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Abstract: Automated fiber placement (AFP) is an advanced manufacturing method for composites,
which is especially suitable for large-scale composite components. However, some manufacturing
defects inevitably appear in the AFP process, which can affect the mechanical properties of composites.
This work aims to investigate the recent works on manufacturing defects and their online detection
techniques during the AFP process. The main content focuses on the position defect in conventional
and variable stiffness laminates, the relationship between the defects and the mechanical properties,
defect control methods, the modeling method for a void defect, and online detection techniques.
Following that, the contributions and limitations of the current studies are discussed. Finally,
the prospects of future research concerning theoretical and practical engineering applications are
pointed out.

Keywords: automated fiber placement; manufacturing defects; mechanical properties; control strategy;
online detection techniques

1. Introduction

Fiber reinforced plastics/composites (FRPs) not only have many advantages, including a light
weight, high strength, and high temperature resistance, but can also be used to integrate and
manufacture large-scale integral components. They are superior to traditional metal materials (e.g.,
steel and non-ferrous metals) in terms of weight reduction, fatigue resistance, corrosion resistance,
reliability, and maintainability, and are becoming more widely used in aerospace, transportation,
energy, and defense, etc. [1–4] The manufacturing method of FRPs includes hand layup, molding,
pultrusion, filament winding, automated tape laying, and automated fiber placement. Among them,
automated fiber placement (AFP) appeared in the 1970s in the aerospace industry. It combines the
advantages of filament winding and automated tape laying to overcome their limitations and exploit
their benefits, and is one of the fastest-growing and most effective fully automated manufacturing
technologies for composite materials in recent years [5–12]. AFP technology can be used not only
for producing thermosetting or thermoplastic composites but also for dry fiber placement [13–15].
An AFP machine usually consists of a placement head and functional mechanical structure (a robotic
arm or gantry structure). The placement head lays prepreg tows onto a mold to construct the layup.
Depending on the shape of the mold surface, the AFP process can use multiple prepreg tows (8~32 tows)
to realize continuous variable angle placement. Additionally, it can cut/refeed the tow to adapt to the
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change of the manufacturing boundary, which can guarantee the processing requirements of complex
structures [16–23]. The AFP working principle [22] and AFP machine produced by Harbin Institute of
Technology (HIT) are shown in Figure 1.
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Section 2, the positioning defects during the AFP process, mainly gaps and overlaps, are introduced 
regarding conventional laminates and variable-stiffness laminates, respectively, wherein the 
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Figure 1. The automated fiber placement (AFP) working principle and AFP machine produced by
Coriolis: (a) AFP working principle [22], (b) AFP machine produced by HIT.

Due to the complexity of the AFP manufacturing process, especially multiple process parameters,
prepreg defects, and manufacturing errors, the laminates are not exempt from imperfections, such as
gaps and/or overlaps, twisted tows, fiber waviness, and air pockets, which often appear in the final
component, thereby affecting the mechanical performance [24–31]. The contribution of literature [32]
has been to classify the defects during the AFP process, including the following four categories:

• Positioning defects (gaps, overlaps, missing tows, twisted tows, etc.);
• Bonding defects (bridging, air pockets, etc.);
• Foreign bodies;
• Tow defects.

The different types of defects are shown in Figure 2.
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For the AFP process, only the first two types of defects are controllable by AFP process optimization.
Thus, this paper focuses on the positioning defects and bonding defects to discuss the current research
progress and existing problems. The rest of this paper is organized as follows. In Section 2, the positioning
defects during the AFP process, mainly gaps and overlaps, are introduced regarding conventional
laminates and variable-stiffness laminates, respectively, wherein the mechanical properties of the
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laminates under different defect levels and defect-controlling process techniques are discussed. Section 3
focuses on the modeling method of void defects for the thermoplastic composites made by the AFP
process. In Section 4, the existing online detection techniques for the defects are enumerated. Some novel
detection techniques are investigated, including an optical fiber Bragg grating method, a thermal
image processing method, and a stress wave method. Also, some advantages and disadvantages of the
detection methods are further discussed. Finally, the research prospect of the defects during the AFP
process is pointed out.

