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Abstract: This contribution demonstrates the functionality of polymer planar Bragg grating (PPBG)
sensors integrated into commercial-grade carbon fiber reinforced polymer (CFRP) components.
Multiple CFRP specimens are generated by curing a stack of pre-impregnated fibers inside of a
heated mechanical press, exposing the polymer sensor to a pressure of 7 bar and a temperature of
120 ◦C for 2 h. After integration, the sensor still exhibits a strong and evaluable signal. Subsequent
flexural experiments reveal a linear response of the integrated sensor’s Bragg wavelength to the CFRP
specimen’s maximum deflection. Additional findings demonstrate that the embedded PPBG can
be used to detect plastic deformations of a CFRP workpiece, whereas a linear correlation of plastic
deformation to the resulting Bragg signal offset is determined. A plausibility check of the obtained
results is delivered by a comparison of three-point flexural experiments on bulk CFRP workpieces,
without integrated sensors and additional specimens featuring external optical sensors affixed to
their surface. It is found that PPBGs based on cyclic olefin copolymers are able to overcome the
temperature-related limitations of traditional polymer-based optical sensors and can thus be directly
integrated into commercial-grade composites during production.

Keywords: Bragg grating sensors; carbon fiber reinforced polymers; cyclic olefin copolymers

1. Introduction

In recent years, the usage of carbon fiber reinforced polymers (CFRP) for lightweight and
high-performance applications, such as the aerospace industry and civil engineering, has increased
dramatically, since this material class combines excellent mechanical properties with low weight and
density [1,2]. However, their true mechanical behavior cannot be fully represented by classical theories.
For example, under bending, the resulting flexural behavior of a CFRP laminate is influenced by
various additional effects, such as interlaminar shear stresses, which again, are highly dependent on the
employed fiber orientations [3–5]. Additionally, in comparison to classical materials, composites tend
to behave inherently different in excess load situations. While most fatigue phenomena in metals or
polymers can be detected without difficulties, predicting the failure process of CFRPs is a challenging
and elaborate task, since even microscopically small fissures can cause sudden and unpredictable
failure of a CFRP component [6]. Therefore, immense resources have to be invested for the detection
of damage, delamination and material fatigue. While there are several modern and sophisticated
approaches for the structural health monitoring of composites [7,8], most damage inspection methods
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are based on offline testing procedures. Consequently, in order to minimize costs for manufacturers
while simultaneously addressing user safety concerns, alternative technologies enabling the in situ
detection of structural changes in CFRPs need to be developed.

In previous studies, the integration of silica-based fiber Bragg gratings (FBG) was identified as a
promising method for the live evaluation of composites [9,10]. Albeit, their integration into CFRPs has
proven to be challenging due to stress-induced birefringence effects [11]. Furthermore, their inherent
one-dimensionality needs to be overcome by employing complex sensor structures, such as multicore
FBGs, in order to enable absolute quantification of multidimensional deflections [12,13]. Polymer planar
Bragg gratings (PPBG), on the other hand, offer up to three-dimensional detection of deformations,
simply by evaluating multiple photonic structures on a single substrate [14,15]. Additionally, most
polymer substrates offer inherent photosensitivity, whereas silica fibers need to be hydrogen loaded or
germanium doped in order to enable constant refractive index modifica-tions [16,17]. Furthermore,
polymer-based sensors exhibit increased sensitivity towards mechanical deformations due to their
distinctly low Young’s modulus [18]. Missine et al. already demonstrated the integration of epoxy-based
planar Bragg gratings into a fiber-reinforced polymer [19]. However, the employed fabrication process
is conducted under a pressure of only 500 mbar at a temperature of 85 ◦C [20], whereas high-grade
composite laminates are normally fabricated at pressures of several bar and temperatures beyond
100 ◦C for an extended period of time [21]. Consequently, the insufficient glass transition temperature
of most polymers prevents their successful integration into commercial CFRPs, since they cannot
withstand harsh fabrication processes. This challenge can be overcome by employing PPBGs based
on cyclic olefin copolymers (COC) which, due to an outstanding glass transition temperature of up
to 250 ◦C, are able to outlast temperature measurements up to 160 ◦C [22,23]. Additionally, this
thermoplastic is inherently unsusceptible towards relative humidity fluctuation, eliminating this
undesired cross-sensitivity [24,25]. Thus, they represent a particularly promising sensing technology
for CFRP integration. Against this background, this study demonstrates that COC-based PPBGs are
able to withstand a pressure of 7 bar and a temperature of 120 ◦C for a duration of 2 h, during the
fabrication process of a high-grade CFRP component. The functionality of the embedded optical sensor
is discussed by means of various three-point bending experiments. For the first time, it is demonstrated
that the sensor is able to detect and quantify residual plastic deformations induced by excessive loads.
Furthermore, a critical analysis of sensor positioning, as well as the embedding process and its impact
on the CFRP specimen’s mechanical behavior, is given. Finally, the obtained results are compared with
the response of a PPBG affixed to the surface of a reference composite.

