by conjugate normal vector, which is not parallel to
previous search directions. Therefore, as can be seen in the figure, stable results are obtained by these
algorithms. The results also show the proposed method is more robust compared to HL-RF and is
significantly more efficient than the other reliability methods. Notably, the CFORM converged about
5-times quicker compared with the CHL-RF method and twice quicker than CCC, DSTM, and LFR.
It can also be seen in Figure 2 that the iterations of the conjugate methods of LFR, CFORM, and CCC
provide same results in the initial iteration, which means that their search directions are provided
using similar normalized conjugate vector. However, the convergence of CFORM is faster than the

algorithms of LFR and CCC, which is because of the applied adjusting factor of − 0.1∇T g(Uk)∇g(Uk−1)

||∇g(Uk−1)||
2 in

the conjugate scalar factor. This factor increases the efficiency of FORM formula in the CFORM.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 18 

 

In this section, the performance of the developed CFORM is compared with other algorithms 

including HL-RF, CC, FSL, CHL-RF, DSTM, conjugate FORM-based LFR, and CCC through the use 

of three nonlinear limit state functions. β and iterations are utilized to present the efficiency and 

robustness of the proposed CFORM. Parameters of different reliability algorithms are set as: finite-

step length (λ) = 50 and adjusted factor (c1) = 0.8
 
for FSL, λ = 0.1 and involutory matrix (C) = I for two 

algorithms of CC and DSTM, initial finite step length (λ0) = 50 and c1 = 0.8
 
for CHL-RF, λ0 = 50 and 

limited conjugate factor (δ) = 1 for LFR, and logistic function with parameters of initial value of 0.375 

and chaos scalar factor (a) = 4 for CCC. Three reliability examples are considered as follows: 

Example 1: A highly nonlinear reliability problem with non-normal limit state function of Equation 

(7) is considered [26]. 

𝑔(𝑋) = 𝑥1
4 + 𝑥2

2 − 50 (7) 

where x1 presents the Lognormal distributed variable with the mean (μ) of 5 and standard deviation 

(σ) of l, and x2 presents the Gumbel distribution with μ of 10 and σ of 10. The converged β was robustly 

obtained by CFORM after 11 iterations as β = 3.259, while β obtained by MCS with 1.2×106 samples 

was 3.501. Therefore, CFORM was more robust and efficient in solving Equation (7) compared to 

MCS. Figure 2 shows the iterative histories of β obtained from HL-RF, CC, FSL, CHL-RF, and the 

proposed CFORM. It is shown in the figure that HL-RF method yields to 4-periodic solutions as β = 

(2.512, 1.855, 2.386, 1.597). CC and FSL robustly converged to the same β of 3.259, but they are less 

efficient than the DSTM, LFR, CCC, CHL-RF, and CFORM. Unlike the CC, DSTM, and FSL, the 

formulation of HL-RF is iterated without chaos feedback control factor. Therefore, as can be seen in 

Figure 2, the HL-RF provides periodic solutions but the improved versions of steepest descent 

algorithms as CC, DSTM, and FSL are robustly converged. On the other hand, the conjugate search 

direction in CHL-RF, CFORM, CCC, and LFR is provided by conjugate normal vector, which is not 

parallel to previous search directions. Therefore, as can be seen in the figure, stable results are 

obtained by these algorithms. The results also show the proposed method is more robust compared 

to HL-RF and is significantly more efficient than the other reliability methods. Notably, the CFORM 

converged about 5-times quicker compared with the CHL-RF method and twice quicker than CCC, 

DSTM, and LFR. It can also be seen in Figure 2 that the iterations of the conjugate methods of LFR, 

CFORM, and CCC provide same results in the initial iteration, which means that their search 

directions are provided using similar normalized conjugate vector. However, the convergence of 

CFORM is faster than the algorithms of LFR and CCC, which is because of the applied adjusting 

factor of −
0.1𝛻𝑇𝑔(𝑼𝑘)𝛻𝑔(𝑼𝑘−1)

‖𝛻𝑔(𝑼𝑘−1)‖2  in the conjugate scalar factor. This factor increases the efficiency of 

FORM formula in the CFORM. 

 

Figure 2. Iterative histories of HL-RF, FSL, CC, DSTM, CCC, LFR, CFORM, and CHL-RF in solving 

Example 1. 