2. Positioning Defects

2.1. Conventional Laminates

In this paper, conventional laminates refer to directional and unidirectional laminates.
In manufacturing complex shapes or surface parts, misalignments can appear on the band edges or
the adjacent tows inevitably, such as gaps, overlaps, fiber waviness, twisted tows, and bridging, etc.
For intraply gaps and overlaps, Sawicki et al. [33,34] pointed out that the fiber placement is easier to
exhibit in in-plane waviness than tape laying. Due to the width variance of tows caused by in-plane
waviness this can form gaps and/or overlaps around in-plane waviness, which can cause out-of-plane
waviness in adjacent plies. The relationship between the defects and compression strength was also
investigated. The results show that compression strength is reduced 15−20% when overlaps and gaps
from 0.03” to 0.12” wide are laid. The rate of decrease in compressive strength is significant for gap
sizes smaller than 0.03”, but the strength reduction is relatively constant for larger gap sizes. Also,
they found that the decrease in the compressive strength of the unnotched and notched laminates
was the same. Croft et al. [35] performed some experimental works to investigate the effect of defects
on ultimate strengths, including gaps, overlaps, half gap/overlap, and twisted tows. The strengths
were tested at the lamina level (fiber tension, fiber compression, and in-plane shear), as well as at the
laminate level (open hole tension (OHT) and open hole compression (OHC)). Each test was compared
with a baseline configuration without defects, which is shown in Figure 3 and Table 1.
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Table 1. Performance comparison of different defect configurations 1 [35].

Gap Overlap Half Gap/Overlap Twisted Tow

Tension — — ↓ ↑

Compression — ↑ — —

In-plane
shear

Length — — ↓ ↓

Width ↑ ↓ ↓ ↓

OHT — — — o

OHC
Length ↑ ↑ ↑ o

Width ↓ ↓ ↓ o
1 Note: ↑ refers to ≥3% increase, ↓ refers to ≤3% decrease, — refers to ±3% variation, o represents no test. OHT =
open hole tension; OHC = open hole compression.

The results showed that the defects did not always lead to a reduction in mechanical performance.
Generally, a defect that gives an improvement in one mechanical performance also penalizes another
performance. Therefore, some defects could be selected to be avoided or controlled based on the
special mechanical requirements of some parts.

Marrouze et al. [36] proposed an advanced computational multiscale and multiphysics damage
tolerance approach in order to evaluate the effects of defects, which combined micromechanics with the
finite element method, damage tracking, fracture, and property prediction with and without defects.
The approach was verified by testing experiments. According to the simulations, this paper obtained
the following important conclusions. The initial gaps reduce the strength of notched laminates, but the
effect diminishes as the gap size grows. This conclusion is similar to the compressive strength results
in [34]. It is found that gaps in stiffened panels have minimal effect on stability and strength. Also,
their reasons for the formation of fiber waviness were further discussed. When another ply is laid on
the laid ply where the gaps exist fiber waviness is introduced into the gaps. The degree of the waviness
is driven by the height of the gap that depends on the tow thickness but not the gap length.

Lan et al. [37] investigated the effect of embedded defects on the mechanical properties of
composites made by the AFP process. Two stacking sequences, [(−45◦/+45◦)3/−45◦] and [90◦4/0◦3/90◦4],
have been examined, either with or without a caul plate, in which gaps and overlaps were introduced.
According to the ultrasonic C-scan, in-plane shear tests, and compression tests, the results of ±45◦

laminates indicated that the presence of defects in two adjacent plies could limit the healing resulting
in resin-rich areas for gaps and fiber-rich areas for overlaps. But these effects can be reduced by curing
with a caul plate. The effect of gaps on in-plane shear properties is more significant than that of
overlaps. For 90◦/0◦ laminates, the curing process plate allows partial healing of defects without a caul
while complete healing with a caul plate. Further, no caul plate can result in the strong effect of defects
on compression properties. In this way, the use of a caul plate limits this failure mechanism.

Guin et al. [38] examined the effect of gaps by experimental tests. Although similar to the research
in the literature [35], this paper pays more attention to the application in the aerospace industry.
The laminates with the stacking sequence [+45/−45/90/0]2s using IM7/8552-1 prepreg were made by the
AFP process. Then, the laminates were tested in unnotched tension, unnotched compression, and open
hole compression. The results show that the primary effect of gaps is fiber waviness. The combination
of tensile loading and significant fiber waviness has a significant effect on strength but no effect on
modulus. Compression loading serves to exacerbate the degree of fiber waviness, while tension
loading serves to alleviate it. So the axial stiffness in compression is adversely affected in the gaps.
Interestingly, the relative reduction in notched compression strength is less significant than that in
unnotched compression.

