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Abstract: Antiplasticization of glassy polymers, arising from the addition of small amounts of
plasticizer, was examined to highlight the developments that have taken place over the last few
decades, aiming to fill gaps of knowledge in the large number of disjointed publications. The
analysis includes the role of polymer/plasticizer molecular interactions and the conditions leading
to the cross-over from antiplasticization to plasticization. This was based on molecular dynamics
considerations of thermal transitions and related relaxation spectra, alongside the deviation of free
volumes from the additivity rule. Useful insights were gained from an analysis of data on molecular
glasses, including the implications of the glass fragility concept. The effects of molecular packing
resulting from antiplasticization are also discussed in the context of physical ageing. These include
considerations on the effects on mechanical properties and diffusion-controlled behaviour. Some
peculiar features of antiplasticization regarding changes in Tg were probed and the effects of water
were examined, both as a single component and in combination with other plasticizers to illustrate
the role of intermolecular forces. The analysis has also brought to light the shortcomings of existing
theories for disregarding the dual cross-over from antiplasticization to plasticization with respect
to modulus variation with temperature and for not addressing failure related properties, such as
yielding, crazing and fracture toughness.

Keywords: antiplasticization; carbohydrate; glassy polymers; membrane; pharmaceutical; physical
ageing; plasticizer

1. Introduction and Historical Background

Plasticizers have played an important role in the utilization of polymers from their first appearance
on the industrial scene to present days. Samples of artefacts at the Great London Exhibition in 1863
obtained from cellulose nitrate, under the trade name of Parkesine (later acquiring the household
name of Celluloid), contained about 25–30 wt.% of camphor as an auxiliary component to make the
material more easily deformed for the processing purpose [1]. The first attempt to understand the
phenomenon, which became known as “plasticization”, was made in 1922 by J.B. Nichols at Cornell
University (USA) [2].

A breakthrough for the use of plasticizers in polymers came with the advent of polyvinyl chloride
(PVC), which made it possible to produce the very first thermoplastic elastomer [3,4]. Not only has
this raised a general awareness of the potential of plasticizers as modifiers of mechanical properties of
polymers but have also revealed anomalous effects at a low level of addition, consisting of an increase
in tensile strength and a corresponding reduction in elongation at break (embrittlement), which later
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became known as "antiplasticization” to denote a change in mechanical properties occurring in the
opposite direction expected from plasticization [4]. In a subsequent article Robeson and Faucher have
found the same effect for the addition of Arochlor 5442 to polycarbonate and to polysulfone, and
have observed a concomitant a depression of the β relaxations in the dynamic mechanical spectra of
the formulations exhibiting the antiplasticization feature identified in previous work on PVC [5]. A
significant insight into structural aspects of antiplasticization was the discovery that small amounts
of water (a small molecule) attenuates the β relaxations of polyamide 6 (PA6) [6], which was later
confirmed in a report by Dlubek et al. [7] and verified to take place concomitantly with an increase in
density. However, large molecules consisting of hydroxy aromatic compounds were also found to
induce antiplasticization in PA6 [8].

Later researchers have compared the effect of plasticizers at low concentrations with the similar
effect brought about by physical ageing [9–11] in relation to changes in viscoelastic behaviour and
increase in yield strength as function of temperature and strain rate [12–14]. These studies were
continued to include crazing behaviour and fracture toughness [15].

Work on PVC was later extended to fundamental considerations, such as free volume [16], and to
effects on gas diffusion [17] and to the possible role of crystallinity [18,19].

A practical benefit derived from the modulus increase brought about by antiplasticization is
illustrated in the work by Delcambre et al. [20], which showed that the incorporation of small quantities
of TCPP (tris 2-chloro ethyl phosphate) to polymethyl methacrylate, cast into thin films from dilute
solutions in methyl ethyl ketone, increases the modulus from 3 to 5 GPa at only 5 w% addition.
This resulted in a large increase in the collapse resistance of the walls of field lines produced via
electrobeaming lithography.

In relation to applications for advanced technologies, Cais et al. [21] have studied the
antiplasticization effects of three diphenylhydrazone derivatives on the abrasion resistance of
polycarbonates as an organic photoconductor for copy printing applications. In addition to the
usual increase in modulus and strength they have obtained an increase in cyclic abrasion resistance,
noting also a depression of relaxations at temperatures below the glass transition.

Other examples of the benefits of antiplasticization can be derived from a review article by
Ubbink [22]. The author states that at low concentrations water is observed to be a “potent”
antiplasticizer in foods leading to higher mechanical rigidity (modulus) for a wide range of dehydrated
systems, such as coffee beans, dehydrated apple and beef, starch matrices, including cereal-based foods,
such as cornflakes and biscuits, starch hydrolysates’ and gelatin [23,24]. Farhan and Hani [25] have
found that semirefined kappa-carrageenan (SRC) based edible films plasticized with either glycerol or
sorbitol exhibited higher tensile strength than the corresponding unplasticized sample. Similar results
were obtained by Moraru et al. [26] for mixtures of starch and polyols and also by Aguirre et al. [27].
The latter authors have also highlighted the effect of atmospheric humidity, which varied according to
the type of polyol used.

Researchers have also been attracted by the inherent increase in density brought about by
antiplasticization as a possible route for the enhancement of barrier properties for packaging products
and protective coatings [28–32].

Studies on mixtures of starch and urea by Wang et al. [33] have revealed the existence of two
critical concentrations, one in correspondence with a change from antiplasticization to plasticization at
concentrations around 10% and another from plasticization to phase separation at around 30 w% urea.

In more recent years antiplasticization has attracted considerable attention for theoretical studies
by molecular dynamics simulations, using the concept of fragility to model the cross-over from
antiplasticization to plasticization [34].

In the present report we examine widely the phenomenological aspects of antiplasticization for
their effect on mechanical properties and barrier characteristics for films and coatings applications,
bringing out also the role of physical ageing. The deviation of free volumes from the additivity rule is
examined and a model is presented for the change in morphology associated with the cross-over from
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antiplasticization to plasticization via the formation of plasticizer clusters, alongside the implications
of data derived from studies on organic molecular glasses. Attention is given also to peculiarities and
inconsistencies in the interpretation of phenomenological data.

A previous review on antiplasticization [22] addresses primarily molecular glasses on a
fundamental basis and mostly in relation to structural aspects. There is, therefore, a definite need to
bring together the many disjointed publications into a unifying synthesis of underlying principles.
To this end we have limited the theoretical treatment to suit readers who are either not familiar
with this topic or may have the expertise only in some areas. The latter would benefit from having
access to the entire antiplasticization field concerned with polymers as materials for structural and
functional applications.

The schematic outline (Scheme 1) of the aspects covered by this review is shown below:
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Scheme 1. Schematic outline.

The schematic outline Scheme 1 indicates that the importance of antiplasticization phenomena
in polymer materials arises from the need to match properties to applications. This requires
an understanding of structure/properties relationships, which is aided by considerations of
polymer/plasticizer molecular interactions. These can be assessed by measuring specific volumes and
through an evaluation of molecular relaxations probed by mechanical and dielectric spectroscopy.

The side frames show that there are peculiarities as well as anomalies reported in the literature
concerned with antiplasticization phenomena. These cover aspects that do not fall in line with the
established principles and are primarily attributed to uncertainties on the interpretation of behaviour
that is contrary to what is expected from plasticization.

2. Structural Features and Physical Principles of Antiplasticization

2.1. Molecular and Morphological Considerations

2.1.1. Solubility Parameters as a Criterion for Plasticizer Miscibility

Plasticizers exhibit a different level of miscibility with the host polymer and have, accordingly,
been classified as “primary plasticizers” when are miscible at all concentrations and “secondary
plasticizers” if they are only partially miscible [35,36].

The likely miscibility of a polymer/plasticizer combination is judged on the match of Hansen
solubility parameters (δ), which consist of three components representing the different type of molecular
attraction forces. This approach has its origins in the free energy of the mixing relationship with the
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“total” solubility parameter, which is defined as the square root of the cohesive energy density (the
energy that holds molecules together within a given system).

The data in Table 1 show that the dispersive and dipolar components for tri-cresyl phosphate
(TCP) are much closer than for bis-2-ethylhexyl phthalate (DOP) to the values for the monomeric units
of the PVC chain. At the same time, the values for δ H-bonding indicate that direct H-bonding attractions
with the Cl–C–H groups are not making a large contribution to the miscibility of plasticizers in PVC.
For comparison in Table 1 are included also the Hansen solubility parameters for the interactions
between polyamides and several plasticizers derived by Serpe and Chaupart [8], Younker et al. [37]
and He et al. [38]. The data for the latter system bring out the significant contribution from all the
components of the solubility parameters, even though the miscibility for polyamides is determined
primarily by the H-bonding interactions (major contributor) and secondarily by dipolar forces (minor
contributor). The work of He et al. [38] has shown that the relative plasticization efficiency of three
substantially different plasticizers for a newly synthesized amorphous polyamide decreased in the
order water > glycerol > soybean oil.

Table 1. Hansen solubility parameters values for different components of plasticizer polymer mixtures
[8,37,38].

Material
δ Values (MJ·m−3)1/2

Dispersive Dipolar H-Bonding

PVC (Poly vinyl chloride) 18.4 11.1 1.9
TCP (Tri-cresyl phosphate) 19.0 12.3 4.5

DOP (Bis-2-ethylhexyl phthalate) 16.6 8.0 3.1
PA 11 (Polyundecanoiamide) 18.1 5.1 11.2

BBSA (N-Butylbenzene sulphonamide) 18.9 7.9 8.8
GLY (Glycerol) 17.3 12.1 29.3

SBO (Soybean oil) 17.1 2.5 2.8

A molecular dynamics simulation for the three systems has shown that whereas for the case of water
and glycerol two types of H-bonding interactions are possible, respectively Polymer–NH····O–Plasticizer
and Polymer–C=O····H–Plasticizer, only one type would operate for the interaction with soybean oil
(SBO), namely Polymer–NH····O–Plasticizer. The stress/strain traces recorded from tensile strength
measurements at room temperature, however, did not reveal any obvious features that could be
associated with antiplasticization even at the shortest immersion time (2 days), which produced
approximately 11.5 wt.% increase for water, 4.0 wt.% for glycerol and 2.3 wt.% for SBO. A large decrease
in yield stress was found for all systems (>80% for water, 50% for glycerol and SBO), even at the lowest
level of plasticizer absorption. These results indicate that in all cases the recorded plasticizer absorption
is above the threshold concentration for the cross-over from antiplasticization to plasticization with
respect to mechanical properties measured at ambient temperature (discussed later).

2.1.2. Polymer/Plasticizer Interactions by Fourier Transform Infrared Spectroscopy (FTIR)

Paris and Coupry [39] have identified the occurrence of strong H-bonds in cellulose nitrate
plasticized with camphor. The C=O stretching mode at 1741 cm−1 in the camphor spectrum appeared
at 1730 cm−1 in mixtures with cellulose nitrate. On the other hand, Benazzouz et al. [40] found that
the shift in C=O absorption peak in cellulose acetate (CA) from 1736 to 1751 cm−1, resulting from the
addition of dimethyl phthalate (DMP) plasticizer, is not attributable to H-bonding between the C=O
groups in DMP and the residual OH groups in CA.

In an Fourier transform infrared spectroscopy (FTIR) examination of the H-bond interactions
between different types of sulphonamide plasticisers in several polyamides 12, De Groote et al. [41]
were able to determine the relative fraction of NH groups in the polyamides involved in the interaction
with the sulphonyl groups of the plasticizer by monitoring the upward shift of the absorption peak at
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3322 cm−1, as well as the breadth and details of the absorption band through a decomposition of the
constituent peaks.

The complexity of H-bonding interactions in plasticised polymers is revealed in the work by
Wang et al. [33] on mixtures of starch and urea, where it is shown that several groups can participate in
H-bond formation. These authors noted that the absorption peak at 989.5 cm−1 for the C O H bending
vibration in the starch molecules was shifted to 991.4 cm−1 in the presence of urea, while the absorption
peak at 927.8 cm−1 attributed to the skeleton mode vibrations of the C O C, changed to 929.7 cm−1 at
5% urea and increased to reach a plateau value of 933.5 cm−1 at concentrations greater than 15 wt.%
urea, which corresponds to the solubility limit for the system.

Musto et al. [42] have used the concept of dual nature of water in a post-cured tetrafunctional
epoxy resin using FTIR in the mid-infrared (4000–400 cm−1) and in a near-infrared (8000–4000 cm−1).
In this study the spectrum of the absorbed water molecules was isolated in both frequency ranges and
assignments of the various components of the spectrum were made. From these it was possible to
confirm that the absorbed water was present both as a mobile variety residing within “microvoids”
(free water) and as molecular associations with the polymeric network through hydrogen bonding
interactions (bound water).

2.1.3. Plasticizer Clustering

Since the solubility of the plasticizer relies on interactions with constituent groups along the
polymer chains, at low concentrations the plasticizer molecules can be envisaged as being “bound”
to the polymer chains and restrict the rotations of short segments (β relaxations), giving rise to
an antiplasticization behaviour. At higher concentrations not all the plasticizer content can be
accommodated as “bound” molecules along the polymer chains and, therefore, the excess plasticizer
will start to segregate into small “clusters” of molecules in a dynamic state of association/dissociation
with the polymer chains, giving rise to the initial stage of the cross-over to a plasticization behaviour. It
should be noted that the presence of segregated plasticizer “microclusters” has also been identified by
Bergquist et al. [43] for mixtures of polycarbonate and tris(2-ethyl hexyl) phosphate. The dimensions
were estimated to be in the region of 1.2 nm, consisting of two adjacent plasticizer molecules. It is
envisaged that the dispersed clusters will grow in number with increasing plasticizer concentration
until they become interconnected and reach the “full plasticization”. This mechanism for the
conversion to plasticization is thermodynamically more favourable than clusters coalescing into
larger domains owing to the higher “strength” of polymer–plasticizer interactions over cohesive
plasticizer–plasticizer attractions.