Example 2: A composite roof truss with compression members made of reinforced concrete, and 

tension bars made of steel illustrated in Figure 3 is considered with the following serviceability limit 

sate function: 

Figure 2. Iterative histories of HL-RF, FSL, CC, DSTM, CCC, LFR, CFORM, and CHL-RF in solving
Example 1.



Polymers 2020, 12, 707 6 of 18

Example 2: A composite roof truss with compression members made of reinforced concrete,
and tension bars made of steel illustrated in Figure 3 is considered with the following serviceability
limit sate function:

g = 0.03−
(

ql2

2

)( 3.81
AcEc

+
1.13
AsEs

)
(8)

where g is the distributed load, and Ac, As, Ec, Es, and l are cross-section area of reinforced concrete,
cross-section area of steel bar, elastic modulus of concrete, elastic modulus of steel bar, and length of
the truss member, respectively. This example included six normal independent random variables with
statistical properties shown in Table 1.
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Table 1. Random variables for roof truss.

Random Variable g l (m) As (m2) Ac (m2) Es (Pa) Ec (Pa)

Mean 20,000 12 9.82 × 10−4 0.04 1 × 1011 2 × 1010

Standard deviation 1400 0.12 5.98 × 10−5 0.0048 6 × 109 1.2 × 109

β obtained by MCS with 1.06×106 samples was 2.350. The iterative histories of β obtained from
different FORM algorithms are illustrated in Figure 4. As shown, HL-RF, DSTM, and CC algorithms
have unstable results, but the CHL-RF, FSL, CCC, LFR, and proposed CFORM converged robustly
to the same β of 2.422 after 88 (5.23 s), 44 (3.36 s), 37 (3.17 s), 38 (3.18 s), and 27 (2.61 s) iterations,
respectively. The nonlinearity map of DSTM, HL-RF, and CC algorithms provides the chaotic search
direction at final iterations due to their formulations while the FSL method with small finite-step length
improves this drawback of the FORM-based HL-RF, CC, and DSTM. It is worth noting that, once again,
the CFORM converged faster than the other converged algorithms while conjugate algorithms of
CCC and LFR are shown the similar efficiency for this problem. The CFORM with nonlinear descript
conjugate map provided stable results like the other conjugate approaches of CCC, LFR, and CHL-RF
for this problem.
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Figure 4. Iterative histories of HL-RF, FSL, CC, DSTM, CCC, LFR, CFORM, and CHL-RF in solving
Example 2.

Example 3: A dam truss structure presented in Figure 5 is considered using the following limit
state function [49]:

g = 0.01− ∆z (9)

where ∆z is the maximum displacement at z-direction. This problem involves 32 random variables
as P1–P7 loads, E as Young’s modulus, and Ai with i=1, 2, 3, . . . , 24 as cross-section of 1–24 bars
components with statistical properties shown in Table 2.
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Table 2. Random variables for dam truss example.

Random Variable A1–A6
(m2)

A7–A12
(m2)

A13–A24
(m2)

E
(GPa)

P1
(kN)

P2–P7
(kN)

Mean 0.013 0.01 0.016 205 20 10
COV 0.1 0.1 0.1 0.12 0.15 0.12

Distribution Normal Normal Normal Normal Gumbel Gumbel

The converged results of β for different FORM algorithms are presented in Figure 6. The obtained
β using MCS is 1.76 after 106 samples with CPU-run time of 26,484 s while the proposed FORM-based
CFORM and FSL algorithms are converged after 21 (49.4 s) and 88 (161.6 s) iterations to β of 1.735 and
1.944, respectively. As shown in Figure 6, the HL-RF, DSTM, and CC show unstable chaotic results
while the conjugate methods using formulation of CCC, LFR, and CHL-RF algorithms provide stable
results for reliability index of 1.657 after 91 (163.4 s), 61 (113.1 s), and 98 (166.8 s), respectively. It can be
conducted that the conjugate scalar factor combined with the previous conjugate vector may improve
the accuracy of the results of this problem in comparison with the other FORM-based conjugate search
direction as CCC, LFR, and CHL-RF while proposed CFORM closely agrees with the results of MCS
compared to the FSL. Therefore, the CFORM is more robust in comparison with the FORM-based
HL-RF, CC, and DSTM and it is significantly more accurate and efficient in comparison with the CCC,
LFR, and CHL-RF.
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The results of the three examples indicate that HL-RF, CC, and DSTM algorithms provide unstable
solutions, whereas the CFORM, CCC, LFR, and FSL robustly converge. The CFORM converges quicker
compared to the other reliability algorithms-based conjugate search direction of LFR, CCC, and CHL-RF.
These observations indicate that the proposed CFORM provided superior results compared to existing
reliability methods in terms of efficiency and robustness; hence it is selected in this study for the
reliability analysis of FRP-confined concrete.