Woigk et al. [39] investigated the effect of gaps and overlaps on tensile and compression properties
experimentally. Specimens were made by the AFP with a quasi-isotropic, symmetric layup into
which artificial defects can be induced in various defined formations. Four defect configurations were
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developed, including “Gaps”, “Overlaps”, “Staggered Gaps”, and “Gaps and Overlaps”. It can be
concluded that “Gaps and Overlaps” specimens exhibit strength reductions in tension and compression
of 7.4% and 14.7%, respectively.

The fatigue of the laminates is also an important mechanical performance [40–43]. Elsherbini et al. [44]
investigated the effect of gaps on the fatigue behavior of unidirectional carbon/epoxy laminates.
Tension-fatigue tests were performed with defected samples and then compared to defect-free samples.
The infrared thermography technique was used to monitor the propagation of damage during fatigue
loading. Furthermore, a fatigue progressive damage model (FPDM) was developed to predict fatigue
damage progression and the failure of laminates, which has a good agreement with experiments.
The experiment also showed that the effect of gaps can depend on the maximum applied stress
during fatigue.

The works on conventional laminates in this review are summarized in Table 2.

Table 2. The works on the relationships between position defects and mechanical properties in
conventional laminates.

Contributors
Defects

Methods Mechanical Properties
Gaps Overlaps Fiber Waviness Twisted Tow

Sawicki, et al.
[33,34] + + Experiments Compression strength

Croft, et al.
[35] + + + Experiments Tension, compression,

in-plane shear, OHT and OHC

Marrouze, et al.
[36] + +

Simulations
experiments Strength and stability

Lan, et al.
[37] + +

Experiments
(embedded defects)

Compression and in-plane
shear

Guin, et al.
[38] + Experiments Tension, compression and

OHC

Woigk, et al.
[39] + Experiments Tension and compression

Elsherbini, et al.
[44] + Experiments Fatigue

2.2. Variable-Stiffness Laminates

2.2.1. Defect Control Method

An important advantage of the AFP process is the possibility of making variable-stiffness laminates
with curvilinear fiber paths to strengthen the structural buckling performance of composites [45–51].
However, to manufacture variable-stiffness components, since the tow has a certain width while
translation distance remains constant, some imperfections are easier to form between the adjacent tows,
mainly gaps and/or overlaps. For solving the problem above, some methods have been developed.
Among them, the tow-drop method is an effective method to reduce defects. This technique uses
the cutting/refeeding function of an AFP machine to reduce or even eliminate overlapping areas by
controlling the number and length of tows. In reality, however, if a constant thickness is desired,
tows will be cut perpendicularly to the fiber direction, resulting in small triangular resin-rich areas
without fibers, as seen in Figure 4a. Thus, different coverage parameters can be used, as in Figure 4b,c.
A 0% coverage exhibits a small triangular resin-rich area. Similarly, if the full coverage method (100%
coverage) is used, the overlaps can be induced on the surface of the laminate, resulting in a rough
surface. Therefore, Blom et al. [52] pointed out that the course boundaries were assumed to be smooth,
which is not accurate regarding the references [47–58].
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Furthermore, they used the finite element method to study the effect of tow-drop areas on
the strength and stiffness of a variable-stiffness laminate, in which some factors were considered,
including tow width, laminate thickness, and staggering. It can be concluded that damage is initiated
at tow-drop areas, especially in regions with high fiber orientation angles. Based on numerical studies,
staggering improves the strength of a laminate, but there is no apparent relationship between the
strength of tow-drop laminates and the laminate thickness. As mentioned above, staggering [59]
is also a better method to reduce the effect of defects on the mechanical properties of laminates to
some extent. Staggering is the shifting of plies with the same orientation concerning each other. Thus,
course boundaries, overlaps, and gaps of repeated plies do not occur at the same planar location.
The basic principle is that if two repeated plies are present in the laminate, they will be shifted by the
half distance between two-course centerlines. This way, repeating four times means that one quarter of
the course shift is needed [54,58].