2.2. Free Volumes in Relation to Plasticization and Antiplasticization

2.2.1. The Additivity Rule, Free Volume and “Holes”

The physical state of a glass subsumes that the specific volume has two components, respectively
a volume “occupied” by the atomic constituents of molecular chain and a “free” volume between
polymer chains. The concept of fractional free volume (FFV) has often been used as a quantitative
parameter for the state of molecular packing of glasses (i.e., FFV = Vfree/Vtotal). The change in free
volumes for a non-miscible mixture of the polymer (1) and plasticizer (2) can be estimated using
the additivity rule, so that the specific volume, ψsp, (reciprocal of density) can be calculated from
the equation:

ψsp/12 =ω1·ψsp/1 +ω2 ψsp/2 (1)

whereω1 andω2 are the respective weight fractions for the polymer and plasticizer.
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This equation can be extended to include the temperature dependence of individual specific
volume of the specific components [44]. For temperatures within the glassy state of the mixture the
modified expression becomes:

ψsp/12 (T) = ω1·ψsp/1(T) +ω2 ψsp/2(T) +ω1 (
d(ψsp/1L)

d T
−

d(ψsp/1G)

d T
) (Tg12 − T) (2)

where Tg12 is the glass transition temperature of the mixtures and the subscripts L and G stand for the
liquid (rubbery) state and glassy state. An alternative way to express the temperature effect has been
used by Zhang et al. [45] in terms of the volumetric relaxation rate.

Using the locally correlated lattice (LCL) model Roland et al. [46] have calculated the total free
volume and derived a predictive relationship with the glass transition temperature. Accordingly, the
authors have demonstrated that a melt transform into a glass by cooling upon reaching a “boundary”
value for the minimum total free volume, which decreases approximately linearly with changes in
temperature. The results obtained by the LCL model are consistent with the theory that the difference
in entropy between the melt state and the ensuing solid state vanishes as the glass transition is
approached [34].

Antiplasticization is manifested at low plasticizer concentrations as a minimum with respect
to the variation of a specific volume, which has been associated with a negative deviation from the
additivity rule (Equation (1). This results from a combination of two related events: reduction in free
spaces between polymer chains [47] and enhanced intermolecular attractions with the polymer chains.

Studies carried out by positron annihilation spectroscopy (PALS) have estimated the radius of the
so-called “holes” (related to the free volume) in glassy polymers to be in the region of 0.26–0.27 nm,
while the volume is estimated to be in the region of 5.0–8.0 nm3 [7,41,48,49]. To place these dimensions
in perspective the radius of the “hole” is approximately equal to the radius of the sphere occluding the
structure of urea [50] and twice that of a water molecule. It is also worth noting that Caldwell and
Jackson in their pioneering work in 1967 [51] had already deduced that the molecular dimensions
of antiplasticizers for polycarbonate should be less than 0.55 nm in at least 65% of the length of the
molecule, which corresponds approximately to the size of a PALS “hole”.

In studies carried out on mixtures of different grades of polystyrene with mineral oil
Anderson et al. [52] have deduced that antiplasticization occurs when the average diameter of
the mineral oil domains is less than the average size of the free volume voids. The hole size for the
polymer was estimated to be 0.57 nm, while the size of the mineral oil domains at the maximum
concentration (6 wt.%) for antiplasticization was reckoned to be in the region of 0.2 nm.

2.2.2. Deviations from the Additivity Rule

In early studies on antiplasticization the deviation from the additivity rule was quantified thorough
the incorporation of an interaction parameter (k) in Equation (1), which becomes [53,54]:

ψsp/12 =ω1 ψsp/1 +ω2 ψsp/2 + k ω1 ω2 (3)

where k is obtainable from the experimental data.
Increasing the plasticizer concentration above the minimum in the relationship with the specific

volume results in a further increase and then reaches a certain “threshold” value, ω1(T), when the
specific volume of the mixture becomes equal to that of the pristine polymer. The specific volume will
subsequently rise further into a highly plasticized state of the polymer mixture.
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A useful approach to the deviation of plasticized systems from the additivity rule arising from
molecular packing of the polymer/plasticizer mixture [47] is to consider the decrement of free volume
∆(FV), which can be estimated using the following equation:

% ∆(FV) = −(
ψsp(∗) −ψsp(ω)

ψsp(∗)
) × 100 (4)

where ψsp(ω) is the measured specific volume of the polymer/plasticizer mixture at concentrationω,
and ψsp(∗) is the theoretical specific volume of the mixture at the same plasticizer concentration.

We have calculated the values of % ∆(FV) for the data presented in Figure 3 (discussed later) using
estimates for ψsp(∗), obtained according to Equation (1). The obtained values, together with various
related parameters, are shown in Table 2.

Table 2. Parameters derived for the data presented in Figure 3 (discussed later) in relation to starch/water
mixtures. (measurements performed at 25 ◦C; data from ref [47]).

Water Content (w%) ψsp(ω) (cm3/g) ψ*sp (cm3/g) ∆(FV) (%) Physical State of System

0.00 0.6675 - 0.00 Pure polymer
1.35 0.6669 0.6720 −0.76 Bound water regime
2.75 0.6620 0.6766 −2.16 Bound water regime

5.98 0.6642 0.6874 −3.38 Mixed free/bound water
regime

10.50 0.6688 0.7024 −4.96 Plasticization threshold
15.20 0.6798 0.7180 −5.32 Plasticization regime
19.50 0.6926 0.7323 −5.42 Plasticization regime
26.10 0.7118 0.7539 −5.59 Plasticization regime
33.00 0.7368 0.7783 −5.50 Plasticization regime

The values for the free-volume decrement factor, % ∆(FV), indicate that the deviation from the
additivity rule continues well within the plasticization regime. This suggests that the amount of bound
water may continue to increase during the formation of clusters, possibly at a much lower rate than that
within the antiplasticization range of conditions. The data in Table 2 indicate that there is a maximum
% ∆(FV) factor at around 30% water content, which arises from the inevitable convergence of the trend
line to zero as the water fraction approaches the value of 1.

Maeda and Paul [55] have used the concept of “excess free volume, ∆(Ve)” for the discrepancy
between calculated and measured values of specific volume, which corresponds to a non-normalized
deviation, i.e.,

∆(Ve) = −(ψ∗sp −ψsp(ω)) (5)

We have performed the same calculations for mixtures of poly(2,6-dimethyl-1,4-phenylene oxide
(PPO) with di-octyl phthalate (DOP) and tricresyl phosphate (TCP), where the plasticizer is much
bulkier than water and the polymer/plasticizer interactions are predominantly dipolar in nature, rather
than H-bonding type. The values were obtained using data reported by Maeda and Paul [55] and are
compared in Table 3 with the values estimated from Equation (4).

Table 3. Comparison of ∆(Ve) and ∆(FV) values for the poly(2,6-dimethyl-1,4-phenylene oxide
(PPO)/tricresyl phosphate (TCP), PPO/di-octyl phthalate (DOP) and starch/water.

Plasticizer Content PPO/TCP (@ 25 ◦C) PPO/DOP (@ 25 ◦C) Starch/Water (@ 30 ◦C)

(wt.%) ∆(Ve) ∆(FV) (%) ∆(Ve) ∆(FV) (%) ∆(Ve) ∆(FV) (%)

6 - - - - −0.023 −3.4
10 −0.016 −1.75 −0.021 −2.22 −0.042 −4.9
20 −0.028 −3.09 −0.033 −3.47 −0.040 −5.4
30 −0.037 −4.12 −0.048 −5.01 −0.034 −5.4
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The data in Table 3 revealed a similarity in the effect of plasticizer concentration for both PPO
systems, irrespective of the factor used to determine the deviation of free volume from the additivity
rule. These show also that the maximum for both ∆(Ve) and ∆(FV) occurred at approximately 10 wt.%
concentration for the starch/water system, while for plasticized PPO systems the maximum spanned
over the range 20–30 wt.% plasticizer content. This implies that smaller plasticizer molecules and
stronger interactions produce a maximum in the deviation at lower concentrations.

In an atomic simulation of changes in free volumes of a “model” amorphous polyamide 6.6
(PA 6.6) plasticized with different amounts of water, Goudeau et al. [56] have used the concept of
“additional free volume”, Φ, defined as

Φ =
−

[
ψ∗sp −ψsp(ω)

]
ψsp(polymer)

(6)

which corresponds to the value of ∆(Ve) normalized with respect to the polymer. For comparison
purposes we recalculated the values normalized with respect to ψ*sp from the simulation data at 280 K
for water contents of 5 and 10 w%, corresponding to the free volume decrement factor of Equation (4).
The values obtained were −1.59% at 5 wt.% water and −3.95% for the system containing 10 wt.% water,
which are intermediate between the PPO systems and the starch/water mixtures. These differences
have provided a basis to reveal the stronger molecular attractions in PA 6.6/water mixtures relative to
the PPO systems and the greater packing efficiency for the starch/water mixture.

Another example of deviation from the additivity rule for property prediction is to be found with
respect to the water absorption of mixtures of Kollidon VA64 (random copolymer of vinyl pyrrolidone
and vinyl acetate) and clotrimazole [57]. The mixtures were found to be miscible at all concentrations.
The data relevant to this discussion are shown in Figure 1 as plots at two different levels of environment
relative humidity (RH) for the “water vapour absorption” (left) and the “hardness” measured on the films
(right) as a function of the clotrimazole weight fraction. The plots on the left show that while the water
absorption of the mixtures (calculated by the additivity rule on the similar basis as that for Equation (1)
decreased linearly with increasing clotrimazole content, the measured values were consistently lower.
The two plots in the inset show that the difference between calculated and measured values (deviation)
exhibited a maximum at the estimated deviation at plasticizer concentrations in the region of 50 wt.%.
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Figure 1. (Left) Plots of “Moisture uptake” versus “Clotrimazole weight fraction” at 20% relative
humidity (RH) (open symbol) and 50% RH (black symbol. The inset shows the variation of the
weight reduction (as a difference) in water uptake from the values estimated from the additivity rule.
(Right) Plot of “Hardness values” versus “Clotrimazole weight fraction” at 20% RH (open symbol)
and 50% RH (black symbol). (Ref [57], Reproduced with permission by American Chemical Society
@2012 Copyrights).
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The plots on the right for hardness measured on the same mixtures show a corresponding
antiplasticization effect with the maximum displayed to higher concentrations. Since both properties
were density dependent, the discrepancy with respect to the maximum indicates that the two were not
linearly related, as it was also observed in the discussion of the data in Table 3.

2.2.3. Comparison of Antiplasticization with Physical Ageing

A better understanding of antiplasticization can be obtained by making a comparison with the
densification arising from physical ageing of glassy polymers, illustrated in Figure 2, as both resulted
in an embrittlement behaviour alongside an increase in modulus and strength.
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Figure 2. Variation of the free volume as a function of temperature for glassy polymers. (a) Effects
of physical ageing and (b) effects of the addition of a plasticizer. 0—Pristine (unplasticized); 1—low
plasticizer content (antiplasticized) polymer; 2 & 3 —high plasticizer content (plasticized) polymer.
(Inset adapted from data in ref. 9, L. Mascia,. Polymer (Guildf). 1978, 19, 325–328, Reproduced with
permission by Elsevier @1978 Copyright).

The representative lines shown in Figure 2a indicate that densification by physical ageing arises
purely from the reduction in the free volumes of polymer chains from the “juvenile” (unaged) state
until the glass reaches a “mature” (minimum free energy) state, characterized by its equilibrium Tg
(also known as Tα). The trace for a “mature” glass indicates that the change in the specific volume
with a temperature below the Tg of the polymer was expected to take place at the same rate as that of
the volume occupied by the polymer chains in relaxations-free state, while the constant gap was to
allow for a likely temperature independent compressibility.

The descriptive lines for Figure 2a were derived from the changes in modulus with temperature
within the glassy state outlined in the work of Mascia et al. [9,12], shown in the inset, and also
from a report by Lee [58], as well as from an article by Lee and McGarry [59] on atactic polystyrene.
The graphs in Figure 2a illustrate the connection between changes in the specific volume (ψsp) and
shear modulus (G) with temperature for a glassy polymer undergoing physical ageing through the
relationship between relaxation time and free volume in Equation (11) (i.e., d(logG)/dT is proportional
to −dψsp/dT). One notes that the rate of change of both functions decreases with ageing in advancing
towards a “mature” (stable) state and brings about an upward shift in the glass transition temperature.
The trendlines for the specific volume bear a similarity with the experimental data reported in [59],
showing a reduction in the gradient of the change in the specific volume at temperatures below 50 ◦C
after physical ageing. In this latter case the trendlines for the aged and unaged samples allude to a
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likely intersection at lower temperatures, possibly about −50 ◦C in correspondence to a more realistic
temperature for the β transition of polystyrene [60], in concordance with the values for other glassy
polymers. It should also be noted that the graphs representing the variation of specific volume with
temperature in [59] indicate that the Tg of the sample decreased with increasing ageing time. Since
this is physically impossible the discrepancy may have to be attributed to experimental errors in the
dilatometry measurements, bearing in mind that an increase in Tg has also been observed in related
experimental studies by Yavari et al. [61].

The behaviour depicted in Figure 2b, on the other hand, is derived from the singular log-linear
relationship between modulus and specific volume found by Maeda and Paul [62], which is consistent
with the numerical simulation analysis by Puosi and Leporini [63] and the experimental data of
Zhang et al. [64]. It should be noted, however, that behaviour at temperatures below the β transition
has not been addressed in the literature on antiplasticization and, therefore, the traces shown are
somewhat speculative. In any case, a more accurate description of the variation of the specific volume
would require the trend line for the antiplasticized system (1) to intersect the one for the pristine
polymer (system 0) at a temperature between Tα and Tβ, resulting from a reduction in thermal
expansion coefficient [65].

A glassy polymer containing an amount of plasticizer within the antiplasticization regime will be
susceptible to accelerated physical ageing as a new system with a lower Tg [66], arising from a delay in
the “freezing” of the molecular motions during vitrification, which would accordingly depress the β
relaxations and produce a denser glass [59].

In the forgoing discussion the antiplasticization threshold was identified as the plasticizer
concentration,ω1(T), for which the specific volume of the binary system becomes equal to that of the
pristine polymer at any temperature below the Tg. This interpretation is illustrated in Figure 3 using
data obtained by from measurements of the density of mixtures of amorphous starch and water [67].
The antiplasticization behaviour represented in Figure 3 is concordant with the model proposed
by Wang et al. [33], as discussed in the preceding section with respect mixtures of starch and urea.
Moreover, the above interpretation for the changes in free volumes at different water (plasticizer)
content is supported also by complementary data in part 2 of the paper by Benczedi et al. [68] in relation
to the calculated cohesive energy. The findings are consistent with the model of plasticizer molecules
being “physically bound” to the polymer chains, which results in an increase in the “effective” molar
volume of the structural units [69], thereby reducing the size of molecular holes [70].

