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Abstract: Wool has a long history of use in textiles throughout human civilization. Many smart
functions such as reversible shape changes to various stimuli have been demonstrated in the last
few years. However, the force-related characteristics are still imperfectly recognized, although they
are expected to be used as actuators due to their biological origins and broad applications. Herein,
we investigated the feasibility of wools in performing actuating ability through its intrinsic structures
and fabrication methods. The diverse modes of contractive forces were obtained in wool materials
including platform-like, double-peak, and slope-like shapes, where a molecular model was also
presented to trace the origins of stress evolution. After that, a polymeric blend was created to modify
the wool materials and a dissimilar performance of stress production was achieved, a square stress
mode with stable manner and maintenance, for broad applications in a more efficient way. It is
believed that these actuating properties extracted from natural hairs have a large potential in current
smart applications and lay down new inspiration in designing actuators.
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1. Introduction

Smart textiles are beginning to thrive in the field of artificial intelligence [1–6] including actuators [7],
energy-harvesting fabrics, energy-storing fabrics [2], flexible sensors with color/temperature/humidity
sensing abilities [4,8,9], etc. In particular, characteristics of these textiles like good flexibility, compliance,
and light weight have promoted the development of a new generation in biological actuators
(e.g., exoskeleton suit [10]). For the application of an actuator in artificial muscles, diverse categories
of polymeric fibers through thermal/moisture/electrical management have been investigated on the
basis of twisted and coiled structures [2,11], which can yield satisfying torsional and tensile actuation.
However, the most widely used materials are not easy to commercialize as wearable materials or smart
textiles at present due to the high actuating temperature (e.g., polyethylene) or high price (e.g., carbon
nanotubes) [12,13]. Thus, an actuator with satisfying contractive forces, environmentally friendly
performance, and low cost is being pursued.

Natural hairs have the advantages of low prices, biodegradability, and can be used as
environmentally friendly alternatives that are superior to polymeric fibers [14]. Moreover, with
the further exploration of wools and camel hairs, the shape memory effect has been discovered and
systematically studied as responsive to water, heat, and redox, respectively [15,16]. Among the various
stimuli, heating is commonly preferred because the changes of inner components can be easily altered
by specific temperature ranges compared to chemical treatments, where more structures would be
affected. However, intrinsic characteristics like contractive force for an actuator of natural hairs have
rarely been studied. Therefore, the investigations of natural hairs on structure and properties, especially
the stimulus–responsive force for actuating applications, have aroused our interest. Based on previous
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studies, wool has a heterogeneous composition and a complex hierarchical structure (Scheme 1a).
Alpha-helix, one of the most important secondary structures of proteins, involves both hydrogen
bonds (HBs) and disulfide bonds (DBs) inside. In terms of structure, some similarities have been
found between animal hairs and skeletal muscle (Scheme 1b) [17] including the hierarchical structure,
the existence of a dynamic bond, crystal-like structure, and the trainable component like actin in
muscle, which have provided a lot of inspiration to well utilize the natural ones. In the sarcomere
structure of muscle, which has emerged as a kind of multipurpose protein, α-actinin can not only
interact with actin filaments, but can also participate in contractile machinery, regulating structures
and responding to signaling proteins [18]. It was also found that α-actinin could crystallize [19] and
possesses twisted antiparallel structures [18]. Based on these similarities between the two structures
of wool and muscle fiber [20], we assumed that wools and wool yarns could also acquire analogous
actuating abilities, which could be further applied to artificial muscle.
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Notwithstanding the advantages of animal hairs, there are still concerns. The low fatigue
resistance of wools caused by weak elasticity [21] will produce a large energy dissipation in later
cycling. Our previous study [22] designed and prepared a kind of smart polymeric material with low
energy dissipation and good thermal-contraction ability, which could be taken advantage of to design
a wool yarn/polymeric yarn blend to make up for the deficiency. In this study, the thermomechanical
properties including isometric contraction and isothermal tensile hysteresis cycles of raw wools, wool
yarns, and wool yarn/polymeric yarn blends were investigated, together with various fabricated
structures. Then, the corresponding inner structure changes covering the degree of crystallization and
bond changes were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD),
and differential scanning calorimetry (DSC). It was proven that the multi-modal isometric stress could
be realized, and wool yarn/polymeric yarn blend could be used to further improve the utility.