Given the shortcomings of traditional methods for limiting defects, Kim et al. [60–63] developed a
novel Continuous Tow Shearing (CTS) technique. In the conventional AFP, defects are mainly caused
by the in-plane bending deformation of the tow. The AFP head follows the curved tow path, rotating its
vertical axis so the fibers inside and outside the reference tow path inevitably buckle and stretch. Thus,
a special CTS laying head was designed to utilize the in-plane shear deformation of the tow inherently,
as shown in Figure 5a. This technique significantly reduces the design limitations of the fiber radius of
curvature and there are no gaps or overlaps between the tows. The quality of laminates produced by
CTS is significantly higher than with traditional techniques. But the thickness of the laminate changes
with the variation of the fiber angle due to changes in tow width (see Figure 5b).
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2.2.2. Defect and Mechanical Properties

To obtain the relationship between the defects and the mechanical properties in variable-stiffness
laminates, Fayazbakhsh et al. [64] introduced a defect layer method which can be a regular composite
with embedded defects. The method uses a finite element model to capture the effect of gaps and
overlaps with a lower number of elements compared to the approach in [52], which enables us to
calculate gaps and overlaps precisely. The results showed that gaps can deteriorate in-plane stiffness
and buckling load, but overlaps can improve structural performance. For the effect of gaps with
the laminate configuration of [±(43, 0.48)/±(44, −1.57)/±(35, −1.57)/±(38, −1.57)]s, the improvement
of the bulking load resulting from fiber steering decreases to 20%. However, overlaps increase the
improvement of the buckling load to 78%. Even in the laminate configuration of [±(43, 0.48)/± (48,
−1.57)/±(30, −1.57)/±(26, −1.57)]s overlaps could improve the in-plane stiffness and buckling load to
11% and 71%, respectively. In some laminate configurations, the overlap can compensate for the effects
of the gap. Similarly, Wu et al. [65] conducted experiments and showed that the buckling stiffness of a
variable stiffness laminate with overlaps is 27% higher than a cross-ply laminate with [±45]5S, but it is
only 4% higher for the variable stiffness laminate with gaps.

Based on the previous work of Fayazbakhsh [64], Nik et al. [66] investigated the effect of design
parameters (curvilinear fiber path) and manufacturing parameters (tow width, the number of tows
in a course, and tow strategy) on the gap and overlap area percentages within variable stiffness.
The buckling load and in-plane stiffness in defected laminates were then calculated using Pareto
solutions of variable stiffness. From this paper, it is seen that the largest number of tows with the
smallest width can lead to the minimum defect area percentages. For instance, a course with 32 tows,
each 3.175 mm wide can reduce the number of defects by two-thirds compared to a course with 8 tows,
each 12.7 mm wide. Some results are shown in Figure 6.
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Following the previous work of Blom [52], Falco et al. [67] conducted some experiments to
investigate the effect of the fiber angle discontinuities between different courses in a ply on the
unnotched and open hole tensile strength of the laminate. Different manufacturing strategies were
studied in detail, including tow-dropping with 0% gap coverage, tow-dropping with 100% gap
coverage, and tow-dropping with 0% gap coverage and ply staggering. In comparison with the
baseline specimens (a straight fiber panel without defects), the result showed that 0% gap coverage and
ply staggering could be expected to be an effective combination to reduce the effect of defects in variable
stiffness laminates. The testing experiments also showed that large delaminations could usually
initiate around the tow-drop defect area, leading to matrix cracking and finally fiber failure, which was
probably caused by the amplification of the interlaminar stresses around the defects. The remote failure
stress for un-notched tensile (UNT) and open-hole tensile (OHT) specimens are shown in Table 3.
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Table 3. Remote failure stress for un-notched tensile (UNT) and open-hole tensile (OHT) specimens [67].

Configurations Mean Strength (MPa) Standard Deviation (MPa) Normalized Strength Defect Area (%)

UNT baseline 389.2 0.6 1 -

UNT 100% coverage 347.3 12.3 0.89 2.38

UNT 0% coverage 303.1 21.7 0.78 2.38

UNT staggering (0% coverage) 355.8 9.1 0.91 2.38

OHT baseline 225.6 4.2 1 -

OHT 100% coverage 235.9 6.8 1.04 2.24

OHT 0% coverage 214.7 1.4 0.95 2.24

OHT staggering (0% coverage) 231.4 6.0 1.02 2.24

Furthermore, Falco et al. [68] developed a reliable mesoscale virtual testing approach to investigate
the effect of tow-gap effects on the mechanical performance of notched and un-notched specimens
under in-plane tensile loads. X-ray computed tomography (XCT) was used to observe the fiber
angle discontinuities between different tow-courses in a ply and the tow-gap distributions. Then,
finite element analysis, coupled with different constitutive models for the fiber-reinforced material,
resin-rich areas, and ply interfaces was performed and applied to a three-dimensional domain.
Some results, such as the tow-drop effects on plain and notched laminates, were validated in previous
work [67]. Thus, the prediction results using the mesoscale virtual testing approach can be seen as
accurate, as shown in Figure 7. However, tow overlaps were not considered in this paper.
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Figure 7. A comparison of simulation and experimental results: (a) progressive intralaminar damage
for a real “UNT-gap” coupon after the experimental test [67]; (b) superposition of the intralaminar
failure mechanisms predicted through the virtual test; (c) undeformed damage prediction in the resin
zone [68].