Polymers 2020, 12, x 10 of 37 

 

with increasing ageing time. Since this is physically impossible the discrepancy may have to be 
attributed to experimental errors in the dilatometry measurements, bearing in mind that an increase 
in Tg has also been observed in related experimental studies by Yavari et al. [61]. 

The behaviour depicted in Figure 2b, on the other hand, is derived from the singular log-linear 
relationship between modulus and specific volume found by Maeda and Paul [62], which is 
consistent with the numerical simulation analysis by Puosi and Leporini [63] and the experimental 
data of Zhang et al. [64]. It should be noted, however, that behaviour at temperatures below the β 
transition has not been addressed in the literature on antiplasticization and, therefore, the traces 
shown are somewhat speculative. In any case, a more accurate description of the variation of the 
specific volume would require the trend line for the antiplasticized system (1) to intersect the one for 
the pristine polymer (system 0) at a temperature between Tα and Tβ, resulting from a reduction in 
thermal expansion coefficient [65]. 

A glassy polymer containing an amount of plasticizer within the antiplasticization regime will 
be susceptible to accelerated physical ageing as a new system with a lower Tg [66], arising from a 
delay in the “freezing” of the molecular motions during vitrification, which would accordingly 
depress the β relaxations and produce a denser glass [59]. 

In the forgoing discussion the antiplasticization threshold was identified as the plasticizer 
concentration, ω1(T), for which the specific volume of the binary system becomes equal to that of the 
pristine polymer at any temperature below the Tg. This interpretation is illustrated in Figure 3 using 
data obtained by from measurements of the density of mixtures of amorphous starch and water [67]. 
The antiplasticization behaviour represented in Figure 3 is concordant with the model proposed by 
Wang et al. [33], as discussed in the preceding section with respect mixtures of starch and urea. 
Moreover, the above interpretation for the changes in free volumes at different water (plasticizer) 
content is supported also by complementary data in part 2 of the paper by Benczedi et al. [68] in 
relation to the calculated cohesive energy. The findings are consistent with the model of plasticizer 
molecules being “physically bound” to the polymer chains, which results in an increase in the 
“effective” molar volume of the structural units [69], thereby reducing the size of molecular holes 
[70]. 

 
Figure 3. Plot of specific volume (ψsp) for amorphous starch against water content. (Constructed from 
information in Table 2 of Ref. [67]). 

In examining the plotted data in Figure 3 one notes that the points for the increase in the specific 
volume after the minimum can be fitted to two intersecting straight lines. The lower gradient for the 
first line (after the minimum) can tentatively be attributed to the formation of “dispersed clusters” of 
water (plasticizer) molecules. A value of 2.75 wt.% can be identified as the amount of the bound water 
before the onset of cluster formation, whereas a value of 10.5 wt.% for the threshold condition for the 
cross-over from antiplasticization to plasticization. It must be emphasized, however, that there is no 
confirmatory experimental evidence for the general validity of the two-gradient feature displayed in 

Figure 3. Plot of specific volume (ψsp) for amorphous starch against water content. (Constructed from
information in Table 2 of Ref. [67]).



Polymers 2020, 12, 769 11 of 36

In examining the plotted data in Figure 3 one notes that the points for the increase in the specific
volume after the minimum can be fitted to two intersecting straight lines. The lower gradient for the
first line (after the minimum) can tentatively be attributed to the formation of “dispersed clusters”
of water (plasticizer) molecules. A value of 2.75 wt.% can be identified as the amount of the bound
water before the onset of cluster formation, whereas a value of 10.5 wt.% for the threshold condition
for the cross-over from antiplasticization to plasticization. It must be emphasized, however, that
there is no confirmatory experimental evidence for the general validity of the two-gradient feature
displayed in Figure 3, as well as for the formation of interconnected clusters. The formation of coarse
domains, on the other hand, has been shown to take place from studies on the interactions between
diethyl phthalate and cellulose acetate (CA) [36], which was found to exhibit two Tg values at high
plasticizer concentration.

2.2.4. Molecular Weight Considerations

In studies carried out to examine the effect of the molecular weight (MW) of polystyrene (PS)
in miscible mixtures with mineral oil, Anderson et al. [52] found that antiplasticization occurred
only when the MW was relatively low (40,000 Da) at oil concentration in the region of 6 w%. Such a
behaviour was attributed to the presence of a large number of chains ends, which are the main sites for
the formation of “holes” as the major contributors of free volumes and were estimated to be about 80
times greater in number than the grade with MW = 270,000 Da. Moreover, the authors have proposed
that phase separation takes place within the plasticization range of concentrations due to the stronger
interactions for plasticizer–plasticizer than for polymer–plasticizer. This is due to the higher (total)
solubility parameter of the oil relative to polystyrene, which is in concordance with the model proposed
earlier for conditions that are not favourable for the formation of interconnected clusters. A similar
behaviour is exhibited by the starch/water mixtures depicted in Figure 3, which provides additional
evidence for the formation of plasticizer clusters. In any case, it should be borne in mind that the
observations and measurements were made at room temperature and that the threshold conditions
for the antiplasticization/plasticization transition are temperature dependant (as indicated earlier). A
similar argument for plasticizers used for toughening of polylactic acid (PLA) [71]. The authors did
not detect antiplasticization behaviour from studies of the relaxation spectra of mixtures of PLA and
acetyl tributylcitrate (ATBC) even at concentrations as low as 2.5%. Since the molecular weight of
the amorphous PLA used in this study (reported to be in the region of 90,000 Da) was considerably
higher than the “threshold” value required for the onset of antiplasticization in the case of PS [52], it
can be inferred that the lack of a sufficient number of chain-end groups as a criterion applies also to
PLA/ATBC mixtures. This may provide the basis for a general criterion for antiplasticization, which
would include molecular-weight considerations alongside other factors such as polymer–plasticizer
interactions and dimensions of the plasticizer molecule.

Within the context of the above analysis it is also worth noting that, in studies carried out on
physical ageing of PLA, Pan et al. [72] have correlated the highly impaired ductility resulting from
physical aging to the rearrangement of polymer chains from disordered to more ordered morphology.
By analogy the propensity of glassy polymers to undergo antiplasticization could be related to the
ability to produce a certain degree of structural order, which would be easier to achieve at lower
molecular weights.

2.3. Molecular Dynamics of Antiplasticization

2.3.1. Relaxations Interpretation from Mechanical and Dielectric Spectra

The response of polymers to mechanical stresses is described by viscoelasticity theory, whereby
when an external excitation is imposed as sinusoidal wave transmitted through the bulk the
corresponding strain is out-of-phase by an angle δ (the loss angle. The proportionality coefficient
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(modulus E = stress/strain) is expressed as a complex entity consisting of two components, one in-phase
(storage modulus) and another out-of-phase (loss modulus), i.e.,

E* = E′ + i E”, tan δ(mech) = E”/E′ (7)

where i is the complex number (
√
−1).

Similarly, the relationship between an applied alternating electrical stress and the resultant charge
density is expressed by the permittivity in complex notation (ε* = charge density/electric stress), i.e.,

ε* = ε′ − i ε”, tan δ(diel) = ε”/ε′ (8)

The out-of-phase (loss) terms of the expressions in Equations (7) and (8) are both frequency and
temperature dependant and will go through a maximum at a thermal transition. Although the loss
component is the part of the spectrum that represents the energetic events leading to the thermal
transitions, tan δ plots as function of temperature (at low frequency, usually 1 Hz) are often used to
analyse the data. The temperature/frequency relationship is expressed in terms of activation energy of
the thermal transition, using the Arrhenius rate equation as the variation of the related relaxation time,
τ, with temperature (see Equation (9), later).

Glassy polymers are characterized by three transitions, respectively α transition, corresponding
to glass transition (Tg) at the upper temperature end of the spectrum, an intermediate β transition
(associated with JG-β relaxations in dielectric spectroscopy) and a γ transition at the lower temperature
end of the spectrum. The α transition has the highest activation energy and the γ transition the lowest.

The changes in mechanical spectra brought about by physical ageing and antiplasticization are
illustrated in Figure 4a,b. These show that physical ageing is manifested as a depression ofβ relaxations
spanning to the lower end of α transition regions, without significantly affecting the peak temperature
of the two transitions. Although antiplasticization reduces the overall relaxation time for α transition
and lowers the glass transition temperature, the effect on the β transition is manifested mainly as a
depression of the relaxation spectrum (increasing the inherent relaxation time), which is accompanied
only by small changes in the temperature of the corresponding tan δ peak.
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However, a clear shift in the β relaxation peak is not always discernible and may even appear
to remain invariant or shift slightly upward on the temperature scale [10,73]. For cellulose acetate
containing different amounts of diethyl phthalate (DEP) [36,74] the small downward shift of the β
transition peak observed at low concentrations did not increase significantly at high DEP concentrations.
Similar results were obtained by Seymur et al. [75] while the work of Lourdin et al. [76] provides
further confirmation of the depression of β relaxations observed at low concentrations of glycerol in
starch systems containing 13% water. Although the position of the peak of the weak β relaxations
could emerge as an artefact introduced by the normalization of the loss component relatively to the
“real part”, dielectric spectroscopy data obtained by Psurek et al. [77], on the effect of small quantities of
Arochlor 1260 in polycarbonate, have revealed a depression of the β transition with a slight downwards
shift in the broad peak, even when the actual loss component, ε”, (instead of tan δ) was plotted
against temperature.

From a comparison of the relaxation features shown in Figure 4a,b, it can be deduced that
the depression of β transitions brought about by antiplasticization might be enhanced through an
ensuing more advanced physical-ageing state of the glass under the same thermal history conditions.
Accordingly, Cangialosi et al. [78] have indicated that the depression of β relaxations by the two
connected events can be used as a measure of the densification efficiency of the system.

The activation energies (Ea) for relaxations are obtained using the Arrhenius equation for the
relationship between the imposed oscillation frequency (f ) and temperature (T) at which the tan δ
relaxation peak occurs, i.e.,

f = A exp(−Ea/RT) (9)

where R is the gas constant (8.314 J/mol/K) and A is a material constant. This principle is based on the
hypothesis that a high proportion of the polymer chains react isochronally with the applied frequency.

In relation to the effects of plasticizer in mixtures with polyvinyl chloride Elicequi et al. [79]
have observed that while the activation energy for the α transition decreased there was no noticeable
change for the β transition. The authors have related this behaviour to the shallow and broad nature
of the β relaxation band. An unusual feature emerged from recent work by Maeda et al. [80] on
antiplasticized mixtures of PC, using rigid chain plasticizing molecules (length 1.1–1.5 nm). The data
have also revealed the emergence of a β relaxation shoulder at about 80 ◦C, alongside a reduction
the α relaxation peak, which was attributed to the concomitant reduction in the γ relaxation peak at
around −100 ◦C. The activation energy for the γ relaxations was found to be higher in the presence of
plasticizing species, while the values for β relaxation were found to increase with the molecular length
of the plasticizer.

2.3.2. Melt Fragility as a Parameter for Antiplasticization

The concept of fragility is widely used in theoretical studies on vitrification of glasses from a
liquid, or “melt” state. It represents a parameter that characterizes the magnitude of the deviation of a
physical rate-controlled property, such as viscosity, from the Arrhenius equation at temperatures very
close to the Tg (α transition). Angell has used the terms fragile, intermediate and strong as a designation
for the glass forming characteristics of the material [81]. A strong melt was defined as one that obeys
the Arrhenius solidification rate law for the change in viscosity (or related relaxation time), which
implies that the glass retains its physical state at all temperatures. A fragile melt, on the other hand,
displays a very large deviation from the continuity of a physical state through vitrification, which
alters the behaviour from a liquid (viscosity controlled) to a solid (modulus controlled) on cooling.
The variation of relaxation time (τ) that characterizes the physical state with temperature (T) upon
reaching the glass transition temperature is usually described by an empirical equation proposed by
Vogel, Fulcher and Tammann, which became known as the VFT equation [82], i.e.,

τ = τVFT· exp (
B

T− To
) (10)



Polymers 2020, 12, 769 14 of 36

where τVFT is the pre-exponential factor and B is a material constant, often replaced by D · To, where D
is referred to as a “stiffness” or “fragility” parameter that quantifies the “strength” of the dependence of
τ on temperature, while To is usually known as the “Vogel divergence temperature”, whereby To < Tg
and T > Tg. To is sometime referred to as the “ideal glass transition temperature” in so far it represents
the temperature at which the entropy extrapolates to zero. The parameters of Equation (10) are related
to free volume (Vf) by the Doolittle equation through the expression [83]

τ = τo exp (
V

V f
) (11)

which alludes to the existence of free volumes as a requirement for molecular relaxations.
This relationship provides the basis for a general description of glass formation through the

definition of a characteristic melt fragility factor (mp), i.e.,

mp = (
d log τα

d(Tg
T )

)P for T = Tg (under isobaric, P, conditions) (12)

where τ α is the relaxation time for the melt as it approaches vitrification conditions.
The theoretical work by Stukalin et al. [84], based on the relationship between structural relaxation

times and the configurational entropy density, predicts that antiplasticization reduces the fragility
of glass formation when the plasticizer forms strong interactions with the polymer matrix, which is
brought about by corresponding increase in the relaxation time for the β transition. The model used by
these authors relates the effects of cohesive energy, chain length and stiffness on the antiplasticization
and plasticization behaviour of miscible additives.

3. Implications of Antiplasticization for Applications

3.1. Mechanical Properties

3.1.1. Modulus Enhancement through Antiplasticization

Experimental Data

The diagrams in Figure 5 show the variation in complex modulus at an arbitrary low frequency
(1 Hz) of a glassy polymer with temperature obtained by dynamic mechanical spectroscopy (DMA)
methods. The curves in Figure 5a represent the behaviour of samples subjected to physical ageing,
while those in Figure 5b corresponding to systems containing plasticizer amounts below and above the
antiplasticization threshold. Note the trend lines in Figure 5b are adapted from original data reported
for plasticization of PVC with tricresyl phosphate [10,12,15,77]. The cause of the dual cross-over feature
for the plasticization/antiplasticization phenomenon has yet to be addressed in the literature either
through theoretical modeling or experimental verifications from specific volume measurements. It is
possible that this behaviour is related to morphological changes induced by the plasticizer propensity
to phase separation through internal associations driven by crystallization or even vitrification.