2. Materials and Methods

The raw hair fibers used in this study was from a goat’s back, purchased from a trade factory
(Sunite Right HTC villi LLC, Mongolia Autonomous, China). The selected hair fibers all had a
diameter of more than 50 µm. Two-ply wool yarn was purchased from the same company as the
raw wool fibers. Stress–memory polymeric fibers was in-house synthesized by Polycaprolactone
(PCL, Mn = 4000 g mol−1) forming a soft segment and methylene diphenyl diisocyanate (MDI)
with its extender butanediol (BDO) forming a hard segment [22]. The sample was dissolved in
dimethylacetamide (DMAC) and subsequently spun into fibers. The twisted structure of the raw
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wools was produced by twisting a bundle of wool fibers to near, but not reaching the point of coiling.
Four-ply wool yarn was produced by twisting two of the purchased two-ply wool yarns. The four-ply
wool yarn/polymeric yarn blend was produced by twisting a purchased two-ply wool yarn and a
two-ply polymeric yarn together to near, but not reaching the point of coiling.

FTIR analysis was carried out on a PerkinElmer spectrum 100 FTIR spectrometer (Suzhou, China)
with a frequency range from 4000 cm−1 to 650 cm−1. Each spectrum was obtained by averaging
16 scans with a 4 cm−1 resolution. These spectra were corrected by advance attenuated total reflection
(ATR) correction before quantitative analysis. The molecular structures and bond stretching of wool
and yarn were studied by FTIR. The transition temperatures (Ttrans) and enthalpy change of both the
raw and programmed specimens were determined by differential scanning calorimetry (DSC) using
a Perkin–Elmer Diamond instrument with nitrogen as protection (Shanghai, China). The specimen
was first kept at 20 ◦C for 1 min to balance the environment and then a heating scan was conducted
from 20 ◦C to 250 ◦C with a heating rate of 10 ◦C/min. A Rigaku SmartLab 9 kW—Advance XRD
(Oakland, CA, USA) machine was used to characterize the crystallinity of the raw wool, wool yarn,
and stretched wool yarn, where the scanning intensity was recorded in the range of 5–40◦. Finally,
an Instron 5566 tension machine (Hong Kong, China) equipped with a temperature-controlled oven
was used to explore the mechanical properties, isometric contraction, and hysteresis of the specimens.

3. Results and Discussion

3.1. Platform-Like and Double-Peak Stress-Stroke Mode of Raw Wools

After stretching the samples to the strain of 10%, the contractive force in the strain constraint
condition responding to thermal changes on raw wools in the form of both parallel and twisted
structures were investigated first, as shown in Figure 1a. Wools with a parallel structure (Figure 1b)
were first heated to 65 ◦C (Thigh) and stretched to the strain of 10%, where the force increased to
about 15 N. Then, a reversible thermal protocol was applied between room temperature (RT) and
Thigh, where the isometric force increases in cooling due to contraction, stabilizes at a platform due
to a stable structure at RT, and decreases immediately in heating due to the fast stress and structure
relaxation [23] at Thigh. However, it is interesting that a totally contrary effect was found for raw
wools in the twisted structure, as illustrated in Figure 1c, where the evolution of isometric force after
stretching was similar to that of stress–memory polymers (SMPs) in our previous work [22]. First,
a large stress drop appeared in cooling after tension at Thigh, following a sharp stress–stroke at the initial
moment. Then, a smooth stress–stroke was produced in heating, followed by a gradual stress decrease.
The characteristic smooth stress–stroke and sharp stress–stroke could be cyclically realized by further
changing the thermal stimulus. Figure 1d plots the isometric force dependence of temperature for
wools in two structures, where the parallel structure exhibited a larger tension force and output force
due to high stiffness. The force stroke was produced only in cooling for the parallel structure, but a
double-peak stroke could be obtained in both heating and cooling for the twisted one. Furthermore,
unlike the downward trend of overall forces in the twisted structure after several cycles due to the cost
of stiffness, the overall force in the parallel structure could be better maintained to a large proportion
and presented a platform-like mode.
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Figure 1. (a) Raw wool fibers in the parallel and twisted structures. Isometric contraction test of wool
fibers in (b) parallel and (c) twisted structure responding to the stimuli of temperature. (d) Evaluation
of force change in two structures: adopted data were acquired from the marked points as shown in (b)
grey circles and (c) orange circles.