Li et al. [69] pointed out that out-of-plane waviness by various combinations of gaps and overlaps
were less studied [52,55,56,64,66,70]. Thus, they developed 3D meshing tools to automatically generate
ply-by-ply models as well as out-of-plane waviness and ply thickness variations caused by gaps
and overlaps, in which it is easy to create different defect combinations to investigate the effect of
defect size and distribution on the strength knockdown. The models also can predict the reduction
of strength as a function of the magnitude and type of defects. However, for more complex models,
further experimental validation is required.
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Some studies [71–75] indicated that prepreg tack resists the formation of most layup defects,
which serve as a parameter to evaluate a strong intimate contact, stress-relaxation effects in the
prepreg resin, and the resin’s cohesive strength. Further, tack is controllable by process parameters,
especially pre-heating temperature. The works of [74,76] investigated the tack, peel resistance,
and bonding issues during the AFP process. The effect of compaction force, laying speed,
and temperature on the adhesive properties of tow prepreg was studied on the ply-tool interface.
The results showed a strong temperature effect, with the prepregs requiring a higher layup temperature
to accommodate higher layup speeds. The predicted peeling forces were in agreement with the
experiments. However, the effects of other parameters such as the tool’s surface roughness, resin, and the
tool surface energies on prepreg tack are not very well understood. Additionally, researchers [77–82]
have used simulations and many experiments to tackle the problem of wrinkle formation during
tow steering. However, these methods are expensive and time-consuming. Thus, Bakhshi et al. [83]
proposed a novel modeling strategy considering the prepreg laying process and the prepreg tack. Firstly,
AFP experiments were performed using different process parameters identified as the five major types
of defects, including in-plane fiber waviness, sheared fibers, tow pull-ups, blisters, and out-of-plane
wrinkles. According to some patterns and conditions of defect formation, a new global defect modeling
method to model the AFP process was presented, as shown in Figure 8. Then, the surface-based
cohesive zone modeling technique using a bilinear traction-separation law was used to model the
prepreg tack. A comparison of the simulation results with the experiments showed an excellent
agreement in the patterns and frequencies of defects.
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Some researchers have studied the vibration of the laminate [84–88]. For the relationship between
the vibration and defects, Akbarzadeh [89] et al. examined the vibration of fiber-steered plates
with a sandwich structure made by the AFP. Third-order shear deformation theory, the hybrid
Fourier–Galerkin method, and the numerical integration technique were used to predict the vibration
responses under manufacturing defects, particularly gaps and overlaps. Furthermore, they used
the magnetostrictive layers to suppress the structural vibration of the laminates. The results of the
vibration analysis showed that the dynamic out-of-plane deflection in the plates with gaps had a higher
amplitude and a lower frequency than that of a defect-free plate. Additionally, the magnetostrictive
layers can lead to a lower vibration frequency, and better attenuate the vibration response of the plate.

The works on variable-stiffness laminates in this review are summarized in Table 4.
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Table 4. The works on the defect control method and the relationships between position defects and
mechanical properties in variable-stiffness laminates.

Contributors
Defects

Methods
Mechanical
PropertiesGaps Overlaps Others

Control method

Blom et al. [52] + + Tow-drop method Strength and stiffness

Blom et al. [59] + +
Staggering

method
Structural

performance

Kim et al. [60–63] + + CTS method —

Mechanical
properties

Fayazbakhsh et al.
[64] + +

Finite Element
Method (FEM)