These diagrams show that there were two threshold temperatures for the
plasticization/antiplasticization cross-over. An inset has been added to Figure 5 as an experimental
confirmation of the indicated trend, using an extract of data reported by Psurek et al. [77] for studies
on antiplasticization of polycarbonate (PC) in mixtures with Arochlor 1260. Here a denotes the
pristine PC sample and the letters b, c, d and e stand for mixtures with an increasing concentration of
plasticizer. This feature of the antiplasticization behaviour of PC is also confirmed by the work of
Miyagawa et al. [65] in mixtures with p- terphenyl as plasticizer.
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Modelling Prediction of Elastic Constants

Model studies have been carried out by Riggleman et al. [85] to simulate the antiplasticization/

plasticization cross-over using the concept of variation of fragility and the relationship between
relaxation time and configurational entropy. The model used predicts the variation of Young’s
modulus, shear modulus and Poisson ratio with respect to the temperature and establishes the
cross-over conditions. The model employed in this work consists of a bead-spring polymer chain
and smaller, spherical solvent (plasticizer) molecules. The polymer molecules were modelled as
32-segment chains, where each segment was connected via a stiff harmonic potential. Two sets of
non-equilibration molecular dynamics calculations were performed to obtain the bulk mechanical
properties. The authors have used uniaxial tension deformations at an arbitrary constant strain rate to
obtain the Young’s modulus.

The shortcomings in the predictions of the model used by these authors are twofold: (a) The
model does not allow for the possibility of a reversion to plasticization at some lower temperatures,
as indicated by the experimental data presented in the inset of Figure 5b and (b) the model does not
address failure related properties, such as yielding, crazing and brittle fractures. A revealing feature of
the model, however, is the prediction of a lower Poisson ratio within the antiplasticization temperature
region and an inversion of behaviour at higher temperature within the plasticization regime. Although
not directly confirmed experimentally, the verification is implicit in the measured increase in the
volumetric strain resulting from uniaxial tensile stresses for tests on an antiplasticized epoxy-resin
material reported by Garton et al. [86] (Section 3.1.2). A similar inference can be derived from the
reduced crazing strain values for an antiplasticized PVC material [15], which can be associated with
the hydrostatic stress component of the applied tensile stress (see Section 3.1.2, relationship between
ε1(craz) and I in Equation (17).
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3.1.2. Evaluation of Data from Strength Measurements

Mascia et al. [12] have demonstrated that the antiplasticization double cross-over is displayed also
with respect to yield strength, using conventional tensile tests and plane–strain compression experiments
carried out at different strain rates over a wide range of temperatures. Although the maximum strain
rate and minimum temperature used in tensile tests were limited by the occurrence of brittle fractures,
the data in Figure 6 reveal not only the strain rate sensitivity of the antiplasticization/plasticization
cross-over but also the effect of dilatational stress components in tensile tests. In this latter case a
trend-line extrapolation suggests that the upper cross-over was displaced to a lower temperature when
the strain rate was reduced.
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× 107). (L. Mascia and G. Margetts, , J. Macromol. Sci. Part B. 26 (1987) 237–256, Reproduced with
permission from Taylor & Francis @Copyrights 1987).

The two cross-over temperatures for the yield strength in compression under plane strain
conditions, on the other hand, do not seem to be greatly affected by the strain rate. These observations
indicate that the thresholds conditions for the cross-over from antiplasticization to plasticization
with respect to mechanical properties depend also on volumetric changes, i.e., dilatation (tension) or
contraction (compression), resulting from the mean stress component of the applied stresses. This
deduction is supported by the data reported by Garton et al. [86] for the tensile strength of a cured epoxy
resin containing antiplasticizer EPPHAA (an adduct of the reaction between epoxyphenylpropane
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and 4-hydroxyacetanilide). The authors have observed a steeper rise in the volumetric dilatation
with increasing strain in tensile tests for samples containing the antiplasticizer. Similar results were
obtained by Mikus et al. [87] from tensile tests carried out on mixtures of starch and glycerol, sorbitol
and mannitol. From measurements of the strain in the three perpendicular directions, using a video
system, the latter authors were able to separate the elastic deformation from plastic deformation and to
estimate the variation of volumetric expansion as function of the axial strain, i.e.,

εv = ln (V/Vo) = ε1 + ε2 + ε3 (13)

where εv = volumetric strain, V = volume at strain level considered, Vo = volume in the unstrained
state and ε1, ε2 and ε3 are the respective strains in the principal directions.

Accordingly, the volumetric strain is considered to include both an elastic (εel) and an inelastic
(εinel) component, i.e.,

εinel = εv − εel (14)

where εel is calculated from the expression

εel =
(1− 2 ϑ)σ

E
(15)

with σ = axial tensile stress, E = Young’s modulus and ϑ = Poisson’s ratio.
These authors found that the volumetric expansion resulting from the applied axial stress

decreases with increasing concentration of the plasticizer and is reduced by physical ageing. This
can be attributed to an increase in bulk modulus and can, therefore, taken as a manifestation of
antiplasticization behaviour.

3.1.3. Fracture Toughness and Related Phenomena

Mascia et al. [15] have evaluated the embrittlement effect of antiplasticization of glassy linear
polymers from measurements of the variations of the “critical stress intensity factor”, Kc, and the
“critical strain for crazing”, ε(craz), both as function of temperature.

The concept of critical stress intensity factor derives from fracture mechanics as a stress related
property that characterizes the strength of the material in the presence of a sharp notch (“crack”), is
normalised using the expression:

Kc = Yσ √a (16)

where σ is the tensile stress at fracture, Y is a geometry related factor and a is the initial crack length.
Crazing is a unique feature of thermoplastic glassy polymers, which occurs ahead of a propagating

crack and is a precursor to brittle fractures. A critical crazing strain criterion was introduced by
Oxborough and Bowden [88] as a modified version of the Sternstein and Myers criterion based on the
tensile stress difference between two principal axes [89].

The critical strain criterion is expressed in terms of maximum tensile strain at which crazes appear,
i.e.,

ε1(craz) = (σ1)crazE = σ1/E− ϑ (σ2 + σ3)/E = A(T) +
B(T)

I
(17)

where E = Young’s modulus, ϑ = Poisson’s ratio and σ1, σ2 and σ3 are tensile stresses along the three
principal axes. I = σ1+ σ2 + σ3 (I = 3 σ(hydrostatic)), while A(T) and B(T) are temperature and environment
dependant materials parameters.

In this work the critical crazing strain was determined under plane stress conditions by carrying
out experiments at various temperatures on thin-and-wide rectangular specimens, bent over mandrels
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of different diameters and recording visually the formation of crazes. The axial (outer skin) strain at
which crazes were observed was estimated according to the equation below [90]

ε1(craz) =
1

2(R
h ) + 1

(18)

where R = radius of the mandrel and h = thickness of the sample.
To quantify the magnitude of the antiplasticization effect it is useful to use the concept of

“Antiplasticization property ratio” (APR), as a normalized “property parameter” of the mixture relative
to the pure polymer, i.e.,

APR =
Property o f mixture
Property o f polymer

(19)

Accordingly, APR values greater than 1 are obtained when antiplasticization brings about
increment in the property considered.

In Figure 7 there are reported plots of the APR values for the critical crazing strain and stress
intensity factor against temperature from the work of Mascia et al. [15] on PVC containing 8.5 wt.%
TCP. The data show that the APR values for both ε(craz) and Kc are less than 1 over a temperature range
between the α and β transition.Polymers 2020, 12, x 19 of 37 

 

 

Figure 7. Plots of Antiplasticization property ratio (APR) for the critical crazing strain (εcraz) and 
critical stress intensity factor (Kc = √𝐸 𝐺𝑐 ) versus temperature for pristine PVC (UPVC) and PVC 
antiplasticized with 8.5 wt % TCP (PPVC), based on original data in the insets. (L. Mascia et al. J. 
Mater. Sci. 24 (1989) 2775–2780, reproduced with permission by Springer @Copyrights 1989).  

These diagrams demonstrate that the two threshold-temperatures concept for the crossover from 
antiplasticization to plasticization applied also to fracture behaviour, respectively one at low 
temperatures (T(A/P)1) close to the β transition and one at a temperature below the Tg of the polymer 
(T(A/P)2). Moreover, the plots in Figure 8 bring out the advantage of the APR factor as a quantitative 
parameter for antiplasticization, insofar these show that not only the obtained values are lower for 
crazing but also that the cross-over to plasticization (T(A/P)1 and T(A/P)2) occurs over a narrower 
temperature range (i.e., –50 to +40 °C for crazing and –80 to +60 °C for fracture toughness). The data 
are in good agreement with the known relationship between crazing and fracture and provide a clear 
indication that the embrittlement of thermoplastic glassy polymers through antiplasticization arises 
from the enhanced susceptibility to crazing. This observation can also be connected to the reduced 
dilatability of an antiplasticized system identified by Mikus et al. [87], insofar as crazing originates 
from the hydrostatic component of the applied stress (see relationship between ε1(craz) and I in 

Figure 7. Plots of Antiplasticization property ratio (APR) for the critical crazing strain (εcraz) and
critical stress intensity factor (Kc =

√
E Gc) versus temperature for pristine PVC (UPVC) and PVC

antiplasticized with 8.5 wt.% TCP (PPVC), based on original data in the insets. (L. Mascia et al. J. Mater.
Sci. 24 (1989) 2775–2780, reproduced with permission by Springer @Copyrights 1989).



Polymers 2020, 12, 769 19 of 36

These diagrams demonstrate that the two threshold-temperatures concept for the crossover
from antiplasticization to plasticization applied also to fracture behaviour, respectively one at low
temperatures (T(A/P)1) close to the β transition and one at a temperature below the Tg of the polymer
(T(A/P)2). Moreover, the plots in Figure 8 bring out the advantage of the APR factor as a quantitative
parameter for antiplasticization, insofar these show that not only the obtained values are lower for
crazing but also that the cross-over to plasticization (T(A/P)1 and T(A/P)2) occurs over a narrower
temperature range (i.e., −50 to +40 ◦C for crazing and −80 to +60 ◦C for fracture toughness). The
data are in good agreement with the known relationship between crazing and fracture and provide a
clear indication that the embrittlement of thermoplastic glassy polymers through antiplasticization
arises from the enhanced susceptibility to crazing. This observation can also be connected to the
reduced dilatability of an antiplasticized system identified by Mikus et al. [87], insofar as crazing
originates from the hydrostatic component of the applied stress (see relationship between ε1(craz) and I
in Equation (17). It is worth noting that a similar “double trough” trendline has been observed also for
the impact fracture toughness behaviour of polymethyl methacrylate (PMMA) [91].
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3.2. Permeation and Diffusion Related Properties

The relationship between the permeability, P, of a gas through a film and the free volume of the
polymer is described using the concept of fractional free volume (FFV), which corresponds to the
fraction of the total volume not occupied by polymer molecules, i.e.,

P = Po exp (−
B

FFV
) (20)

where Po and B are adjustable constants depending only on temperature and penetrant type.
A similar expression is used to describe the diffusion coefficient as a function of fractional free

volume, known as the Doolittle expression [92]:

D = Do exp (−
A

FFV
) (21)

where, D0 and A are constants, which are determined by the polymer-penetrant system.
This equation has been modified by Cohen and Turnbull [93] by considering the probability of a

diffusing molecule finding a hole large enough within the glass, i.e.,

D = Do exp (
−γV∗

Vf
) (22)



Polymers 2020, 12, 769 20 of 36

where γ = numerical factor that accounts for the sharing of free volumes by neighbouring molecules,
V∗ = minimum hole volume size required and Vf = average free volume for spherical molecules in the
liquid state.

Equations (21) and (22) have been used by several authors [94,95] to verify the effect of FFV on
gas permeability in glassy polymers.

3.2.1. Gas Permeation Barrier and Membranes

The role of antiplasticizers in polymers with respect to the permeation of gases was first identified
in the pioneering work of Robeson [96] who reported an almost 3-fold reduction in the CO2 permeation
through polysulfone films with the addition of 10 w% 4-4’ dichlorodiphenyl sulfone. A more dramatic
decrease in permeability was reported by Maeda and Paul [97], showing an almost 30-fold reduction
with the incorporation of 30 w% of N-phenyl-2-naphtylamine for the same type of polysulfone and a
10-fold reduction for polyphenylene oxide containing 30 w% tricresyl phosphate.

Sometime later Guo [98,99] studied the effects of physical ageing and antiplasticization on the
water transport properties of glassy cellulose acetate film-coated tablets. Physical ageing was found
to have an additional effect on antiplasticization, which prompted the authors to propose a model
that considers the free volume of glassy polymers to consist of two independent parts, one of which is
affected by annealing (physical ageing) and the other by antiplasticization. It was suggested that at low
concentrations not all the free volumes are occupied by the plasticizer and, therefore, they are affected
independently of each other. Horn and Paul [100] and Xia et al. [101] have reiterated the importance of
the plasticizing effect of CO2 on the pressure–permeation rate relationship for glassy polymers.

Although the rate of physical ageing reaches a maximum at temperatures just below the Tg of
the polymer [102,103] in more recent studies Xia et al. [104] have shown that the effect can be quite
dramatic even at lower temperatures, as a reflection of the involvement of β relaxations as a driving
force for molecular packing. Rapidly quenched films made from a proprietary polyimide with a Tg in
the region of 310 ◦C were found to undergo a reduction in gas permeation rate even after only 100 h
ageing at 35 ◦C. Authors found that thin films (136 nm) have intrinsically higher FFV than thick films
(12 µm) and are more susceptible to physical ageing. Although the rapid physical ageing behaviour
was attributed the plasticizing action of the CO2 diffusant, this is not a necessary requirement [105–107].

Other workers [108,109] have found that the permeation selectivity of ternary gas mixtures
containing toluene/CO2/CH4 and H2S/CO2/CH4 arising from plasticization effects occurred only at
very high feed pressure. This anomaly was attributed to the antiplasticization caused by the strong
interaction of toluene and H2S with the phenylene groups of the polyimide membrane. However, the
influential role of pressure cannot be ignored insofar as it can affect permeability through a non-linear
increase in solubility.