2. Materials and Methods

In principal, PPBGs are constituted of a polymer substrate featuring a waveguide and a Bragg
grating, as depicted in Figure 1a.
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grating in a cyclic olefin copolymer substrate (COC-PPBG); positioning of waveguide and Bragg grating
are indicated), butt-coupled to a pigtailed standard single-mode fiber.
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A Bragg grating is a periodic refractive index modulation which acts as a narrowband reflector
for light traversing the waveguide. Its main reflection wavelength, denoted as Bragg wavelength λB, is
given by its effective refractive index neff and its grating period Λ, according to

λB= 2neffΛ. (1)

External forces affect Λ and neff, resulting in a proportional shift of λB, which can be detected and
evaluated by means of an appropriate interrogation device.

Simultaneous generation of waveguide and Bragg grating within the COC (TOPAS6017S-04,
TOPAS Advanced Polymers, Raunheim, Germany) is realized by irradiating the substrate with
ultraviolet radiation generated by a KrF excimer laser (BraggStar Industrial, Coherent Europe B.V.,
Utrecht, Netherlands). All COC-PPBGs used throughout this study are generated by exposing each
substrate to an overall fluence ranging from 100 J·cm−2 to 200 J·cm−2, whereas the single pulses exhibit
a pulse duration of 15 ns and a pulse energy of 68 µJ at a repetition rate of 200 Hz. A detailed discussion
of the employed single-writing-step manufacturing method is given by the authors elsewhere [26–28].
Figure 1b shows the fabricated COC-PPBG before its integration into a CFRP specimen. In order to
evaluate the PPBG, a physical connection to a single-mode fiber (SMF) needs to be established. A
UV-curable adhesive (NOA 61, Norland, Cranbury, USA), specified to resist temperatures up to 125 ◦C,
is used to butt couple the optical fiber to the waveguide. Analysis of the reflected sensor signal is done
by an industrial-grade interrogation unit (HYPERION si155, Micron Optics, Atlanta, GA, USA), which
offers a specified spectral resolution of 1 pm.

Carbon fiber reinforced polymers represent a composite material consisting of at least two
components, carbon fibers embedded in a polymer matrix (mostly epoxy resin). While the matrix
serves as parent material, the fibers are responsible for redistribution and absorption of external
forces. This functional interaction yields components exhibiting outstanding strength-to-weight ratios,
whereas the final mechanical properties of CFRPs depend on the used materials. Additionally, the
amount and direction of the fibers enclosed within the workpiece play a crucial role. This leads
to a distinct anisotropic behavior of single-layer CFRP components, which is usually mitigated by
sandwiching layers with alternating fiber orientations [21]. For the manufacturing of commercial-grade
CFRPs, it is common to make use of pre-impregnated composite fibers known as prepregs, a compound
of semi-cured epoxy with embedded fiber structures. Several prepreg layers are preformed into desired
shapes before they are fully cured at high temperatures under immense pressure, thus chemically
crosslinking the matrix system to generate operational high-grade CFRP components.