4. Probabilistic Modeling of FRP-Confined Concrete

For reliability analysis of FRP-confined concrete, two major limit state functions can be defined
based on f′cc and εcu of FRP-confined concrete as follows:

g( f ) = κ f ( f ′cc/ f ′co)
Mod
− 1 (10)

g(ε) = κε(εcu/εco)
Mod
− 1.5 (11)
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where f′cc, f′co, εcu, and εco denote ultimate compressive strength, unconfined concrete strength, ultimate
axial strain, and axial strain corresponding to f′co, respectively. (f′cc/f′co)Mod and (εcu/εco)Mod represent
the strength and strain enhancement ratio defined using mathematical models, respectively. κf and
κε are the model error for f′cc and εcu of FRP-confined concrete models, respectively. To express the
uncertainties between the prediction and experimental ultimate condition of FRP-confined concrete, κf
and κε are used as the ratio of the experimental data to the predicted points of strength and strain
enhancement ratio, respectively, as follows:

κ f =
( f ′cc/ f ′co)

exp

( f ′cc/ f ′co)
Mod

(12)

κε =
(εcu/εco)

exp

(εcu/εco)
Mod

(13)

The models proposed by Ozbakkaloglu and Lim [50] (Equations (14) and (15)) are used to
approximate the strength and strain enhancement ratio in the probabilistic modeling.(

f ′cc

f ′co

)Mod

= 1 + 0.0058
Kl
f ′co

+ 3.22
(

flu,a − flo
f ′co

)
(14)

(
εcu

εco
)

Mod
= 2−

f ′co − 20
100

+ 0.271(
Kl
f ′co

)
0.9 ε1.35

h,rup

εco
(15)

where Kl, flo, and flu,a are confinement stiffness of the FRP shell, threshold confining pressure, and actual
confining pressure defined as follows, respectively:

Kl =
2E f t f

D
(16)

flo = Kl

(
0.43 + 0.009

Kl
f ′co

)
εco (17)

flu,a = Klεh,rup = Kl
(
0.9− 2.3 f ′co × 10−3

− 0.75E f × 10−6
)
ε f (18)

where εh,rup is the FRP hoop rupture strain; εf is the ultimate tensile strength, tf is the total thickness,
and Ef is the elastic modulus of fibers used in FRP jackets; and D is the diameter of specimens. εco is
determined using Equation (19) [51].

εco =
f ′ 0.225
co

1000

(152
D

)0.1(2D
H

)0.13
(19)

where H is the specimen height in millimeter.
The statistical indicators, such as mean, coefficients of variation, and probability distribution function

(PDF) are calculated to determine κf and κε. The probability distribution parameters of Frechet, Gumbel,
Weibull, Lognormal, and Normal distribution functions for the model errors are estimated by the maximum
likelihood method and the best distribution function is selected using the chi-squared statistic (see
Reference [38] for details). Figure 7 shows chi-squared statistic of different distributions for model errors
of strength and strain enhancement ratios. As can be seen in the figure, the Gumbel and Lognormal
distributions are the best fitting distribution for strength and strain enhancement ratios, respectively.