Although the relationship between permeability (P), solubility (S) and diffusivity (D); i.e., P = S · D,
as not received a great deal of attention in the literature, studies concerned with antiplasticization for
mixtures of caffeine and PET Burgess et al. [110] have revealed a reduction in permeability expressed as
an increase in “barrier improvement factor” (equivalent to the concept of APR, defined earlier). This
was found to occur alongside to a decrease in both diffusivity and solubility. From these observations it
can be inferred that strong molecular attractions between the diffusant molecules and plasticizers (e.g.,
H-bond types) can produce a large reduction in permeability. This is demonstrated by the diagrams
in Figure 8 for the variation of permeability values for the diffusion of H2 and CO at 27 ◦C through
PVC films containing different amounts of TCP plasticizer. The two diagrams display a similarity with
variation of free volume with plasticizer concentration shown in Figure 3, which is expected from the
relationship between diffusion properties expressed in Equations, (11), (20) and (21).

Moreover, the diagrams in Figure 8 show that the cross-over from antiplasticization to plasticization
(T(AP)) occurs at concentrations around 25 wt.% TCP for both CO and H2. Since these plots indicate
that the T (AP) was not affected by the nature of the diffusant it can be deduced that neither of the two
gases had a significant plasticizing effect on PVC.
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It should also be noted that within the plasticization regime, say at around 40 wt.% TCP content,
the permeability values for H2 were about 10 times higher than for CO. However, the discrepancy in
permeability increased to 100 times within the antiplasticization threshold concentration. A possible
explanation is that whereas at low plasticizer concentration the diffusant molecules must penetrate a
molecularly homogeneous “bound plasticizer”/PVC phase, at higher concentrations (above 25 wt.%
TCP) the interconnected plasticizer clusters provide an easier path for the permeation of either gas.

Within the context of this discussion it is worth noting that the cross-over from antiplasticization
to plasticization for glycerol/zein mixtures with respect to oxygen permeability was observed to take
place at around 10 wt.% [111] and was attributed to a decrease in the local dipolar relaxation of the
amorphous zein matrix. Within the plasticization regime (20 wt.% glycerol), on the other hand, the
authors have indicated that glycerol increases the local dipolar relaxation. atomic force microscope
(AFM) images have indicated that glycerol has produced “an aggregation of zein complexes”, which
may be associated with the presence of 30% mixed amino acids. Such observations highlight the
difficulty of predicting the behaviour of plasticizers for systems consisting of complex mixtures, where
the effect on properties may result from selective interactions with low molecular weight components
rather than the polymer.

3.2.2. Sorption/Desorption and Stability Aspects

Controlled sorption and release properties through antiplasticization have been reported by
several authors [112–115]. The work of Wang et al. [33] (discussed earlier) has revealed an expected
increase in water absorption with increasing atmospheric humidity with a minimum at 10 wt.% urea
content due to densification (antiplasticization), resulting from enhanced molecular packing of urea
and water molecules between starch molecules. The threshold concentration for plasticization was
reached at around 20 wt.% urea. The authors suggested that H-bonding associations of starch and urea
are formed at around 10 wt.% urea content, evidenced by the shift from 927.8 to 935.5 cm−1 absorption
for the C–O–C band vibration in the starch. In the latter case the starch/urea bonds are stronger than
between urea and water. The observed rapid rise in water uptake at above 20 wt.% urea content was
consistent with the model of the plasticization state consisting of continuous clusters, which provides
favourable pathways for the penetration of water.

From these considerations and the data derived from the work of Rezus and Bakker [116] on the
interactions of water and urea it is possible to obtain a schematic representation of the morphological
state of starch containing both urea and water linked by H-bonds, shown in Figure 6, as an elaboration
of the illustrations in the report by Wang et al. [33] and shows the incipient formation of clusters of
plasticizing species in the transition from antiplasticization, as described by the plot in Figure 3 for this
particular system.

Similar structures have been put forward by Van der Sman [117] for mixtures of polysaccharide
and polyols where it was shown that phase separation could take place with the addition of water
when the conditions for antiplasticization/plasticization threshold are reached.

The molecular structures in Figure 9 show the strong H-bonds between the NH groups of urea with
the OH groups in starch and water, alongside the weaker H-bonds between OH groups in carbohydrate
chains and water. The data suggest that antiplasticization arise from the strong H-bonds between urea
and starch through the likely formation of monomolecular urea–water–urea associations [33]. A further
increase in water absorption would not destroy these associations but would provide an increasing
amount of weakly bonded assemblies of water molecules close to the carbohydrate chains. At high
urea concentrations clusters consisting of a small number of water–urea associations begin to appear
and continue to grow in number, leading to the conditions for the transition from antiplasticization to
plasticization, in accordance with the principle outlined in Section 2.1.3.
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The possibility of producing strong internal association between plasticizers and other auxiliary
components has been explored as a means of controlling the release of drugs in pharmaceutical
products. Lodagekar et al. [118] have explored the glass forming potential of valsartan for the
development of a therapeutically active drug–drug co-amorphous system and have demonstrated
that the antiplasticization activity of valsartan played a dominant role. A co-amorphous system with
higher valsartan content was found to provide significantly higher dissolution benefits and stability
under accelerated conditions for one month. Charmathy and Pinal [119], on the other hand, have
used starch containing minor quantities of sorbitol to control the release of theophylline (30 wt.%)
through sorption of water from mixtures produced by hot melt extrusion (HME). The rate of release of
theophylline was found to increase considerably with increasing sorbitol content above 7.5 wt.% in the
HME mixture. Plots of the t50 and t90 values (denoting the time required to reach respectively 50%
and 90% release of theophylline) displayed a minimum at 2.5 wt.% sorbitol concentration, followed
by a maximum at 7.5 wt.% and then by a monotonic reduction up to 30 wt.% sorbitol content. The
authors have attributed the behaviour at very low sorbitol content to an antiplasticization effect of
water on starch and, possibly, also to interactions of water–sorbitol.

Densification brought about through the reduction in the fragility of organic molecular glasses
has been exploited widely for preserving and maintaining the activity of foods, biological tissues,
vaccines, organs, proteins and antibodies. Cicerone and other workers [120,121] have demonstrated
that the addition of small quantities of a low-Tg plasticizer (such as glycerol) to a bioprotective
glass (such as trehalose) enhances the stability of proteins (enzymes) sequestered within the glass
matrix through antiplasticization. These authors have suggested the stability imparted to the
protein arises from an antiplasticization effect resulting from the suppression of short-length scale
relaxations (i.e., β relaxations) of the glass. Similar conclusions are derived from dielectric spectroscopy
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studies by Chokshi et al. [122] on the drug indomethacin (INM) dispersed within a multipolymer
mixture consisting of solid solutions with Eudragit EPO (rubbery terpolymer of methyl methacrylate,
butyl methacrylate and dimethylaminoethylmethacrylate), poly(vinyl pyrrolidone-vinyl acetate) and
polyvinyl pyrrolidone homopolymer. The resulting stabilization of the amorphous indomethacin was
attributed to strong intermolecular interactions, which suppressed the crystallization of the INM drug
through an antiplasticization effect.

3.2.3. The Role of Water in Antiplasticization

The food industry has exploited for a long time the antiplasticization/plasticization transition
caused by the absorption of water for converting the original “crispness” of sugary and carbohydrate
products (antiplasticization at low water content) to soft matter through the absorption of large
quantities of water (plasticization). Labuza et al. [123] have used the concept of brittle/ductile transition
to determine the conditions, both in terms of moisture content and temperature. Pittia et al. [124] have
found an antiplasticization effect of water in coffee beans at low concentrations from observations of an
increase in the compressive strength. This was correlated with a corresponding jump towards longer
relaxation times observed on the T2 relaxagrams obtained from NMR examinations. Similar effects
were noted by Farroni et al. [125] on studies carried out on cornflakes.

In the preceding sections it was shown that the absorption of water could have a large effect
on the properties of plasticizer/polymer mixtures even in cross-linked systems due to its capacity of
forming strong H-bonding associations and to the intrinsic small size. Accordingly, Wu and Xu [126]
have reported a maximum in the measured density and a corresponding minimum in the estimated
fractional free volume only at very low water content (1.3 wt.%) for a bisphenol-A epoxy resin cured
with isophorone diamine, which is a characteristic feature of antiplasticization.

Ubbink [127] has carried out molecular dynamic simulations for amorphous carbohydrate/water
mixtures, which have indicated that the “hole” size within the glassy state decreases at low water
contents (antiplasticization regime) as a result of water becoming bound on the polymer chains and
have stated that at higher water concentrations are formed domains larger than the free holes. This
suggests that the formation interconnected clusters results from weak polymer–plasticizer interactions,
which can be inferred also from the discussion about the events identified in Figure 9.

Water has also a unique role for its ability to increase the Tg of polymers at low concentrations
even in systems that do not possess many groups with strong H-bonding capability. An example
is the increase in Tg of a commercial soft polymer material consisting of a random terpolymer of
methylmethacrylate, butyl methacrylate and dimethylaminoethyl methacrylate, known as Eutragit E
100 [128] through sorption of moisture from the environment. An increase in Tg from 34 to 42 ◦C was
observed at 6% RH in correspondence with a substantial reduction in the water permeation rate at the
same condition.

An example of antiplasticization has also been identified for a molecular glass by Ruiz et al. [129]
where it was shown that addition of water to prilocaine, an active pharmaceutical ingredient, has
the same effect as that of an applied pressure, resulting in an increase of Tg. The antiplasticization
effect was ascribed to the formation of prilocaine-H2O dimers or complexes with enhanced hydrogen
bonding interactions, which is a similar situation to the interactions of water with urea described earlier.

4. Peculiarities in the Interpretation of Antiplasticization Phenomena

4.1. The Glass Transition Temperature Anomalies

As indicated in the preceding section on the role of water, some authors have interpreted
the term “antiplasticization” as the opposite effect to plasticization with respect to the change in
glass transition temperature. Luk et al. [130], for instance, have studied the effect of adding up to
8% amylose complexing fatty acids (CFA), such as linoleic and oleic acids, on the glass transition
temperature of cassava starch (CS) with moisture content up to 35% (dry basis). For water contents
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below 15 wt.% a large increase in Tg was observed with the addition of CFA with a maximum at
2 wt.%, which diminished with increasing water content. The authors have attributed this peculiar
antiplasticization effect to the formation of amylose–lipid inclusion complexes, which act as “physical
cross-links” for the CS–water associations. Garcia et al. [131], on the other hand, have used the
term antiplasticization to describe the increase in Tg of an amorphous aromatic/aliphatic polyamide
(Trogamid T–5000) with the addition of minor amounts of a higher Tg auxiliary (polyvinyl phenol).
However, this is an expected behaviour of miscible polymer blends arising from the difference in the
Tg between the two polymer components and, therefore, it must be examined in a different light than
an antiplasticization phenomena.

A similar outcome has arisen from dielectric spectroscopy studies on mixtures of polybutadiene
and mineral oil by Casalini et al. [132]. These authors have observed a shift of the α-relaxation
spectrum to lower frequencies and have concluded that such an “antiplasticization behaviour” can
only arise if the Tg of the oil is higher than the Tg of the polymer. In this case, the authors have pointed
out that they were not able to obtain an experimental verification of the Tg of the oil owing to its
crystallization in cooling the sample to low temperatures. It is worth noting also that the presence of
oil in the mixture was found to increase the magnitude of the α-relaxation time, without any effect
on the β-relaxations. Moreover, neither the shape of the α-relaxation function nor its temperature
dependence was influenced by the presence of oil. Consequently, such a behaviour cannot be associated
with antiplasticization.

In a recent report Andrews et al. [133] have used the term antiplasticization to describe as a
phenomenon that brings about a strong deviation from the Gordon Taylor equation. In the related work
the nonsteroidal antiandrogen Bicalutamide (BL) was mixed with water soluble polyvinylpyrrolidone
(PVP) by hot melt extrusion (HME), using 10 wt.% triethylcitrate as the “processing plasticizer”. The
mixtures exhibited a single Tg value, which were significantly higher than those calculated using
the Gordon–Taylor equation and the behaviour was attributed to strong intermolecular interactions
between BL and PVP.

4.2. Implications of Data on Molecular Glasses

Contrary to the behaviour of polymer glasses discussed in relation to mechanical properties
(Section 3.1) dielectric relaxation studies on organic molecular (low molecular weight) glasses have
revealed the existence of a singular relationship for the temperature/plasticizer concentration to identify
the threshold conditions for the cross-over from antiplasticization to plasticization. This is exemplified
by the data and observation reported from several studies carried out on mixtures of trehalose (a dimer
of glucose) and glycerol. In dielectric relaxation studies carried out over a wide range and frequency by
Obrzut et al. [134] and Curtis et al. [135] the “relaxation time of the system” ( τ ) for the JG β-relaxations
was estimated from the complex permittivity data in terms of the distribution function of relaxation
times and a regularization technique [136].

ε (ω) − ε (∞)

∆ε
=

∫
1

1 + i ωτ
G (ln τ) d (ln τ) (23)

where ε (ω) is the permittivity at the measurement frequency, G (ln τ) is the logarithm distribution
function of relaxation times and ∆ε is the difference between relaxed (εo) and unrelaxed (ε∞) permittivity.
The ratio of the relaxation time of the mixture to that of trehalose, τmix/τth, (conceptually analogous to
the APR factor for application related properties) was used to characterize the extent of antiplasticization.
In Figure 7 are shown the variation of τmix/ τth with increasing glycerol concentration and a plot of
“Threshold temperature” (TA/P) against “Weight fraction of glycerol (ω glycerol)”, obtained from the
intersection at τmix/τth = 1

The salient feature of the diagrams in Figure 10 (left) is the very strong antiplasticization character
of the trehalose/glycerol mixtures, indicated by the large peak τmix/τth values. The data for the
threshold temperature in Figure 10 (right) show that the cross-over from antiplasticization occurred
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at a temperature well below the Tg of trehalose (115 ◦C) even at very low plasticizer concentrations.
The data are in good agreement with those reported more recently for the same binary system by
Ubbink [137] with respect to the rapid reduction in TA/P at glycerol concentrations greater than
30 wt.%. Similarly, Anopchenko et al. [138] have used the relaxation time ratio (τmix/τth) as a measure
of the extent of antiplasticization and have obtained similar results described in Figure 10, using
the term “critical plasticization” concentration to characterize the cross-over from antiplasticization
to plasticization.
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It is worth noting that Riggleman and de Pablo [139] have performed molecular dynamics
simulations for trehalose/glycerol mixtures, which predict an increase in density at 5 wt.% concentration
at all temperatures below 27 ◦C. For the same system Ubbink [22] have reported a maximum in
Debye–Waller factor at the same glycerol concentration from neutron scattering measurements. This is
consistent also with the data obtained for mixtures with sucrose [140], which showed a maximum in
the stiffness at 5 wt.% glycerol.