3. Sample Preparation and Sensor Integration

Several prepreg layers (P3252S-25, Toray Industries, Tokyo, Japan) are brought to a rectangular
shape and subsequently stacked on top of each other to form multiple CFRP specimens. Thereby, every
single layer, and thus the resulting specimen, exhibits a fiber orientation of ±45◦ with respect to its
symmetry axis. Afterwards, a heated press is used to cure every workpiece, whereas both plates of the
press are actively controlled by a tensile test machine (Autograph AG-X 20kN, Shimadzu, Duisburg,
Germany). By this means, a constant pressure of 7 bar is applied to the specimen over a time period of
2 h, at a curing temperature of 120 ◦C, according and in compliance to an industrial manufacturing
process of CFRP workpieces for bicycle components. Altogether, four types of specimens are prepared
for subsequent three-point flexural tests. An overview of their composition, dimensions and flexural
properties obtained throughout this study is given in Table 1. The flexural modulus E3P specified
therein is estimated by employing three-point flexural test data generated throughout the experiments,
discussed in this contribution according to

E3P =
L3K

4bh3 (2)
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where L is the distance in-between both support spans, while b and h are width and thickness of the
test sample.

Table 1. Data of cured carbon fiber reinforced polymer (CFRP) specimens.

Specimen A B C D

overall layers 9 11
modified middle layers / / 7 7

COC-PPBG / surface integrated integrated
length/mm 106.8 106.2 100.0 100.0
width/mm 23.5 24.4 22.8 24.1

thickness/mm 1.35 1.41 1.40 1.71
stiffness/N·mm−1 17.7 21.6 19.4 27.1

flexural modulus/GPa 16.5 17.1 16.7 12.1

The bending stiffness K is represented by the slope of the force-deflection curve, determined by
performing multiple three-point flexural tests with different stroke values [29]. Two of the cured CFRP
samples and the signal peaks of the respective COC-PPBGs are exemplarily depicted in Figure 2.
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Figure 2. (a) Cured CFRP specimen with affixed COC-PPBG and (b) sensor signal; (c) Cured CFRP
specimen with an integrated COC-PPBG; (d) Respective sensor signal before and after curing.

Figure 2a shows a specimen with an optical sensor subsequently affixed to its surface, after the
workpiece is fully cured and cooled down to room temperature. The corresponding PPBG, fabricated
with an overall fluence of 200 J·cm−2, exhibits a Bragg wavelength of 1551.63 nm and a spectral full
width at half maximum (FWHM) of 298 pm, as demonstrated in Figure 2b. The specimen shown in
Figure 2c features an embedded optical polymer sensor, fabricated with an overall fluence of 100 J·cm−2.
Please note that in order to enable the integration of a PPBG, the central CFRP layers need to be
modified by cutting out and removing a section of the respective prepregs, thus generating a cuboidal
pocket according to the sensor’s dimensions (20 × 10 × 1 mm3). Figure 2d elucidates that after curing,
the integrated sensor exhibits a reduction in signal amplitude of −2 dB and a wavelength shift of
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−1.236 nm. Whereas the decline in reflection signal can be attributed to changes of the light-guiding
properties due to the waveguide-epoxy interaction, the resulting wavelength shift is caused by constant
strain induced by the surrounding CFRP material. However, even after being exposed to the harsh and
demanding curing process parameters, the polymer sensor evidently delivers a strong and evaluable
signal at a Bragg wavelength of 1552 nm with a spectral FWHM of 141 pm.