The histogram of data, Gumbel distribution function for model error of strength enhancement
ratio and Lognormal distribution function for model error of strain enhancement ratio are illustrated
in Figure 8. As observed, µ of 1.005 and coefficients of variation (COV) of 0.184 were obtained for the
model uncertainty of strength enhancement ratio and µ of 1.195 and COV of 0.247 were obtained for
strain enhancement ratio.
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To investigate the effect of FRP material properties (i.e., Ef and tf) on the probabilistic characteristics
of the model error, six categories are considered for FRP confinement based on the fiber type and Ef,
including three categories for specimens confined by carbon FRP (CFRP), two categories for glass
FRP (GFRP), and one category for aramid FRP (AFRP). A large experimental database containing
769 cylindrical concrete specimens confined by unidirectional fibers in hoop direction was used in
the probabilistic analysis. A total of 607 data points were compiled from References [14] and [50],
with the additional 162 data points from more recently published studies [52–55]. The database
includes NSC (i.e., f′co < 50 MPa) and HSC (i.e., f′co ≥ 50 MPa) specimens confined by i) low (i.e., Ef
≤ 190 GPa), normal (i.e., 190 < Ef ≤ 260 GPa), and high (i.e., Ef > 260 GPa) modulus carbon fibers,
ii) lower (i.e., Ef ≤ 60 GPa) and higher modulus (i.e., Ef > 60 GPa) glass fibers, and iii) aramid fibers
under light (actual confinement ratio (flu,a/f’co) ≤ 0.2), moderate (0.2 < flu,a/f’co ≤ 0.5), and heavy (flu,a/f’co

> 0.5) confinement levels.
The FRP material properties of the specimens in the previously mentioned six database segments

are presented in Table 3.

Table 3. Fiber material properties for different segments of the fiber-reinforced polymer (FRP)-confined
concrete database.

Parameter C1E130-190 C2E197-260 C3E370-640 G1E27-60 G2E60-110 AE90-130

Ef (GPa) 130–190 197–260 370–640 27–60 60–110 90–130
εf (%) 0.67–1.52 1.50–2.65 0.41–1.20 2.00–3.38 2.11–4.30 1.74–3.96

tf (mm) 0.10–3.51 0.20–2.26 0.15–0.85 0.60–3.90 0.15–2.55 0.15–1.20

The Normal, Lognormal, Frechet, Gumbel, and Weibull distributions are used to determine the best
PDF in evaluating the properties of FRP-confined concrete. The parameters of PDF are evaluated by
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the maximum likelihood estimator. The results of statistical analysis for each of the previously defined
specimen categories are illustrated in Table 4. These are used for reliability analysis of database of
FRP-confined concrete columns. As observed, the best probability distributions for κ f and κεare given by
the Normal, Lognormal, Gumbel, and Weibull distributions. In addition, Gumbel, Normal, and Lognormal
distributions provided the best fitness on κεand κ f . The COV values of κ f , κε, and εf varied from 0.103 to
0.175, 0.168 to 0.382, and 0.218 to 0.391, respectively. Conversely, only a small variation was observed in
the COV (i.e., 0.076–0.113 and 0.074–0.125) of other FRP properties (i.e., tf and Ef, respectively). Therefore,
it is suggested that COV of tf and Ef can be taken to be 0.08 and 0.1, respectively. As can be seen in Table 4,
Weibull or Gumbel distribution can be used for tf, whereas Gumbel or Lognormal distribution is better
fitted for Ef which is denoted to results extracted from Reference [39]. It is also assumed that f′co, H, and D
follow the Normal distribution with COV of 0.18, 0.1, and 0.1, respectively [56]. The selection of the
Normal distribution was based on the fact that this distribution is symmetric with respect to its mean and
hence has a same effect on all test results in the database [56,57].

Table 4. Statistics of model error and fiber material properties of different segments of the current
database of FRP-confined concrete.