Unlike the thermal–contraction character of fibers like nylon [12], wool fibers exhibit a positive
axial thermal expansion. In order to analyze the different origins of force actuation in two structures,
a two-phase model of wool fiber was used for the parallel structure, as presented in Figure 2a,c, where
the fiber was composed of an amorphous matrix and embedded alpha-helices [23]. Upon heating,
the polymer chains in amorphous regions absorb heat and acquire decreased moduli as well as
isotropical expansion, directly resulting the stress drop in the constrained condition. In addition,
it is speculated that the exchange of disulfide bonds (DBs) inside occurs at the selected temperature
Thigh [24], facilitating the increase in the length of the sample because there is less restriction for the
thermal expansion of the matrix [25]. For the twisted raw wools, as depicted in Figure 2b,d, the sharp
stress–stroke occurred at the beginning of cooling due to the instant increase in modulus from the
intrinsic properties of the fibers, while the further stress drop resulted from the untwisting manner
(Figure 2b). Once the heating started again, the contractive force yielded due to retwisting, where
the double-peak stress–stroke could be achieved. The major contribution to this negative thermal
expansion is presumed to come from the amorphous matrix and alpha-helices along the path of
the macroscopic twist (Figure 2d). It was discovered that the tension force for wools in the twisted
structure was much lower than that of the parallel one, indicating that the stiffness of the sample could
be effectively decreased through twisting, hence allowing more conformational freedom [26]. As a
result, the conformational entropy change will occur during heating like rubber elasticity and then the
contractive force can be produced.
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matrix in the twisted structure.

3.2. Slope-Like and Double-Peak Stress–Stroke Mode of Plied Wool Yarns

Then, the isometric contraction of plied wool yarns, as illustrated in Figure 3a,b, showed that
the stress evolution with temperature had a similar pattern with that of the twisted raw wools.
The slope-like and double-peak stress–stroke could be found in the two-ply and four-ply wool yarns,
respectively. It is also applicable to wool yarn that with an increase in the mechanical cycle, the rigidity
of the keratin structure was reduced, leading to a sustained downward trend for stress values. Then,
the characterization of structures of both unstretched and stretched samples was performed as shown
in Figure 3c–e to explore the various thermomechanical manners in contraction. An endothermal
peak was observed for all samples in the DSC curves (see also Figure 3c) when the temperature was
higher than 220 ◦C that should be ascribed to the denaturation of the helical protein in the fibers [27].
For the original wool fiber, the intensity of the peak was located at 228 ◦C while the position of the
peak increased in the plied wool yarns and became higher in the stretched wool yarn. The increased
temperature for the crystal cleavages in wool yarns may perhaps be due to the better ordered structures
obtained in yarns compared to the raw wools. Moreover, the increased enthalpy changes as well
as transition temperature indicate the tension effect on crystallization. X-ray diffraction patterns in
Figure 3d also support this statement. The diffraction peak at about 9.45◦ was weak in the sample of
raw wool fibers, but became a little bit stronger in the wool yarns. With stretching, the mobility of the
molecular chain segments will change, further influencing the alpha-helices in the fiber. The increase
of crystallinity might indicate the transfer from the alpha-keratin structure to the beta-keratin structure
with stretching [28]. The secondary structure of proteins were obtained through FTIR spectroscopy [29],
where peaks at about 1624 cm−1 and 1522 cm−1 of wool yarn and 1628 cm−1 and 1524 cm−1 in Figure 3e
are attributed to the stretching vibration absorption of the free carbonyl group (C=O) and hydrogen
bonded carbonyl group (C=O), respectively. In common, hydrogen bonded C=O was located at low
frequency ranges compared to the free one [30]. The absorbency peak at 1624 and 1628 cm−1 should
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be assigned to the elastic vibration of the C=O bond, which is commonly observed for the beta-form
crystal [25]. The regularity of the molecular structure in stretched wool yarn is greater than that in the
original one, inducing better crystal structure or even transformation from the alpha-form to beta-form.
During this process, the characteristic peaks above-mentioned shifted two lower wave-numbers in
the wool yarn, corresponding to better crystal structure compared to the raw wools [31]. Figure 3f
evaluates the isometric stress change responding to temperature. Improved actuating performances
from four-ply wool yarn should be attributed to larger tension stress, but it does not exclude the
possibility of enthalpy change from increased crystallinity, which can be partly melted at 65 ◦C and
facilitate the stress production [32].
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Figure 3. Isometric contraction of (a) two-ply wool yarn and (b) four-ply wool yarn. (c) Differential
scanning calorimetry (DSC), (d) X-ray diffraction (XRD) pattern and (e) Fourier transform infrared
(FTIR) of samples with and without stretching. (f) Evaluation of stress evolution: adopted data were
acquired from marked points as shown in Figure 3a,b (yellow circles).