4. Results and Discussion

4.1. Specimen A: Flexural Behaviour of Bulk CFRP Specimen

Prior to evaluating the affixed or embedded PPBGs, the flexural properties and behavior of a bulk
CFRP specimen are examined by performing multiple three-point flexural testing cycles. Since it does
not feature an optical sensor, neither on its surface nor embedded within the CFRP component, the
obtained values represent the intrinsic workpiece properties which can thus be used for referencing
purposes. Throughout every cycle, the maximum deflection at the center of the sample, also denoted
as stroke, is actively controlled by a tensile test machine (EZ-L, Shimadzu, Duisburg, Germany), which
simultaneously records the applied loads. In all experiments within this study, the workpiece is bent
with a deflection speed of 8 mm·min−1 until a predefined value is reached. Subsequently the specimen
is kept under maximum stroke for a duration of 20 s before the load is removed at a similar speed,
until the sample relaxes completely. As shown in Figure 3, Specimen A is bent to maximum deflections
of 6 mm throughout three cycles. Afterwards, it is bent to a maximum stroke of 12 mm in order to
purposely compromise its flexural properties by means of excess deformation. A final three-point
flexural cycle is used to quantify the resulting reduction of the workpiece’s flexural stiffness.
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maximum strokes of 6 mm and 12 mm, respectively.

Throughout cycles 1, 2 and 3, the specimen exhibits a linear force-deflection curve, yielding a
stiffness of 17.7 N·mm−1 and a flexural modulus of 16.5 GPa. However, as indicated by the inset
in Figure 3, even while its flexural properties and thus its structural integrity remains unaltered, a
noticeable plastic deformation is observed after the first flexural testing cycle. Increasing the load to
achieve strokes larger than 6 mm reveals a non-linear relation between force and maximum deflection.
As demonstrated by cycle 5, the excessive deformation within cycle 4 leads to a noticeable stiffness
reduction of 9% to 16.1 N·mm−1. However, no macroscopic evidence of material failure is detected.
The observed behavior of the specimen correlates well to the matrix-dominated failure mechanisms
examined in previous studies. Therein, it is shown that failure progression in composite laminates
under bending can be described as follows: For small curvatures within the elastic region, deflecting
the laminate will yield a linear force-stroke response indicating the CFRP experiences no or negligible
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structural damage. Increasing the maximum displacement, however, will lead to the formation of
matrix micro cracks, which in turn cause a non-linear relation of force and resulting stroke. These micro
cracks will then combine to meso cracks, which ultimately induce delamination within the composite,
causing a reduction in bending stiffness. Finally, complete failure of the CFRP workpiece occurs due to
macro cracks, fiber failure or global loss of stability [30–32]. Consequently, within the linear regime
up to maximum deflections of 6 mm, the resulting plastic deformation of the specimen cannot be
attributed to delamination, but interlayer shear slip effects caused by interlaminar shear forces [33].

4.2. Specimen B: Polymer Optical Sensor Affixed to Workpiece Surface

Mounting a polymer planar Bragg grating sensor on the outer surface of a CFRP specimen is
the most straightforward approach to monitor workpiece deformations during a three-point flexural
test. Whereas, from a practical point of view, with this method the sensor lacks protection from
environmental mechanical influences, it ensures that the PPBG solely detects resulting deformations
of the sample, while the latter is subjected to bending procedures. A physical connection between
workpiece and COC-PPBG is established by employing a UV-curable adhesive (NOA 76, Norland,
Cranbury, USA). Thereby, the buried waveguide is located underneath the substrate surface which
is not in direct contact with the adhesive. Figure 4a depicts Specimen B positioned in the employed
three-point flexural setup. Please note that the sensor substrate is located in a distance d of 34 mm to
the indenter which induces loads to the central region of the specimen. Consequently, it has sufficient
distance to the support span to prevent the unwanted detection of local stress fields.
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Figure 4. (a) CFRP specimen with COC-PPBG affixed to its upper surface in the experimental
setup; (b) Time trace of workpiece deflection and sensor response during a three-point flexural
cycle; (c) Maximum Bragg wavelength shift and the respective force as a function of increasing
maximum strokes.

Figure 4b shows a time trace of a bending cycle with a maximum central workpiece deflection
of 3 mm. It demonstrates that bending the workpiece leads to a spectral blue shift of the sensor
signal, which can be correlated to local workpiece deformations, although the COC-PPBG is positioned
outside the support spans of the experimental setup. The Bragg wavelength drift behavior while the
sample is under maximum stroke, as well as the non-linear increase of the maximum Bragg wavelength
shift depicted in Figure 4c, indicate a non-ideal mechanical coupling of CFRP and optical sensor by the
adhesive film [34]. Evaluation of the resulting force-strain curve obtained by the flexural experiments
yields a stiffness of 21.6 N·mm−1 and a flexural modulus of 17.1 GPa. Since, in comparison with
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Specimen A, there is negligible deviation of the flexural modulus, the affixed sensor does not impact
the flexural properties of the CFRP workpiece.