Categories Data Variable Mean COV PDF

C1E130-190 93

tf (mm) 1.198 0.085 Lognormal
εf (%) 1.01 0.352 Gumbel

Ef (GPa) 154.5 0.125 Lognormal
κε 1.207 0.337 Gumbel
κf 0.929 0.133 Gumbel

C2E197-260 284

tf (mm) 1.124 0.081 Weibull
εf (%) 1.95 0.291 Gumbel

Ef (GPa) 237.5 0.086 Lognormal
κε 1.068 0.382 Lognormal
κf 0.997 0.175 Lognormal

C3E370-640 61

tf (mm) 0.385 0.089 Gumbel
εf (%) 0.77 0.327 Lognormal

Ef (GPa) 418.6 0.095 Frechet
κε 1.095 0.220 Lognormal
κf 1.039 0.103 Weibull

G1E27-60 58

tf (mm) 2.262 0.076 Weibull
εf (%) 2.57 0.377 Lognormal

Ef (GPa) 34.7 0.074 Lognormal
κε 1.098 0.418 Lognormal
κf 1.007 0.165 Gumbel

G2E60-110 82

tf (mm) 0.921 0.113 Gumbel
εf (%) 3.12 0.391 Gumbel

Ef (GPa) 82.2 0.116 Lognormal
κε 1.142 0.362 Lognormal
κf 0.97 0.161 Gumbel

AE90-130 63

tf (mm) 0.751 0.095 Weibull
εf (%) 2.62 0.218 Gumbel

Ef (GPa) 120.1 0.085 Gumbel
κε 1.284 0.167 Lognormal
κf 0.909 0.116 Lognormal

5. Reliability Analysis of FRP-Confined Concrete

The reliability analysis is implemented on the experimental data points of six FRP categories.
Based on the results from the probabilistic modeling, the reliability index is determined using the
proposed CFORM method. Therefore, a probabilistic model is developed based on the reliability
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analysis of f′cc and εcu of FRP-confined concrete and then β is determined according to the probabilistic
model for each FRP category.

5.1. Limit State Function for f′cc and εcu Results in the Database

Various uncertainties in this type of structural reliability analysis are given using the probabilistic
models. Generally, the safety level-based reliability analyses of FRP-confined concrete database can
be estimated based on a mathematical relation, in which the safe domain is separated into failure
domain with respect to various uncertainties using a probabilistic model. The reliability index is
then determined based on the limit state functions presented in Equations (20) and (21) which are
determined by rearranging empirical models in Equations (14) and (15) into Equations (10) and (11) for
evaluation of the safety level of FRP-confined concrete database.

g( f ) = κ f f ′co

[
1 + 0.0058

Kl
f ′co

+ 3.22
(

flu,a − flo
f ′co

)]
− f ′co (20)

g(ε) = κεεco[2−
f ′co − 20

100
+ 0.271

 Kl
f ′co

)0.9
ε1.35

h,rup

εco

− 1.5εco (21)

in which g < 0 and g > 0 denote failure and safe domains for f′cc and εcu, respectively. Based on the
limit state functions, the reliability index of concrete confined by FRP is evaluated by eight random
variables of f′co, D, H, tf, Ef, εf, κf, and κε. The means, COVs, and PDFs for the two variables of κf and
κε are given based on the presented results in Table 4 while the means of the other random variables
are given based on the values of data points.

5.2. Reliability Analysis of the Database

For assessing the safety levels of different segments of the current database of FRP-confined
concrete, β is computed using the CFORM algorithm for different FRP categories based on the limit
state functions given in Equations (20) and (21). Figures 9 and 10 show the relationships between β
and flu,a/f’co for different FRP categories, which are respectively computed using limit state functions of
g( f ) and g(ε). The strength and strain capacity of the specimens are improved for flu,a/f’co of more
than 1, owing to the translation of hoop stress between the concrete core and FRP sheet.

Figure 9. Variation of β with flu,a/f’co for different segments of the FRP-confined concrete test database
using limit state function of strength capacity.
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Figure 10. Variation of β with flu,a/f’co for different segments of the FRP-confined concrete test database
using limit state function of strain capacity.

Four safety levels are defined for the segments of the database based on the reliability analysis
results, namely: low (β < 2.5), moderate (2.5 ≤ β ≤ 3.25), high (3.25 < β ≤ 4.5), and very high (4.5 < β)
levels. Table 5 shows the influence domains of low to very high safety levels for different categories.

Table 5. Confinement ratio and unconfined concrete strength ranges for different safety levels of the
current database of FRP-confined concrete using two ultimate failure modes.