In-plane stiffness and
bulking load

Wu et al. [65] + + Experiments Bulking stiffness

Nik et al. [66] + + Pareto solutions In-plane stiffness and
bulking load

Falco et al. [67] + Experiments UNT and OHT

Falco et al. [68] + Meso testing, FEM In-plane tensile

Li et al. [69] + + Modeling Out-of-plane
waviness

Bakhshi et al. [83] + Modeling —

Akbarzadeh et al.
[89] +

Simulations,
experiments Vibration

3. Void Defects

Voids are also common defects in laminates which can significantly affect the mechanical properties
of composites [90–92]. The small bubbles in the prepreg itself, the volatilization of the resin in the
pre-heating process, low laying pressure, and small air pockets in the laying process can result in
the initial bubbles. For thermoplastics, the voids generated during the laying process are the final
defects due to the in-situ curing technique. For thermosetting plastics, the defects before curing
can significantly affect the formation of voids after curing [93–97]. Their formation mechanisms are
entirely different from the positional defects. Voids and their distribution have an adverse effect
on the interlaminar stress and the mechanical properties of the fiber/matrix interface, especially the
interlaminar shear, compression, and bending properties [98–102]. There have been a great number of
studies focusing on the relationship between the voids and the properties of composites. For instance,
Judd et al. [103] obtained experimental results which showed that the interlaminar shear strength
decreases by 7% for every 1% increase in void content when the void content is less than 4%. Hagstrand
et al. [104] experimentally found that voids have an adverse influence on flexural modulus and strength.
Each 1% increase in void content results in a 1.5% reduction of the properties before the void content
reaches 14%.

For the characteristics of voids during the AFP process, Ranganathan et al. [105,106] proposed
a novel approach to model the in-situ tow placement process of thermoplastic composites using a
Newtonian fluid in a two-dimensional geometry, which is capable of predicting the final void content
and the thickness of a composite part as a function of the laying speed and compaction pressure under
non-isothermal conditions. Similarly, Tierney et al. [107] developed series of integrated sub-models,
including a heat transfer model, void dynamics model, and multi-scale void transport model, to predict
the heat transfer and void dynamics within the laminate. Furthermore, experiments were conducted,
and the results showed that significant gradients in the final void content exist through the thickness
and are directly related to the processing conditions of the heating temperature, laying speed, and torch
height. Simacek et al. [108] established a dynamic change model of the voids of thermoplastic
composites made by the automated placement technique. The model combines the internal pressure
of bubble, the pressure of compaction roller, the response of fiber matrix and the pressure of resin to
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study the process of the resin diffusing from the resin-rich region to fill the bubble. Khan et al. [109]
developed a simulation tool from the existing available model in the literature [105–107]. The effects of
consolidating the force, laying speed, and hot gas flow in the heating region on the void development
were then investigated through simulation. Furthermore, experiments were carried out to manufacture
some AS4/PEEK (a grade of thermoplastic composites) laminated plates. The void distributions’
through-thickness and density were compared with the experimental values. The results showed that
the simulation method is effective. However, there are not many studies on voids in the automated
manufacturing process.

Recently, Seanz-Castillo et al. [110] studied the effect of process parameters on voids and
the mechanical performance of CF/PEEK composites. They used three different out-of-autoclave
technologies, including vacuum bags, hot-press, and thermoplastic automated fiber placement (TP-AFP)
with in-situ consolidation (ISC). The void characterizations were performed using the density method,
matrix acid digestion, 2D microscopy, and C-scan, thus summarizing the benefits and scope of
various methods. The results show that ISC voids focus mainly in the upper laminates (see Figure 9).
The reason for this is that the bottom layers can suffer more rolling times from the compaction roller.
This conclusion can inspire us to press a few more times by roller onto the surface of the laminates after
the TP-AFP process. The disadvantage of this paper is that only the effect of temperature is considered
during the TP-AFP process, but other process parameters are not considered.
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Figure 9. Cross-section optical micrographs of samples manufactured in AFP with in-situ consolidation
(ISC) [110].

Additionally, few researchers have examined the voids of thermoset materials during the AFP
process. Although the bubbles in the laminates during the AFP process are not final defects, the work
of [111] indicates that there is a specific relationship between the bubbles in the laminate before curing
and the voids after curing. Therefore, the bubbles in the thermoset laminates during the AFP process
should also be studied.