As already addressed in Section 4.1, the specimen exhibits constant deformation after flexural
cycles with maximum strokes larger than 2 mm. As shown in Figure 5a, the stroke offset at the center
of the CFRP workpiece is quantified by evaluating the remaining stroke value given by the tensile
testing machine, while the external load on the specimen is already zero at the end of a cycle.
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It is found that the residual stroke offset increases with the maximum deflection value during a
bending cycle. Simultaneously, the remaining Bragg wavelength shift or offset at the end of a cycle (see
Figure 4b) increases as well. Correlation of both offsets reveals a linear dependency, as demonstrated in
Figure 5b. Therefore, the Bragg wavelength offset can be used as a measure for the plastic deformation
of the CFRP specimen, whereas a deformation of 0.49 mm at the center of the workpiece results in a
Bragg wavelength offset of −103 pm.

4.3. Specimen C: Functionality of Integrated Polymer Optical Sensor

The functionality of the integrated COC-PPBG is evaluated by using the same three-point flexural
test configuration. Figure 6a elucidates the employed setup and the sensor position within the
CFRP sample.

In contrast to the surface polymer sensor, the integrated PPBG shows a linear response when
correlating the maximum Bragg wavelength shift to the maximum deflection induced to the workpiece,
as depicted in Figure 6c. According to linear regression, the sensor response is −112 pm·mm−1.
However, the overall wavelength shift is reduced, which can partly be explained by the position
of the sensor since the actual sensitive element, the Bragg grating structure, is located closer to the
center of the workpiece. On the other hand, it is worthwhile to note that modifying the middle
section of the specimen in order to form a sensor pocket possibly has a negative impact on the sensor
response. Despite this, simultaneous evaluation of the force necessary to deflect the sample yields a
bending stiffness of 19.8 N·mm−1, which results in a flexural modulus of 16.7 GPa. Since this value is
comparable to the flexural moduli of specimens A and B, it can be stated that integrating the sensor
has negligible impact on the specimen’s flexural properties in the outline of the conducted experiment.
Since the sensor is embedded within the workpiece, there is no drift behavior while the workpiece is
held at maximum deflection, as demonstrated in Figure 6b. Therein, it is also demonstrated that up to
maximum workpiece deflections of 2 mm, the Bragg wavelength returns to its initial value at the end
of a cycle.
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However, as observed during the evaluation of the surface PPBG in Section 4.2, for maximum
strokes larger than 2 mm, the Bragg wavelength no longer returns to its initial value at the end of a
cycle. A time trace of a bending cycle with a maximum stroke of 3 mm is shown in Figure 7a.
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revealing a wavelength offset at the end of the cycle; (b) Bragg signal offset due to plastic deformation
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Again, Bragg wavelength and stroke offset increase linearly with the maximum load applied
to the workpiece during a flexural testing cycle. Correlating both offsets with each other, as shown
in Figure 7b, underlines their relation, since linear regression via MATLAB results in an R2 value of
0.9969. Conclusively, it is feasible to use the integrated COC-PPBG to evaluate the CFRP specimen’s
plastic deformation or wear. Subsequent to a maximum deflection of 6 mm, the residual stroke offset is
0.64 mm, while the residual Bragg wavelength offset is −113 pm, respectively.