Safety Level
C1E130-190 C2E197-260 C3E370-640 G1E27-60 G2E60-110 AE90-130

flu,a/f’co
f’co

(MPa) flu,a/f’co
f’co

(MPa) flu,a/f’co
f’co

(MPa) flu,a/f’co
f’co

(MPa) flu,a/f’co
f’co

(MPa) flu,a/f’co
f’co

(MPa)

Low β < 2.5 0.03–0.15 35–170 0.07–0.15 50–130 N.A. * N.A. 0.01–0.50 25–110 0.01–0.30 35–110 N.A. N.A.
Moderate 2.5 ≤ β ≤ 3.25 0.16–0.20 30–130 0.16–0.31 35–170 0.14–0.25 30–85 N.A. N.A. 0.31–0.71 30–50 0.14–0.3 40–120

High 3.25 < β ≤ 4.5 0.21–0.5 30–130 0.32–0.70 30–110 0.26–0.75 25–40 N.A. N.A. N.A. N.A. 0.31–0.64 35–110
Very high β > 4.5 0.51–1.28 25–45 0.71–2.13 20–35 N.A. N.A. N.A. N.A. N.A. N.A. 0.30–0.50 25–30

* N.A.: Not applicable, which indicates that it was not possible to assess that segment of the database because of the
lack of availability of test results.

As shown in Table 5, the database containing specimens confined by GFRP, except G2E60-110
group with 30 MPa ≤ f’co ≤ 50 MPa and flu,a/f’co > 0.3, and CFRP with 35 MPa ≤ f’co ≤ 170 MPa and
flu,a/f’co ≤ 0.15 falls under the low safety level. The part of the database containing the specimens
confined by GFRP with 60 GPa ≤ Ef ≤ 110 GPa, f’co ≤ 50 MPa, and 0.31 ≤ flu,a/f’co ≤ 0.71; CFRP with
Ef ≤ 260 GPa, 35 MPa ≤ f’co ≤ 170 MPa, and 0.15 < flu,a/f’co ≤ 0.31, and Ef ≥ 370 GPa, 30 MPa ≤ f’co ≤

85 MPa, and 0.14 < flu,a/f’co ≤ 0.25; and AFRP with 40 MPa ≤ f’co ≤ 120 MPa and 0.14 ≤ flu,a/f’co ≤ 0.3
exhibits a moderate safety level. The section of the database containing the specimens confined by
CFRP with Ef ≤ 260 GPa, 30 MPa ≤ f’co ≤ 110 MPa, and 0.31 < flu,a/f’co ≤ 0.7, and Ef ≥ 370 GPa, f’co ≤

40 MPa, and 0.25 < flu,a/f’co ≤ 0.75; and AFRP with 35 MPa ≤ f’co ≤ 110 MPa and 0.3 < flu,a/f’co ≤ 0.64
exhibits a high safety level, and that containing NSC specimens confined by CFRP with Ef ≤ 260 GPa,
20 MPa ≤ f’co ≤ 35 MPa, and 0.7 < flu,a/f’co ≤ 2.13; and AFRP with f’co ≤ 30 MPa and 0.3 ≤ flu,a/f’co ≤ 0.5
exhibits a very high safety level.

Based on the results presented in Table 5 it is recommended that the segments of the database with
a high and very high safety level can be used confidently in the future for model development and validation
of FRP-confined concrete. However, the parts of the database with a low and moderate safety level
require additional experimental results before they can be reliably used for design and modeling purposes.
The proposed CFORM provided robust and efficient results for evaluating the reliability of the existing
test database of the ultimate condition of FRP-confined concrete (f′cc and εcu). However, the accuracy of
the proposed probabilistic framework is dependent on the accuracy of the predictions of the performance
function. Therefore, it is recommended that the future experimental studies on FRP-confined concrete target
segments of the database with a low and moderate safety level to propose an accurate empirical model
(performance function) for predicting the ultimate condition of FRP-confined concrete columns.
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6. Conclusions

In this paper, a probabilistic model was developed to evaluate the failure probability of f′cc and
εcu of concrete confined by FRP. f′cc and εcu of FRP-confined concrete were determined based on
a FORM with conjugate search direction, which is called CFORM. Three nonlinear reliability problems
were utilized to validate the efficiency and accuracy of the CFORM compared with existing reliability
methods. Reliability analysis results demonstrated that the CFORM is more robust and efficient in
comparison with the existing methods. CFORM was then implemented for evaluating the safety levels
of f′cc and εcu results in the current database of FRP-confined concrete. Four safety levels were defined
for six categories based on f’co and flu,a/f’co. The following conclusions are drawn from the reliability
analysis of FRP-confined concrete:

(1) Lognormal and Gumbel distributions provide the best fitness for κf and κεof FRP-confined concrete.
(2) The segments of the database containing (i) NSC heavily confined (i.e., flu,a/f’co > 0.5) by low and

normal modulus carbon fibers (i.e., Ef ≤ 260 GPa), and (ii) NSC moderately confined (i.e., 0.3 ≤
flu,a/f’co ≤ 0.5) by aramid fibers represent a very high safety level.