4. Online Defect Detection Techniques

To detect the defects during the AFP process, some online defect detection techniques have been
developed [112–121], such as machine vision, digital image processing, thermographic monitoring,
and optical sensors. Among them, some novel detection methods are introduced here. Oromiehie [122]
et al. used optical fiber Bragg grating (FBG) sensors to identify the misalignment defects during the
AFP process. Four specimens were made by AFP, including defect-free artificial gaps and overlaps,
and overlaps induced by aluminum shim, as shown in Figure 10. Through reflected wavelength
changes, the type of defects in terms of size and materials can be identified. The results showed
that the FBG sensors could be reliably implemented for online defect monitoring during the AFP
process. However, for small actual defects under the micro scale, such as air pockets, the applicability
of the method needs to be further confirmed. Additionally, another problem is that it is inconvenient
to take the sensor out from the preform before the curing process, so this method has not yet been
industrially applied.
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Figure 10. The configuration of defect-induced laminates manufactured using AFP adapted from the
reference [122].

Denkena et al. [32] presented an online AFP process monitoring method based on a thermal
camera with image processing. The method can analyze the visible temperature difference between
the laid-up tow and its surface underneath to identify the type of defects such as gaps, overlaps,
twisted tows, and bridging derived, as shown in Figure 11. Although the monitoring system can
reduce the efforts of quality inspections and contribute to improving process reliability significantly,
the system can only detect surface defects. Internal defects and their evolution in the laminates are not
recognized online.
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Further work [123] by this research team has been executed recently. They used convolution
neural networks (CNNs) to classify the thermal images of the (Carbon Fiber Reinforced Plastics) CFRP
material, which can identify several prepreg materials and different material defects during the AFP
process. Similar work has also been performed in [124]. Zambal et al. proposed formulating AFP
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defect detection as an image segmentation problem that can be solved in an end-to-end fashion using
artificially generated training data. The results showed that the method can scale well with new defect
types and measurement devices and requires little real-world data for training.

Stress waves can identify internal defects because the defects can change the characteristics of
stress wave propagation. The stress wave has been widely used in non-destructive testing in the field
of geology [125–127], tree damage diagnosis [128–130], and composites [131–135]. Han et al. [111]
used the stress wave to detect online the internal defects during the AFP process, where continuous
loading induced by the process itself was used as an excitation source without another external
excitation (see Figure 12). The characteristics of stress waves, such as the amplitude, the Manhattan
distance, and mean stress, were evaluated to obtain the relationship between the stress wave and the
defects. But although this method can effectively identify the defect content, it cannot identify the type
of defects.
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Figure 12. Test methods using the stress wave during the AFP process [111].

Cemenska et al. [136] proposed an online detection method that integrates laser projectors,
cameras, and laser profilometers in a comprehensive user interface, which can reduce the burden on
inspectors and decrease run time.

Palardy-Sim et al. [137] described an innovative measurement solution based on optical coherence
tomography (OCT), which can be easily integrated into the AFP head and allow measurements very
close to the compaction roller nip point. The results showed that this inspection system can detect
defects accurately.

Krombholz et al. [138] presented a novel gap control method using a fiber edge detection sensor
mounted on a CNC-controlled robot system, which can determine the relative positions of neighbored
courses to allow a correction of the actual path, thereby controlling the gaps. This method has been
used in the German Aerospace Center. Similarly, Maass et al. [139] described a commercial off-the-shelf
(COTS) laser line scanner mounted on a robot or on an AFP head that can scan the projected laser
line over the layup surface along a programmed path, which can be applied by NASA, as shown in
Figure 13.
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The literature on the online defect detection techniques in this review are summarized in Table 5.

Table 5. The literature on the online defect detection techniques.

Contributors Detection Methods Detectable Defects Defect Type Applications

Oromiehie et al. [122] Optical fiber Bragg
grating sensors Gaps, overlaps Internal defects Laboratory

Denkena et al. [32] Thermal camera with
image processing Gaps, overlaps Surface —

Schmidt et al. [123] Convolution neural
networks Gaps, overlaps Surface —

Zambal et al. [124] Artificially generated
training data Gaps, overlaps Surface —

Han et al. [111] Stress wave Voids Internal defects Laboratory

Cemenska et al. [136]
Laser projectors,

cameras, and laser
profilometers

Gaps, overlaps Surface —

Palardy-Sim et al. [137] Optical coherence
tomography Gaps, overlaps, voids Surface and

internal defects

The National
Research Council

of Canada

Krombholz et al. [138] Fiber edge detection
sensor Gaps, overlaps Surface The German