Polymers 2020, 12, 715 9 of 12

4.4. Specimen D: Influence of Workpiece Orientation and Sensor Positioning

A fourth type of specimen, equipped with an integrated optical sensor, is fabricated according to
Section 3. In order to vary its mechanical properties, this workpiece features an additional unmodified
top and bottom prepreg layer (see Table 1). However, the employed three-point flexural testing setup
remains unaltered to guarantee comparable test conditions. In order to assess the integrated sensor’s
performance as a function of its distance to the point of maximum workpiece deflection, where external
load is induced to the sample by the indenter of the tensile testing machine, the CFRP specimen is
laterally repositioned within the setup multiple times. At every position, the sample is bent to a
maximum stroke of 0.5 mm. Figure 8a depicts the maximum of the absolute Bragg wavelength shift
and the applied force at several sensor-to-indenter distances d, within a range of 10 mm (see Figure 6a).
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A minimum distance d of 29 mm is chosen to ensure that the PPBG reacts solely to deformations
caused by the bending process. While the force necessary to bend the sample remains constant
over the examined range, the resulting sensor response changes drastically, with varying test sample
positioning. Since the embedded polymer sensor evaluates only local deformations, it delivers an
increased response, while it is positioned closer to the region of maximum deflection. With increasing
distance, the impact on the Bragg grating is reduced which translates to a reduced wavelength shift.
Conclusively, the positioning of an optical sensor plays a crucial role if its signal is supposed to be
correlated with the maximum deflection of the workpiece.

Since as of yet, the vertical position of the Bragg grating structure is located above the central
region of the specimen in all experiments, the sensor performance in reverse orientation shall be
examined by flipping over the sample. This entails that the sensitive grating structure is now located
underneath the middle prepreg layer close to the bottom side. As indicated by Figure 8b, bending the
CFRP workpiece leads to a spectral blue shift of the Bragg wavelength, with a response of−56 pm·mm−1

if the Bragg grating is located at the top side of the sample. However, if the grating is located near
the bottom side, a spectral red shift with a gradient of 48 pm·mm−1 is observed. This coincides with
the fact that, while top layers are laterally compressed, bottom layers of a bent CFRP specimen are
elongated. Thus, depending on its position within the sample, the grating period of the PPBG changes
accordingly under the influence of external loads. Minor orientation-dependent deviations in sensor
response can be explained by positioning uncertainties, since residual local deformations detected by
the sensor also strongly depend on its absolute vertical position within the workpiece. However, the
findings demonstrate that a single integrated COC-PPBG enables absolute quantification of deflections
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in both directions. Additionally, Figure 8b underlines that the observation of central strokes as small as
0.1 mm is possible, even with a sensor-to-indenter distance of several centimeters and with the PPBG
being positioned outside the support spans of the three-point flexural setup.

5. Conclusions

In conclusion, this study demonstrates that COC-based PPBGs can successfully be integrated
into commercial-grade CFRP components. Despite a reduction in signal amplitude after curing of
the specimen at a pressure of 7 bar and a temperature of 120 ◦C for 2 h, the sensor still exhibits a
strong and evaluable reflection signal with a Bragg wavelength of 1552 nm and spectral FWHM of
0.14 nm. According to the authors’ best knowledge, this is the first assessment of a polymer-based
optical sensor integrated into a composite structure under environmental influences this harsh. The
general functionality of the embedded COC-PPBGs is proven by conducting multiple three-point
flexural experiments. First, the flexural properties of a bulk CFRP specimen without an optical sensor
is examined in order to exclude possible influences of delamination effects. Subsequently, several
flexural tests are conducted on a CFRP sample with a PPBG affixed to its surface and a specimen
featuring an integrated optical sensor. In both cases, even with the sensor being positioned outside the
support spans of the three-point flexural setup, a direct correlation of workpiece deflection and the
resulting Bragg wavelength shift is found, whereas the embedded sensor exhibits a linear response
of −112 pm·mm−1. Additionally, the sensor is able to detect residual plastic deformations attributed
to interlayer shear slip effects, whereas a Bragg wavelength offset of −113 pm is caused by a central
deformation of 0.64 mm after exposing the workpiece to a maximum stroke of 6 mm. Linear regression
of increasing stroke and residual Bragg wavelength offsets yields an R2 value of 0.9969, underlining
their unambiguous relationship. The observed wavelength offset after each bending cycle can thus be
used as a measure for the composite’s wear due to excessive loads. Therefore, employing cyclic olefin
copolymers as substrate material for PPBGs provides access to an entirely new application area for
polymer-based optical sensors.
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