From these studies it is not possible to deduce whether the divergence from the dual cross-over
behaviour discussed for polymer glasses in relation to mechanical properties arises from molecular
size discrepancy or the nature of the excitation for the induced relaxations. It is possible, however, that
measurements have not been carried out at sufficiently low temperatures to reveal the conditions for a
reversion to plasticization behaviour, (i.e., τmix/τth < 1) at some critical range of plasticizer concentration.

Weng and Elliott [141] have used dynamic mechanical tests (DMA) on trehalose/glycerol mixtures
to obtain mechanical spectra for the construction of master curves using the Williams-Landel-Ferry
(WLF) shift factor aT method for the time/temperature superposition principle. In dynamic mechanical
spectroscopy this can be expressed in terms of a horizontal shift for the variation of the loss modulus
with a frequency over a wide range of temperatures, i.e., E”(ω, T) = E”(aT ω, Tr), where Tr is an
arbitrary reference temperature. This gives rise to an equivalent shift in the α-relaxation time using
the E” peak value along the frequency axis, so that τ = aT τr and τr = 1/ωmax according to the linear
viscoelastic theory. Through substitutions it is possible to obtain estimates for the fragility index m
from the constants C1 and C2 of the WLF equation, log τ/τg = −C1(T−Tg)/C2 + (T−Tg) where τg is the
relaxation time at Tg. This results in the expression m = C1 Tg/C2, where Tg is in K unit.
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The plot shown as an inset for Figure 10 (right) show a minimum for the m values obtained by
this method at around 90–92 wt.% and a maximum at around 85 wt.% trehalose content, while the
composition dependence of Tg was found to follow a Gordon–Taylor-like relationship. Furthermore,
the authors have shown that the line joining the two points for m at the higher glycerol concentration
with the value of m for pure trehalose coincides with the data obtained by the additivity rule for the glass
fragility of the mixture. The m value for glycerol was obtained by molecular dynamics simulations.

There are significant merits in the use of the fragility factor for determining the deviation of the
relaxation time from the additivity rule for mixtures, in so far as it considers events at Tg rather than at
an arbitrary temperature, as in the case of the specific volume in Table 2. Nonetheless, the possibility
of inducing a reversion to plasticization at lower temperatures relies on the likelihood of an increase in
the related activation energy of molecular relaxations in the β and γ transitions region, as indicated by
the data in the report by Maeda et al. [80].

4.3. Antiplasticization in Heterogeneous Polymer Materials

4.3.1. Polymer Blends

Moraru et al. [22] have found a significant antiplasticization effect, manifested as an increase
in both shear and tensile storage modulus, in polyol plasticized mixtures with meat–starch
(carbohydrate/protein blend) resulting from the addition of a very small amount of glycerol (2 wt.%)
and through the absorption of small amounts of moisture. Liu et al. [142] have reported a similar
effect at approximately the same glycerol content (2.5 wt.%) for films produced from blends of starch
and chitosan. The authors have shown that the addition of glycerol promotes interactions between
chitosan, starch and glycerol through hydrogen bonding, evidenced by a shift to high wave numbers
of the main peaks located at 3328, 2927 and 1638 cm−1 of starch and chitosan films without glycerol.

Saedi et al. [143] have studied the permeation of CH4/CO2 mixtures though membranes produced
from blends of polyethersolphones (PES) with minor amounts of polyetherimide (PEI). A minimum
was found in the variation of permeability and a maximum in the selectivity at a weight ratio of
PES/PEI equal to 98/2. At this composition ratio the two polymers were found to be fully miscible,
exhibiting only one Tg occurring at a temperature between the Tg values for the single components.

A very intriguing aspect of antiplasticization was revealed by Modesti et al. [144] in studies on
the permeation of water vapour through membranes made from a polyester (PEst) based polyurethane
(PU), which is a thermoplastic elastomer consisting of rigid PU domains dispersed in a rubbery
PEst matrix.

The authors have used the exponential Long’s equation [145] for the relationship between diffusion
coefficient (Deff) and volumetric water fraction sorbed by the membrane (ϕ), which is based on free
volumes theory for a linear increase due to plasticization, i.e.,

Deff = Do eγϕ (24)

where Do is the pre-exponential term and γ is a factor that characterizes the plasticization efficiency of
the diffusant.

Fitting the results to the above equation has produced a negative value for γ , which has been
associated with antiplasticization due to clustering of water. From a thermal analysis using modulated
differential scanning calorimetry (DSC) the authors were able to identify the fraction of water “bound”
on the polymer chains (PU segments) at low water fractions and water “cluster” at higher water contents.

From an analysis of data on the antiplasticization effects of water on mixtures of starch and polyols
Van der Sman [117] has shown that phase separation can take place at a specific composition ratio
even in the glassy state for polyol concentration above the antiplasticization/plasticization threshold
condition. This observation extends the sequence of events and change of physical state taking
place with increase plasticizer content in the following order: antiplasticization (molecular-scale
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homogeneity)→ plasticization (nanoscale domain heterogeneity)→ phase separation (micron-scale
domain growth).

In relation to phase heterogeneity Ward and Koros [146] and also Kamaruddin [147] have
specifically probed the effects of antiplasticization and physical ageing on mixed matrix membranes
(MMM) based on cross-linked polyimides. Some intriguing peculiarities were observed for the effect
of toluene contamination in the CO2/CH4 mixture. A higher reduction in permeability was observed at
toluene contamination of 1000 ppm than at 500 ppm, which was attributed to a combination of dual
mode sorption and antiplasticization effects.

4.3.2. Polymer Matrix Composites and Nanocomposites

A typical antiplasticization behaviour was revealed by Rasoldier et al. [148] with respect to the
thermal oxidative degradation of epoxy-matrix carbon-fibre composites. The authors observed that the
products of chain scission reactions gave rise to a reduction in the glass transition temperature and a
corresponding increase in modulus in the temperature range between the α and β transitions with two
cross-over points. Vassileva and Friederich [149] have observed suppression in the β relaxations and an
increase in Tβ with the incorporation of alumina nanoparticles into an amine cured epoxy resin, which
they have attributed to an antiplasticization feature resulting from densification of the resin matrix
around the dispersed nanoparticle. A similar effect on β relaxations created by the presence of a filler
(insoluble high-surface energy component of a mixture) was recently observed by Mascia et al. [150] in
studies on the thermal transition by DSC analysis of lactobionic acid (organic molecular glass). The
relaxation peak below the Tg was shifted to higher temperatures and became more pronounced through
physical ageing, which can be taken as a confirmation that the antiplasticization effect observed in a
“thermoset” polymer glass can be attributed to the presence of “free” low-MW species, as also indicated
in the findings of Rasoldier et al. [148]. This interpretation is supported by the work of Tang et al. [151],
in which was found a maximum in tensile strength and a minimum in water vapour transmission
at 5 wt.% glycerol content for a starch-based composite containing 6 wt.% montmorillonite nanoclay.
However, these effects were not related to β relaxations and, therefore, must be regarded as a mere
manifestation of the expected behaviour of “composites”.

4.4. Unusual Feature of Antiplasticization

An unusual behaviour, which was attributed to antiplasticization, has been reported by
Michelis et al. [152] in studies of the effects of ibuprofen as a plasticizer for a proprietary acrylic
pressure sensitive adhesive, which has a Tg in the region of −22 ◦C. An increase in both storage and loss
modulus, as well as an augmentation of the “probe tack” stress value measured at 21 ◦C, was observed
at 1 wt.% level of addition. The striking anomaly in the findings of this work was in respect to the
antiplasticization effect (expressed as in increase in stiffness), which was observed within the rubbery
state at a temperature well above the Tg. Since the authors were not able to reveal the presence of
crystals by both polarizing microscopy and DSC analysis, the observed anomaly can only be attributed
to “physical cross-links” resulting from strong H-bonding interactions between the COOH in ibuprofen
and highly polar groups in along the acrylic polymer chains, which are required to achieve a high level
of adhesion.

A similar intriguing behaviour has been observed for the effect of water on a mixture of cassava
starch with 6 wt.% corn oil [153], which showed an increase in the rubbery plateau modulus when the
water content increased to 19 wt.% and higher.

5. Concluding Remarks and Future Perspectives

The analysis of the work published over the last several decades has brought to light useful
findings that have made it possible to construct a model for polymer/plasticizer interactions within
the context of antiplasticization and related morphological features, as well as valuable insights for
applications. The main findings are summarised in Table 4.
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Table 4. Summary of main findings and conclusions.

Topic Main features and Comments References

Structure and
physical state

Molecular interactions by FTIR: Upward shift in frequency
wave number. [33,40–42]

Free volumes: Deviation from additivity rule with a
maximum extending into plasticization region. Transition
antiplasticization to plasticization through the formation of
plasticizer clusters.

[33,55,57,117,144,145]

Relaxation spectra: Reduction in glass transition
temperature with a depression of β relaxations peak through
an increase in relaxation time, resulting in a reduction of the
glass formation fragility.

[10,36,73–79,84,141]

Mechanical
properties

Modulus and Yield strength: Both increase over a
temperature range between α and β peak transitions.
Embrittlement: Results from a reduction in crazing strain
and fracture toughness between α and β peak transitions.

[9,10,12,15,77,86,87,123]

Diffusion related
properties

Gas permeation barrier: Monotonic reduction in gas
permeation rate with increasing plasticizer concentration to a
minimum, followed by a rapid increase within the
plasticization regime.
Sorption and Release: Reduction of water absorption of
carbohydrates in presence of plasticizers exerting strong
interactions with the polymer chains.

[17,32,55,57,99,110–112,116,117,144]

Related aspects
Physical ageing: Specific volume variation with temperature
is reduced, accompanied by a small increase in Tg.
Plasticizers accelerate physical ageing.

[9,11,59,61,66,72,98,99,102–104]

The analysis has identified the deviation from the additivity rule for free volumes and fragility
factor as the common basis for the phenomenological events leading to antiplasticization, At the same
time, it has not been possible to demonstrate the universal existence of two “threshold” temperatures
for the antiplasticization/plasticization cross-over for diffusivity and permeability, which was identified
with respect to mechanical properties. There are two possible reasons for this deficiency: (a) the
difficulty of obtaining the required data from experiments carried out at sufficiently low temperatures
and (b) the lack of a strong “benefit pull” for applications, such as the fields of membranes and drug
delivery. Another weakness of existing theories on antiplasticization is the lack of considerations
regarding the viscoelastic nature and yielding behaviour of polymers [9,154].

Up to present time molecular dynamics and LCL studies have not considered the dilatational
effects of hydrostatic stresses that bring about failure through crazing, microcavitation and
fracture [12,20,83,85,155]. Another shortcoming of present theoretical studies is the lack of regard
for the vanishing of antiplasticization at low temperature, which could be overcome through better
understanding of changes in the activation energy for relaxations in the β and γ transitions region.

Another aspect that requires attention in theoretical models for antiplasticization is the cooperative
effect of physical ageing. The embrittlement behaviour observed on various plasticized chitosan films
by Suyatma et al. [156], for instance, suggests the threshold plasticizer concentration for the cross-over
to plasticization is higher for samples that have been subjected to physical ageing.

Regarding future developments in material compositions it is possible that deep eutectic solvents
(DES) may feature more prominently in experimental work. The use of urea-acetamide as a DES in
polymer compositions could attract some attention as it is expected to be a more effective plasticizer than
the corresponding single crystalline components, owing to its glassy nature with a low Tg (−30 ◦C) [157].
This hypothesis is supported by the findings of Ma and Yu [158] from a study on plasticization of
starch by binary plasticizer combinations of single components of urea with formamide and urea with
acetamide for the production or rubbery polymer compositions, where it was observed that an effective
plasticization system was obtained only at some specific plasticizer ratios, corresponding to conditions
that prevent the segregation of urea. A paper published by Sousa et al. [159] using choline chloride-urea
DES as a solvent and permanent plasticizer to produce agar films has already indicated the viability
of these systems. Similarly, the incorporation of ionic liquids in thermosetting polymers [160] has
also been found to produce a typical antiplasticization behaviour, i.e., reduction in Tg and increase
in modulus at temperatures within the glassy state. These could prove to be particularly valuable
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for cold-cured adhesives and composites in view of the advantages ensuing from the reduction in
viscosity and Tg, which are expected to bring about an increase in both rate of hardening and final
cross-linking density [155]. This suggestion is validated by observations on cold-cured epoxy-siloxane
hybrid systems, showing that a reduction in the rate of the evolution of Tg during the first stage of
curing has resulted in higher Tg values and enhanced mechanical properties in the final stage [161].

Antiplasticization of oriented products, films and fibres, is another area for further
exploitation [162–164]. It should be noted that the occurrence of antiplasticization has been revealed
with respect to mechanical properties of electrospun fibre mats produced from zein mixtures with
glycerol as the plasticizer. Moreover, in a recent report Mascia et al. [165] have widened the horizon
for the use of plasticizers in the electrospinning of zein fibres in a manner that could provide new
opportunities for exploring the concept of antiplasticization to produce antibacterial fibre mats.

Author Contributions: Writing—review and editing, L.M., D.N., Y.K.; Investigation and data collection, L.M., D.N.,
X.B., Y.K.; Artwork and figures, D.N., Y.K.; Conceptualization and data curation, L.M., Y.K., X.B.; Writing—original
draft preparation, L.M.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mascia, L.; Acierno, D. Polymers in industry: From guncotton to CO2 glass. Adv. Polym. Technol. 2012, 31,
179–192. [CrossRef]

2. Nichols, J.B. Nitrocellulose and Camphor. J. Phys. Chem. 1923, 28, 769–771. [CrossRef]
3. Brous, S.L.; Semon, W.L. Koroseal A New Plastic Some Properties and Uses. Ind. Eng. Chem. 1935, 27,

667–672. [CrossRef]
4. Kinjo, N.; Nakagawa, T. Antiplasticization in the Slightly Plasticized Polyvinyl Chloride. J. Soc. Mater. Sci.

Jpn. 1973, 22, 462–465. [CrossRef]
5. Robeson, L.M.; Faucher, J.A. Secondary loss transitions in antiplasticized polymers. J. Polym. Sci. Part B

Polym. Lett. 1969, 7, 35–40. [CrossRef]
6. Kapur, S.; Rogers, C.E.; Baer, E. A mechanism for the β relaxation of wet nylon 6. J. Polym. Sci. Part B Polym.