Aerospace Center

Maass et al. [139] Laser line scanner Gaps, overlaps Surface NASA

5. Discussion and Conclusions

In summary, the types of position defects and their formation reasons during the AFP process
have been thoroughly analyzed. The defects, such as gaps, overlaps, and twisted tows, can be induced
by the combination of many factors, including machine tool errors, unreasonable process parameters,
irrational angle planning, tow width limitation, and the in-plane bending deformation of a tow, etc.
These defects may result in the formation of other defects. For instance, the gaps can lead to resin-rich
areas or fiber waviness that affect the mechanical properties of composites. Moreover, the influence of
defects on the mechanical properties of composites has been studied in depth, including the tensile,
compression, shear, and even fatigue and vibration properties. However, not all defects hurt mechanical
properties. For example, the overlaps can result in an absolute improvement in the compression
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strength. With this feature, we can avoid unfavorable defects as much as possible according to the
different performance requirements of the parts or use favorable defects to reduce the impact of the
unfavorable defects. The “overlap method” utilizes this principle, which can reduce the adverse
effects of gap defects by controlling the translation distance to form overlaps between adjacent tows,
but this method increases the thickness of the local regions. However, if the current review shows
anything it is that the effects and interaction of gaps and overlaps in composite laminates is very
complex, so we should be more cautious when this method is applied. This requires that, when a
single defect is used to improve some performance, the complex formation mechanism of the defect
and the interaction between the defects should be first understood thoroughly. To limit or control the
effects of defects, researchers have proposed some measures to reduce defects, such as the tow-drop
method, the staggering method, and CTS, but each has its scope and shortcomings. It seems that
CTS is the most novel and promising control method, but the thickness of the parts at the current
stage cannot be adjusted. Therefore, there have been few relevant studies on this topic in recent years.
For engineering applications, the staggering method is still a relatively mature and effective means.
From the research status of the type of prepregs, most of the studies focus on the laying defects of
thermoset prepreg, but there are few studies on the defects of thermoplastic prepreg, in particular,
thermoplastic materials with high-temperature resistance, such as PEEK and PPS matrix prepregs.
It is well known that thermoplastic composites have the advantages of high toughness, high impact
resistance and damage tolerance, unlimited storage, a short molding period, high production efficiency,
easy repair, and recycling compared to traditional thermoset materials. Thus, thermoplastic materials
are potential future aerospace materials. It can be seen that the study of the position defects of
thermoplastic prepreg during the AFP process could become the focus of future research.

The formation mechanisms of void or bubble defects are entirely different compared to general
defects such as gaps, overlaps, and wrinkles, etc. (Bubbles during the laying process are the potential
causes of the formation of voids in composites.) Possible causes of induced bubbles include air
inclusion during the laying process (this may be related to micro-wrinkles), gas volatilization during
the laying or curing process, prepreg bubbles, and low manufacturing pressure, etc. Although it
appears that the formation of voids is more closely related to the curing process, the effects of the laying
process on the motion characteristics of bubble formation, splitting, and confluence, etc., cannot be
neglected. Most current publications have focused on the optimization of the curing process or the
effect of voids on the mechanical properties of cured composites. However, for thermoset materials,
there is a correlation between bubbles before curing and voids after curing. For the in-situ curing of
thermoplastic materials, the laying process directly determines the formation and distribution of voids.
Therefore, studying the relationship between the behavioral characteristics of the bubbles and the
process parameters, and the relationship between the bubbles during the laying process and the final
voids after curing, is of great benefit to further improve the mechanical properties of the composites.

At this stage, online detection techniques for laying defects during the AFP process include
machine vision, digital image processing, thermographic monitoring, and optical sensors, etc. However,
machine vision, digital image processing, and thermographic monitoring can only detect surface
defects. Although each ply can be detected during the AFP process, for large-scale workpieces this
method needs to deal with a large amount of data. Additionally, the evolution of internal defects caused
by multiple pressures during the AFP process cannot be detected. Therefore, it is also feasible to detect
internal defects in each manufacturing stage using optical sensors and physical waves. The optical fiber
Bragg grating sensor has been studied, but it needs to be embedded in the uncured laminate. This is a
challenge for taking out the sensor and then curing. Stress waves and the online ultrasonic detection
of defects are novel ways to detect the distribution of internal defects. However, the type of defects
cannot be identified. Additionally, the relationship between process parameters and defect behavior
has not been evaluated, so a reasonable process-based defect control strategy cannot be established.
Therefore, combining different sensors with their various advantages to develop a multi-sensor online
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defect detection system and then embedding a reasonable process control strategy will become the
focus of studying the online detection and controlling defects in the future.
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