(3) The segments of the database containing moderately and heavily confined (i.e., flu,a/f’co > 0.2)
(i) NSC by high modulus carbon fibers (i.e,. Ef > 260 GPa), (ii) HSC by low and normal modulus
carbon fibers (i.e., Ef ≤ 260 GPa), and iii) HSC by aramid fibers exhibit a high safety level.

(4) The segments of the database containing (i) NSC moderately and heavily confined (i.e., flu,a/f’co >

0.3) by higher modulus glass fibers (i.e., Ef > 60 GPa), (ii) HSC lightly confined (i.e., flu,a/f’co ≤ 0.2)
by highly modulus carbon fibers (i.e., Ef > 260 GPa), and (iii) HSC lightly confined (i.e., flu,a/f’co ≤

0.2) by aramid fibers exhibit a moderate safety level.
(5) The segments containing (i) HSC lightly and moderately confined (i.e., flu,a/f’co ≤ 0.5) by glass

fibers, and (ii) HSC lightly confined (i.e., flu,a/f’co ≤ 0.15) by low and normal modulus carbon fibers
(i.e., Ef ≤ 260 GPa) represent a low safety level.

Additional experimental studies targeting the segments of the database with a low and moderate safety
level are recommended to improve these parts of the database, so that it can be used reliably for design and
modeling purposes. It is also suggested to use the proposed CFORM in fuzzy reliability analysis to prevent
any uncertainties in the statistical properties of FRP-confined concrete that may arise from the quality of the
preparation process of the specimen, measurement error, and inherent uncertainties.
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Nomenclature

AFRP Aramid fiber-reinforced polymer
CC Chaos control
CCC Chaotic conjugate control
CFORM Conjugate first-order reliability method
CFRP Carbon fiber-reinforced polymer
CHL-RF Conjugate Hasofer-Lind and Rackwitz-Fiessler method
COV Coefficients of variation
DSTM Directional stability transformation method
FORM First-order reliability method
FR Fletcher and Reeves
FRP Fiber-reinforced polymer
FSL Finite-step length method
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GFRP Glass fiber-reinforced polymer
HL-RF Hasofer-Lind and Rackwitz-Fiessler method
HSC High strength concrete
IHL-RF Improved Hasofer-Lind and Rackwitz-Fiessler method
LFR Limited Fletcher and Reeves
MCS Monte Carlo simulation
MPP Most probable point
NSC Normal strength concrete
PDF Probability distribution function
SORM Second-order reliability method
STM Stability transformation method
a Chaos scalar factor
g Distributed load
l Length of truss
C Involutory matrix
D Diameter of concrete specimen
E Young’s modulus
H Height of concrete specimen
P Concentric load
U Normal standard random variables vector
X Original random variable vector
As Cross sectional areas of steel bars
c1 Adjusted factor
dk Conjugate search direction vector
d(Uk) Point-based conjugate search direction
Ec Elastic modulus of reinforced concrete
Ef Elastic modulus of fibers used in FRP jacket
Es Elastic modulus of steel bars
flo Threshold confining pressure
flu,a Actual confining pressure
fX Joint probability density function
g(X) Limit state function
g(X) ≤ 0 Failure region
Kl Confinement stiffness of the FRP shell
Pf Failure probability
tf Total thickness of fibers used in FRP jacket
f′cc Concrete ultimate compressive strength
f′co Unconfined concrete strength
U* Most probable point (MPP) in U-space
αk+1 Unit normal vector
αC

k+1 Conjugate unit normal vector at design point Uk

β Reliability index
λ Finite-step length
δ Limited conjugate factor
σ Standard deviation
µ Mean
εco Axial strain corresponding to the f′co

εcu Ultimate axial strain
εf Ultimate tensile strength of fibers used in FRP jacket
εh,rup Hoop rupture strain of the FRP
κf Model error for ultimate strength
κε Model error for ultimate strain
Φ Standard normal cumulative distribution function
∆z Maximum displacement at z-direction
∇g(U) Gradient vector of the limit state function at point U
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