Phys. 1972, 10, 2297–2300. [CrossRef]
7. Dlubek, G.; Redmann, F.; Krause-Rehberg, R. Humidity-induced plasticization and antiplasticization of

polyamide 6: A positron lifetime study of the local free volume. J. Appl. Polym. Sci. 2002, 84, 244–255.
[CrossRef]

8. Serpe, G.; Chaupart, N. Relaxation-structure relationship in bulk and plasticized polyamide 11. J. Polym. Sci.
Part B Polym. Phys. 1996, 34, 2351–2365. [CrossRef]

9. Mascia, L. Antiplasticization of poly (vinyl chloride) in relation to thermal ageing and non-linear viscoelastic
behaviour. Polymer (Guildf) 1978, 19, 325–328. [CrossRef]

10. Mascia, L. The influence of deformation mode on the dynamic mechanical spectra of lightly plasticised PVC
compositions. Polym. Test. 1987, 7, 109–120. [CrossRef]

11. Robertson, R.E.; Joynson, C.W. Free volume and the annealing and antiplasticizing of bisphenol A
polycarbonate. J. Appl. Polym. Sci. 1972, 16, 733–738. [CrossRef]

12. Mascia, L.; Margetts, G. Viscoelasticity and plasticity aspects of antiplasticization phenomena: Strain rate
and temperature effects. J. Macromol. Sci. Part B. 1987, 26, 237–256. [CrossRef]

13. Soong, S.Y.; Cohen, R.E.; Boyce, M.C.; Chen, W. The effects of thermomechanical history and strain rate on
antiplasticization of PVC. Polymer (Guildf) 2008, 49, 1440–1443. [CrossRef]

14. Tsui, N.T.; Yang, Y.; Mulliken, A.D.; Torun, L.; Boyce, M.C.; Swager, T.M.; Thomas, E.L. Enhancement to the
rate-dependent mechanical behavior of polycarbonate by incorporation of triptycenes. Polymer (Guildf) 2008,
49, 4703–4712. [CrossRef]

15. Mascia, L.; Wooldridge, P.G.; Stokell, M.J. Antiplasticization of polyvinyl chloride in relation to crazing and
fracture behaviour. J. Mater. Sci. 1989, 24, 2775–2780. [CrossRef]

16. Borek, J.; Osoba, W. Influence of the plasticization on free volume in polyvinyl chloride. J. Polym. Sci. Part B
Polym. Phys. 1998, 36, 1839–1845. [CrossRef]

http://dx.doi.org/10.1002/adv.21275
http://dx.doi.org/10.1021/j150241a008
http://dx.doi.org/10.1021/ie50306a016
http://dx.doi.org/10.2472/jsms.22.462
http://dx.doi.org/10.1002/pol.1969.110070108
http://dx.doi.org/10.1002/pol.1972.180101115
http://dx.doi.org/10.1002/app.10319
http://dx.doi.org/10.1002/(SICI)1099-0488(199610)34:14&lt;2351::AID-POLB5&gt;3.0.CO;2-Z
http://dx.doi.org/10.1016/0032-3861(78)90226-4
http://dx.doi.org/10.1016/0142-9418(87)90005-5
http://dx.doi.org/10.1002/app.1972.070160317
http://dx.doi.org/10.1080/00222348708248068
http://dx.doi.org/10.1016/j.polymer.2008.02.001
http://dx.doi.org/10.1016/j.polymer.2008.08.038
http://dx.doi.org/10.1007/BF02385625
http://dx.doi.org/10.1002/(SICI)1099-0488(199808)36:11&lt;1839::AID-POLB5&gt;3.0.CO;2-L


Polymers 2020, 12, 769 30 of 36

17. Sefcik, M.D.; Schaefer, J.; May, F.L.; Raucher, D.; Dub, S.M. Diffusivity of gases and main-chain cooperative
motions in plasticized poly(vinyl chloride). J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 1041–1054. [CrossRef]

18. Guerrero, S.J. Antiplasticization and crystallinity in poly(vinyl chloride). Macromolecules 1989, 22, 3480–3485.
[CrossRef]

19. Kazama, Y.; Yamamoto, O. A Study on the Antiplasticization Mechanism of PVC by Infrared Dichroism. J.
Soc. Mater. Sci. Jpn. 1971, 20, 665–668. [CrossRef]

20. Delcambre, S.P.; Riggleman, R.A.; de Pablo, J.J.; Nealey, P.F. Mechanical properties of antiplasticized polymer
nanostructures. Soft Matter 2010, 6, 2475. [CrossRef]

21. Cais, R.E.; Nozomi, M.; Kawai, M.; Miyake, A. Antiplasticization and abrasion resistance of polycarbonates
in the charge-transport layer of an organic photoconductor. Macromolecules 1992, 25, 4588–4596. [CrossRef]

22. Ubbink, J. Plasticization and antiplasticization in amorphous food systems. Curr. Opin. Food Sci. 2018, 21,
72–78.

23. Seow, C.C.; Cheah, P.B.; Chang, Y.P. Antiplasticization by Water in Reduced-Moisture Food Systems. J. Food
Sci. 1999, 64, 576–581. [CrossRef]

24. Pittia, P.; Sacchetti, G. Antiplasticization effect of water in amorphous foods. A review. Food Chem. 2008, 106,
1417–1427. [CrossRef]

25. Farhan, A.; Hani, N.M. Characterization of edible packaging films based on semi-refined kappa-carrageenan
plasticized with glycerol and sorbitol. Food Hydrocoll. 2017, 64, 48–58. [CrossRef]

26. Moraru, C.I.; Lee, T.-C.; Karwe, M.V.; Kokini, J.L. Plasticizing and Antiplasticizing Effects of Water and
Polyols on a Meat-Starch Extruded Matri. J. Food Sci. 2002, 67, 3396–3401. [CrossRef]

27. Aguirre, A.; Borneo, R.; León, A.E. Properties of triticale protein films and their relation to
plasticizing—Antiplasticizing effects of glycerol and sorbitol. Ind. Crops Prod. 2013, 50, 297–303. [CrossRef]

28. Lee, J.S.; Leisen, J.; Choudhury, R.P.; Kriegel, R.M.; Beckham, H.W.; Koros, W.J. Antiplasticization-based
enhancement of poly(ethylene terephthalate) barrier properties. Polymer (Guildf) 2012, 53, 213–222. [CrossRef]

29. Klinger, M.; Tolbod, L.P.; Ogilby, P.R. Influence of a novel castor-oil-derived additive on the mechanical
properties and oxygen diffusivity of polystyrene. J. Appl. Polym. Sci. 2012, 118, 1643–1650. [CrossRef]

30. Larocca, N.M.; Pessan, L.A. Effect of antiplasticisation on the volumetric, gas sorption and transport properties
of polyetherimide. J. Membr. Sci. 2003, 218, 69–92. [CrossRef]

31. Ambrosio-Martín, J.; Fabra, M.J.; Lopez-Rubio, A.; Lagaron, J.M. An effect of lactic acid oligomers on the
barrier properties of polylactide. J. Mater. Sci. 2014, 49, 2975–2986. [CrossRef]

32. Zdanowicz, M.; Johansson, C. Mechanical and barrier properties of starch-based films plasticized with two-
or three component deep eutectic solvents. Carbohydr. Polym. 2016, 151, 103–112. [CrossRef] [PubMed]

33. Wang, J.; Cheng, F.; Zhu, P. Structure and properties of urea-plasticized starch films with different urea
contents. Carbohydr. Polym. 2014, 101, 1109–1115. [CrossRef] [PubMed]

34. Xu, W.S.; Douglas, J.F.; Freed, K.F. Influence of Cohesive Energy on the Thermodynamic Properties of a
Model Glass-Forming Polymer Melt. Macromolecules 2016, 49, 8341–8354. [CrossRef]

35. Mascia, L. The Role of Additives in Plastics; Edward Arnold: London, UK, 1974; pp. 58–59.
36. Bao, C.Y.; Long, D.R.; Vergelati, C. Miscibility and dynamical properties of cellulose acetate/plasticizer

systems. Carbohydr. Polym. 2015, 116, 95–102. [CrossRef]
37. Younker, J.M.; Poladi, R.H.; Bendler, H.V.; Sunkara, H.B. Computational screening of renewably sourced

polyalkylene glycol plasticizers for nylon polyamides. Polym. Adv. Technol. 2016, 27, 273–280. [CrossRef]
38. He, M.; Wang, Z.; Wang, R.; Zhang, L.; Jia, Q. Preparation of Bio-Based Polyamide Elastomer by Using Green

Plasticizers. Polymers (Basel) 2016, 8, 257. [CrossRef]
39. Paris, C.; Coupry, C. Fourier transform Raman spectroscopic study of the first cellulose-based artificial

materials in heritage. J. Raman Spectrosc. 2005, 36, 77–82. [CrossRef]
40. Benazzouz, A.; Dudognon, E.; Correia, N.T.; Molinier, V.; Aubry, J.-M.; Descamps, M. Interactions

underpinning the plasticization of a polymer matrix: A dynamic and structural analysis of DMP-plasticized
cellulose acetate. Cellulose 2017, 24, 487–503. [CrossRef]

41. De Groote, P.; Rouxhet, P.G.; Devaux, J.; Godard, P. Infrared Study of the Hydrogen Bonding Association
in Polyamides Plasticized by Benzenesulfonamides. Part I: Self-Association in Amide and Sulfonamide
Systems; Part II: Amide—Sulfonamide Interaction. Appl. Spectrosc. 2001, 55, 877–887. [CrossRef]

42. Musto, P.; Ragosta, G.; Mascia, L. Vibrational Spectroscopy Evidence for the Dual Nature of Water Sorbed
into Epoxy Resins. Chem. Mater. 2000, 12, 1331–1341. [CrossRef]

http://dx.doi.org/10.1002/pol.1983.180210705
http://dx.doi.org/10.1021/ma00198a046
http://dx.doi.org/10.2472/jsms.20.665
http://dx.doi.org/10.1039/b926843j
http://dx.doi.org/10.1021/ma00044a020
http://dx.doi.org/10.1111/j.1365-2621.1999.tb15088.x
http://dx.doi.org/10.1016/j.foodchem.2007.03.077
http://dx.doi.org/10.1016/j.foodhyd.2016.10.034
http://dx.doi.org/10.1111/j.1365-2621.2002.tb09596.x
http://dx.doi.org/10.1016/j.indcrop.2013.07.043
http://dx.doi.org/10.1016/j.polymer.2011.11.006
http://dx.doi.org/10.1002/app.32548
http://dx.doi.org/10.1016/S0376-7388(03)00139-X
http://dx.doi.org/10.1007/s10853-013-7929-x
http://dx.doi.org/10.1016/j.carbpol.2016.05.061
http://www.ncbi.nlm.nih.gov/pubmed/27474548
http://dx.doi.org/10.1016/j.carbpol.2013.10.050
http://www.ncbi.nlm.nih.gov/pubmed/24299881
http://dx.doi.org/10.1021/acs.macromol.6b01503
http://dx.doi.org/10.1016/j.carbpol.2014.07.078
http://dx.doi.org/10.1002/pat.3632_1
http://dx.doi.org/10.3390/polym8070257
http://dx.doi.org/10.1002/jrs.1288
http://dx.doi.org/10.1007/s10570-016-1148-y
http://dx.doi.org/10.1366/0003702011952677
http://dx.doi.org/10.1021/cm9906809


Polymers 2020, 12, 769 31 of 36

43. Bergquist, P.; Zhu, Y.; Jones, A.A.; Inglefield, P.T. Plasticization and Antiplasticization in Polycarbonates: The
Role of Diluent Motion. Macromolecules 1999, 32, 7925–7931. [CrossRef]

44. Ruiz-Treviño, F.A.; Paul, D.R. A quantitative model for the specific volume of polymer-diluent mixtures in
the glassy state. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1037–1050. [CrossRef]

45. Zhang, Z.; Xiao, G.; Grover, C.P. Volume relaxation in polymers and its effect on waveguide applications.
Appl. Opt. 2004, 43, 2325. [CrossRef]

46. Ronald, P.; White, J.; Lipson, E.G. Polymer Free Volume and its Connection to the Glass Transition.
Macromolecules 2016, 49, 3987–4007.

47. Vrentas, J.S.; Duda, J.L.; Ling, H.C. Antiplasticization and volumetric behavior in glassy polymers.
Macromolecules 1988, 21, 1470–1475. [CrossRef]

48. Sharma, S.K.; Pujari, P.K. Role of free volume characteristics of polymer matrix in bulk physical properties
of polymer nanocomposites: A review of positron annihilation lifetime studies. Prog. Polym. Sci. 2017, 75,
31–47. [CrossRef]

49. Queiroz, S.M.; Machado, J.C.; Porto, A.O.; Silva, G.G. Positron annihilation and differential scanning
calorimetry studies of plasticized poly(ethylene oxide). Polymer (Guildf) 2001, 42, 3095–3101. [CrossRef]

50. Meiers, R.J.; Coussens, B. The molecular structure of the urea molecule: Is the minimum energy structure
planar? J. Mol. Struct. Theochem. 1992, 253, 25–33. [CrossRef]

51. Jackson, W.J.; Caldwell, J.R. Antiplasticization. II. Characteristics of antiplasticizers. J. Appl. Polym. Sci. 1967,
11, 211–226. [CrossRef]

52. Anderson, S.L.; Grulke, E.A.; DeLassus, P.T.; Smith, P.B.; Kocher, C.W.; Landes, B.G. A Model for
Antiplasticization in Polystyrene. Macromolecules 1995, 28, 2944–2954. [CrossRef]

53. Mascia, L. Thermoplastics Materials Engineering, 2nd ed.; Elsevier Applied Science: London, UK, 1989; p. 62.
54. Jenckel, E.; Heusch, R. Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel,

(Lowering of the glass transition temperature of organic glasses by solvents). Kolloid Z. 1953, 130, 89–105.
[CrossRef]

55. Maeda, Y.; Paul, D.R. Effect of antiplasticization on gas sorption and transport. II. Poly(phenylene oxide). J.
Polym. Sci. Part B Polym. Phys. 1987, 25, 981–1003. [CrossRef]

56. Goudeau, S.; Charlot, M.; Vergelati, C.; Müller-Plathe, F. Atomistic Simulation of the Water Influence on the
Local Structure of Polyamide 6,6. Macromolecules 2004, 37, 8072–8081. [CrossRef]

57. Lamm, M.S.; Simpson, A.; McNevin, M.; Frankenfeld, C.; Nay, R.; Variankaval, N. Probing the Effect of
Drug Loading and Humidity on the Mechanical Properties of Solid Dispersions with Nanoindentation:
Antiplasticization of a Polymer by a Drug Molecule. Mol. Pharm. 2012, 9, 3396–3402. [CrossRef]

58. Lee, J.S. Fundamentals of Transport in Advanced Barrier Materials Based on Engineered Antiplasticization.
Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, May 2011.