3.3. Stepwise and Square Stress–Stroke Mode

For stress–memory polymeric yarn, the isometric stress actuation in heating is caused by the
enthalpy change of semicrystals during transition, inducing the energy to be released in the form
of stress [33]. Unlike the stress evolution of contraction in the form of film [22], the stress value
increases continually with actuation cycles in a stepwise manner (Figure 4a,b), which is induced by the
better-formed orientation as well as crystallinity in polymeric fibers (Figure 4c) [34]. As discovered,
the raw wools with a twisted structure could produce stress–stroke to temperature, where the
development of stress had the same direction with that of the SMP. The isometric stress versus
temperature for samples with twisted structure of blended wool yarn/SMP yarn are characterized in
Figure 4d. As expected, the downtrend stress in wool yarn could be neutralized by the upward stress
evolution of SMP yarn. Then, a kind of square stress–stroke was acquired with a relatively stable and
controlled manner. With regard to pure wool plied yarns, polymeric fibers not only provide structural
reinforcement, but can also erase the stress relaxation in an actuated state. In the blends, the isometric
stress produced was associated with both semi-crystal-melt transition and thermal contraction resulting
from both the micro- and macro-structures.
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The multi-modal contractive forces of the tested specimens are summarized in Figure 5.
As illustrated in Figure 5a, the platform-like stroke in wools with a parallel structure resulted
from the positive thermal expansion as explained in Figure 2c. The slope-like stroke of two-ply wool
yarn in Figure 5b came from both the micro- and macroscopic entropy change (negative thermal
expansion), where both the amorphous matrix and twisted structure tended to contract in heating.
The double-peak stroke in raw wools with the twisted structure and four-ply wool yarn is illustrated
in Figure 5c, which was similar to the stress evolution of the slope-like one. The only difference was
discovered at the beginning of cooling, where a sharp stress increase appeared, which resulted from
the positive thermal expansion. This is because the specimen with the four-ply structures had a higher
modulus compared to the two-ply one, then the cooling-induced modulus increase produced a larger
influence on stress at that time. Finally, the square stress in Figure 5d came from the four-ply wool
yarn/polymeric yarn blend, where a stable stress stroke was obtained due to the combination of the
enthalpy change of SMPs, thermal expansion, and the conformational entropy change of the twisted
wool yarns.

3.4. Tensile Hysteresis

Energy dissipation is generally evaluated through the tensile hysteresis curve, where differences
of stress–strain curves among different cycles could directly reflect the change of inner/outer structure
of materials. Here, the isothermal tensile hysteresis tests were performed at Thigh for SMP, the wool
yarns, and blends, as illustrated in Figure 6. First, heating and keeping the sample at Thigh for at least
30 min to erase the thermal history, then stretching the sample to the strain of 10%. Subsequently,
clamps on both heads of the sample returned to zero tension strain with the rate of 1 mm/min and
repeated the procedure for five cycles. As illustrated in Figure 6a, the tension and recovery curves of
SMP almost overlapped with each other from the second cycle, reflecting that a stable elastic network
was produced. Furthermore, the energy dissipation from the first to second cycle was not that much.
However, a high hysteresis loss was found in the pure wool yarns as presented in Figure 6b, where the
stress–time curve was not as symmetrical as that of the SMP. This showed that the structure changed
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a lot from the second cycle and the major reason is the breakage of the inner/outer structure during
tension. As with the result of Figure 4d, the better performance was achieved in blends compared
to that of wool yarns, where the stress–strain curve could be smooth (Figure 6c), and less energy
dissipation from the first to second cycle was realized.Polymers 2020, 12, x FOR PEER REVIEW 8 of 10 
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4. Conclusions

As a featured natural hair, wools display more possibilities in the application of smart textiles,
where the existence of isometric stress and potential of an actuator were proven. Compared to the
normal thermal expansion for raw wools in the parallel structure, a double-peak stress–stroke mode
(one smooth and one sharp manner) was discovered in the thermal stimulation in the twisted structure
as well as in the wool yarns. Both the positive thermal expansion from the molecular motion of the
amorphous phases and the negative thermal expansion from the untwisting and retwisting were
attributed to the development of contractive stress. Then, the combination of stress memory polymeric
yarn and wool yarn gave the blends a square stress-mode with alleviative structure relaxation and
less tensile hysteresis, which covered the shortage of high energy dissipation in pure wool materials.
We envision that these actuating properties extracted from nature and the proposed blends will provide
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valuable insights into the development of excavating stress-based smart natural materials with multi
stress–stroke modes.
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