59. Lee, H.-D.; McGarry, F.J. The origin of the β transition and its influence on physical ageing. Polymer 1993, 34,
4267–4271. [CrossRef]

60. Ito, K.; Ujira, Y. Positronium Diffusion in Polystyrene at Low Temperatures. Polym. J. 1998, 30, 566–570.
[CrossRef]

61. Yavari, M.; Maruf, S.; Lin, H. Physical aging of glassy perfluoropolymers in thin film composite membranes.
Part II. Glass transition temperature and the free volume model. J. Membr. Sci. 2017, 525, 399–408. [CrossRef]

62. Maeda, Y.; Paul, D.R. Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation.
J. Polym. Sci. Part B Polym. Phys. 1987, 25, 1005–1016. [CrossRef]

63. Puosi, F.; Leporini, D. The kinetic fragility of liquids as manifestation of the elastic softening. Eur. Phys. J. E
2015, 38, 87. [CrossRef]

64. Zhang, H.J.; Sellaiyan, S.; Kakizaki, T.; Uedono, A.; Taniguchi, Y.; Hayashi, K. Effect of Free-Volume Holes on
Dynamic Mechanical Properties of Epoxy Resins for Carbon-Fiber-Reinforced Polymers. Macromolecules
2017, 50, 3933–3942. [CrossRef]

65. Miyagawa, A.; Nobukawa, S.; Yamaguchi, M. Thermal Expansion Behavior of Antiplasticized Polycarbonate.
Nihon Reoroji Gakkaishi 2014, 42, 255–260. [CrossRef]

66. Xia, J.; Chung, T.-S.; Paul, D.R. Physical aging and carbon dioxide plasticization of thin polyimide films in
mixed gas permeation. J. Membr. Sci. 2014, 450, 457–468. [CrossRef]

67. Benczédi, D.; Tomka, I.; Escher, F. Thermodynamics of Amorphous Starch−Water Systems. 1. Volume
Fluctuations. Macromolecules 1998, 31, 3055–3061. [CrossRef]

http://dx.doi.org/10.1021/ma980205g
http://dx.doi.org/10.1002/(SICI)1099-0488(19980430)36:6&lt;1037::AID-POLB12&gt;3.0.CO;2-7
http://dx.doi.org/10.1364/AO.43.002325
http://dx.doi.org/10.1021/ma00183a042
http://dx.doi.org/10.1016/j.progpolymsci.2017.07.001
http://dx.doi.org/10.1016/S0032-3861(00)00668-6
http://dx.doi.org/10.1016/0166-1280(92)87095-H
http://dx.doi.org/10.1002/app.1967.070110205
http://dx.doi.org/10.1021/ma00112a047
http://dx.doi.org/10.1007/BF01519799
http://dx.doi.org/10.1002/polb.1987.090250502
http://dx.doi.org/10.1021/ma049848o
http://dx.doi.org/10.1021/mp3003013
http://dx.doi.org/10.1016/0032-3861(93)90187-F
http://dx.doi.org/10.1295/polymj.30.566
http://dx.doi.org/10.1016/j.memsci.2016.08.033
http://dx.doi.org/10.1002/polb.1987.090250503
http://dx.doi.org/10.1140/epje/i2015-15087-2
http://dx.doi.org/10.1021/acs.macromol.7b00472
http://dx.doi.org/10.1678/rheology.42.255
http://dx.doi.org/10.1016/j.memsci.2013.09.047
http://dx.doi.org/10.1021/ma970143e


Polymers 2020, 12, 769 32 of 36

68. Benczédi, D.; Tomka, I.; Escher, F. Thermodynamics of Amorphous Starch−Water Systems. 2. Concentration
Fluctuations. Macromolecules 1998, 31, 3062–3074. [CrossRef]

69. Dudowicz, J.; Freed, K.; Douglas, J.F. Direct computation of characteristic temperatures and relaxation times
for glass-forming polymer liquids. J. Chem. Phys. 2005, 123, 111102. [CrossRef]

70. Roussenova, M.; Murith, M.; Alam, A.; Ubbink, J. Plasticization, Antiplasticization, and Molecular Packing
in Amorphous Carbohydrate-Glycerol Matrices. Biomacromolecules 2010, 11, 3237–3247. [CrossRef]

71. Araujo, S.; Delpouve, N.; Dhotel, A.; Domenek, S.; Guinault, A.; Delbreilh, L.; Dargent, E. Reducing the Gap
between the Activation Energy Measured in the Liquid and the Glassy States by Adding a Plasticizer to
Polylactide. ACS Omega 2018, 3, 17092–17099. [CrossRef]

72. Pan, P.; Zhu, B.; Inoue, Y. Enthalpy Relaxation and Embrittlement of Poly(l-lactide) during Physical Aging.
Macromolecules 2007, 40, 9664–9671. [CrossRef]

73. Vilics, T.; Schneider, H.A.; Manoviciu, V.; Manoviciu, L. A DMA Study of the Suppression of the β Transition
in slightly Plasticized PVC Blends. J. Therm. Anal. 1996, 47, 1141–1153. [CrossRef]

74. Lee, D.H.; Lee, J.H.; Cho, M.S.; Choi, S.H.; Lee, Y.K.; Nam, J.D. Viscoelastic characteristics of plasticized
cellulose nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 59–65. [CrossRef]

75. Seymour, R.W.; Weinhold, S.; Haynes, S.K. Mechanical and dielectric relaxation in cellulose esters. J. Macromol.
Sci. Part B. 1979, 16, 337–353. [CrossRef]

76. Lourdin, D.; Bizot, H.; Colonna, P. Antiplasticization in starch-glycerol films? J. Appl. Polym. Sci. 1997, 63,
1047–1053. [CrossRef]

77. Psurek, T.; Soles, C.L.; Page, K.A.; Cicerone, M.T.; Douglas, J.F. Quantifying Changes in the High-Frequency
Dynamics of Mixtures by Dielectric Spectroscopy. J. Phys. Chem. B 2008, 112, 15980–15990. [CrossRef]

78. Cangialosi, D.; Wubbenhorst, M.; Schut, H.; van Veen, A.; Picken, S.J. Dynamics of polycarbonate far below
the glass transition temperature: A positron annihilation lifetime study. Phys. Rev. B 2004, 69, 134206.
[CrossRef]

79. Elicegui, A.; del Val, J.J.; Bellenger, V.; Verdu, J. A study of plasticization effects in poly(vinyl chloride).
Polymer 1997, 38, 1647–1657. [CrossRef]

80. Maeda, M.; Nobukawa, S.; Inomata, K.; Yamaguchi, M. Effect of molecular size on correlated dynamics of
low-mass molecules and local chain motion in antiplasticized polycarbonate. Nihon Reoroji Gakshaishi (J. Soc.
Rheol. Jpn.) 2019, 47, 111–117. [CrossRef]

81. Angell, C. Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems. J.
Non-Cryst. Solids 1991, 13, 131–133. [CrossRef]

82. Floudas, G.; Paluch, M.; Grzybowski, A.; Ngai, K.L. Molecular Dynamics of Glass-Forming Systems; Springer:
Berlin/Heidelberg, Germany, 2001; p. 6.

83. Doolittle, A.K.; Doolittle, D.B. Studies in Newtonian flow. V. Further verification of the free-space viscosity
equation. J. Appl. Phys. 1957, 28, 901. [CrossRef]

84. Stukalin, E.B.; Douglas, J.F.; Freed, K.F. Plasticization and antiplasticization of polymer melts diluted by low
molar mass species. J. Chem. Phys. 2010, 132, 084504. [CrossRef]

85. Riggleman, R.A.; Douglas, J.F.; de Pablo, J.J. Antiplasticization and the elastic properties of glass-forming
polymer liquids. Soft Matter 2010, 6, 292–304. [CrossRef]

86. Garton, A.; Haldankar, G.S.; McLean, P.D. Modification of Free Volume in Epoxy Adhesive Formulations on
tests carried out on an epoxy resin. J. Adhes. 1989, 29, 13–26. [CrossRef]

87. Mikus, P.-Y.; Alix, S.; Soulestin, J.; Lacrampe, M.F.; Krawczak, P.; Coqueret, X.; Dolea, P. Deformation
mechanisms of plasticized starch materials. Carbohydr. Polym. 2014, 114, 450–457. [CrossRef]

88. Oxborough, R.J.; Bowde, P.B. A critical strain criterion for crazing of glassy polymers. Philos. Mag. 1973, 28,
547–559. [CrossRef]

89. Sternstein, S.S.; Myers, F.A. Solid State of Polymers; Geil, P.H., Baer, E., Wada, Y., Eds.; Marcel Dekker: New
York, NY, USA, 1974; p. 54.

90. Dieter, G.E. Mechanical Metallurgy, 2nd ed.; McGraw Hill: Tokyo, Japan, 1976; p. 681.
91. Plati, E.; Williams, J.G. Effects of temperature on fracture toughness of polymers. Polymer 1975, 16, 915–920.

[CrossRef]
92. Fujita, H. Diffusion in polymer-diluent systems. In Fortschritte Der Hochpolym; Springer: Berlin/Heidelberg,

Germany, 1961; pp. 1–47.

http://dx.doi.org/10.1021/ma960950y
http://dx.doi.org/10.1063/1.2035087
http://dx.doi.org/10.1021/bm1005068
http://dx.doi.org/10.1021/acsomega.8b02474
http://dx.doi.org/10.1021/ma071737c
http://dx.doi.org/10.1007/BF01979453
http://dx.doi.org/10.1002/polb.20307
http://dx.doi.org/10.1080/00222347908212300
http://dx.doi.org/10.1002/(SICI)1097-4628(19970222)63:8&lt;1047::AID-APP11&gt;3.0.CO;2-3
http://dx.doi.org/10.1021/jp8034314
http://dx.doi.org/10.1103/PhysRevB.69.134206
http://dx.doi.org/10.1016/S0032-3861(96)00671-4
http://dx.doi.org/10.1678/rheology.47.111
http://dx.doi.org/10.1016/0022-3093(91)90266-9
http://dx.doi.org/10.1063/1.1722884
http://dx.doi.org/10.1063/1.3304738
http://dx.doi.org/10.1039/B915592A
http://dx.doi.org/10.1080/00218468908026474
http://dx.doi.org/10.1016/j.carbpol.2014.06.087
http://dx.doi.org/10.1080/14786437308221002
http://dx.doi.org/10.1016/0032-3861(75)90213-X


Polymers 2020, 12, 769 33 of 36

93. Cohen, M.H.; Turnbull, D. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959, 31, 1164–1169.
[CrossRef]

94. Duda, J.L.; Romdhane, I.H.; Danner, R.P. Diffusion in glassy polymers—relaxation and antiplasticization. J.
Non-crystalline solids. 1994, 172, 715–720. [CrossRef]

95. Laksmana, F.L.; Kok, P.J.A.H.; Vromans, H.; Van der Voort, K. Maarschalk, Predicting the diffusion coefficient
of water vapor through glassy HPMC films at different environmental conditions using the free volume
additivity approach. Eur. J. Pharm. Sci. 2009, 37, 545–554. [CrossRef]

96. Robeson, L.M. The effect of antiplasticization on secondary loss transitions and permeability of polymers.
Polym. Eng. Sci. 1969, 9, 277–281. [CrossRef]

97. Maeda, Y.; Paul, D.R. Effect of antiplasticization on selectivity and productivity of gas separation membranes.
J. Membr. Sci. 1987, 30, 1–9. [CrossRef]

98. Guo, J.-H.; Robertson, R.E.; Amidon, G.L. Thermodynamic Aspects of the Disappearance of Antiplasticization
in Slightly Plasticized Polymer Films at High Temperature. J. Pharm. Sci. 1992, 81, 1229–1230. [CrossRef]
[PubMed]

99. Guo, J.-H. A Theoretical and Experimental Study of Additive Effects of Physical Aging and Antiplasticization
on the Water Permeability of Polymer Film Coatings. J. Pharm. Sci. 1994, 83, 447–449. [CrossRef] [PubMed]

100. Horn, N.R.; Paul, D.R. Carbon Dioxide Sorption and Plasticization of Thin Glassy Polymer Films Tracked by
Optical Methods. Macromolecules 2012, 45, 2820–2834. [CrossRef]

101. Xia, J.; Chung, T.-S.; Li, P.; Horn, N.R.; Paul, D.R. Aging and carbon dioxide plasticization of thin
polyetherimide films. Polymer (Guildf) 2012, 53, 2099–2108. [CrossRef]

102. Struik, L.C.E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier: Amsterdam, The Netherlands,
1977.

103. Roth, C.B. (Ed.) Polymer Glasses; CRC Press: Boca Raton, FL, USA, 2017.
104. Tian, Z.; Cao, B.; Li, P. Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation,

plasticization resistance and physical aging properties. J. Membr. Sci. 2018, 560, 87–96. [CrossRef]
105. Kim, H.; Koros, W.J.; Paul, D.R. Physical aging of thin 6FDA-based polyimide membranes containing

carboxyl acid groups. Part I. Transport properties. Polymer 2006, 47, 3094–3103. [CrossRef]
106. Dorkenoo, K.D.; Pfromm, P.H. Accelerated Physical Aging of Thin Poly[1 -(trimethylsilyl)-1-propyne] Films.

Macromolecules 2000, 33, 3747–3751. [CrossRef]
107. Huang, Y.; Paul, D.R. Physical Aging of Thin Glassy Polymer Films Monitored by Optical Properties.

Macromolecules 2006, 39, 1554–1559. [CrossRef]
108. Vaughn, J.T.; Koros, W.J.; Johnson, J.R.; Karvan, O. Effect of thermal annealing on a novel polyamide–imide

polymer membrane for aggressive acid gas separations. J. Membr. Sci. 2012, 401–402, 163–174. [CrossRef]
109. Bernardo, P.; Bazzarelli, F.; Tasselli, F.; Clarizia, G.; Mason, C.R.; Maynard-Atem, L.; Budd, P.M.; Lanč, M.;
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