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Abstract: This paper presents a numerical study of the viscoelastic effects on drop deformation
under two configurations of interest: steady shear flow and complex flow under gravitational effects.
We use a finite element method along with Brownian dynamics simulation techniques that avoid
the use of closed-form, constitutive equations for the “micro-”scale, studying the viscoelastic effects
on drop deformation using an interface capturing technique. The method can be enhanced with a
variance-reduced approach to the stochastic modeling, along with machine learning techniques to
reconstruct the shape of the polymer stress tensor in complex problems where deformations can
be dramatic. The results highlight the effects of viscoelasticity on shape, the polymer stress tensor,
and flow streamlines under the analyzed configurations.

Keywords: drop; finite element method; machine learning; multiphase flow; particle level set;
non-Newtonian fluid

1. Introduction

Bubble and drop dynamics in non-Newtonian fluids are a topic of undeniable interest within
the community [1], owing largely to the number of real-world situations that may benefit from
a comprehensive knowledge of the underlying physics: from drop formation mechanisms [2],
to biomedical equipment involving droplet manipulation [3] or engineering devices in which breakup
plays a central role [4,5], from droplet impact on liquid surfaces [6] to the study of drop dynamics
within polymer gels and solutions [7,8]; a deeper understanding of this type of multiphase flows not
only would improve existing manufacturing processes, but also encourage the development of new
applications and spur breakthroughs in scientific research.

To study the multiphase flow of polymeric liquids, one should choose an appropriate
discretization method capable of providing an accurate description of the interface. Mesh-based
methods [9] offer such representation of the interface, either in an explicit (interface-tracking)
or in an implicit (interface-capturing) form. Among the former, front-tracking and Arbitrary
Lagrangian-Eulerian (ALE) schemes [10,11] display excellent performance in terms of mass
conservation and shape preservation; however, remapping techniques are often found necessary [12]
under extreme deformation of the moving interface. In contrast, interface-capturing methods follow
a Eulerian approach, with the ‘Volume-Of-Fluid’ (VOF) method positioning itself as one of the most
popular techniques within this context [13,14], showing good conservation properties, but requiring
additional tools for handling geometrical quantities derived from the interface [15]. As an alternative,
Level Set (LS) methods [16,17] capture the interface as the zero isocontour of a certain scalar function,
which is advected by the flow, with noticeable mass loss and shape degradation if excessive diffusion
is introduced during the advection stage. Despite these shortcomings, the LS method is widely
used for interface problems undergoing dramatic deformation and topological changes and can be
readily enhanced via “hybrid” schemes such as the Particle Level Set (PLS) method [18] that are able
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to ease, to a large extent, many of its drawbacks. Whatever the multiphase technique, the correct
implementation of appropriate Boundary Conditions (BC) for the configuration of interest is a topic
that requires careful consideration of the chosen discretization method [19], as it may have an enormous
influence on the actual shape of the interface.

A common approach to handling the polymer interaction with the flow at a macroscopic
scale is to represent the polymer contribution to the stress tensor by means of a closed-form,
“constitutive” equation; thus, e.g., the work of Yue et al. [20–22] on drop deformation and complex
two-phase flow using a diffuse-interface method and constitutive modeling; in [23], Pillapakkam
employed an LS method to study rising bubbles in viscoelastic media, while Foteinopoulou and
Laso [24] used a Phan–Thien-–Tanner model together with an elliptic mesh-deformation algorithm
to investigate bubble oscillation; Castillo et al. proposed an LS method with a pressure-enriched
FE space to study the two-fluid flow problem along with a Giesekus model for the polymeric
liquid [25]; Fraggedakis et al. [26] characterized the critical volume of a bubble rising in a viscoelastic
fluid using an FEM-based method and the exponential Phan–Thien and Tanner model; using
a coupled LS-VOF (“VOSET”) method, Wang et al. [27] studied drag reduction in cavity flow;
Xie et al. [28] focused on droplet oscillation under a Maxwell model using lattice Boltzmann
techniques. In contrast to constitutive modeling, the “micro-macro” approach [29] tackles the
polymer-flow interaction using stochastic and Brownian Dynamics (BD) simulations [30–33] to
retrieve the polymer stress tensor from the internal configurations of the polymer particles advected
by the flow. Taking the CONNFFESSITapproach of Laso and Öttinger [34], Cormenzana and
co-workers [35] and later Grande et al. [36] successfully handled free surface flows of polymer
solutions, while Prieto [7,37] conducted multiphase simulations in viscoelastic fluids using a
variance-reduced, stochastic implementation of a “micro-macro” method [38]. Further study of
multiphase non-Newtonian flows was carried out by Bajaj et al. [39] and Xu et al. [40] using the
Brownian Configuration Field (BCF) method of Hulsen et al. [41].

At present, there is a growing interest in Machine Learning (ML) [42,43] in the context of polymer
simulation: Doblies et al. [44] employed ML as a means of predicting mechanical properties, while
Jackson and collaborators [45] focused on the optoelectronic properties of conjugated polymers.
It was also used by Kopal and co-workers in the prediction of the viscoelastic behavior of elastomer
systems [46] using Radial Basis Functions (RBFs) or as a data-driven classification method to determine
polymer/solvent compatibility by Chandrasekaran et al. [47]. Fluid dynamics of multiphase flow also
benefits from this recent focus on ML: Ma and collaborators used statistical learning in [48] for bubbly
systems; Ladický et al. accelerated multiphase simulations in GPUs using a data-driven approach
with regression forests [49]; and Gibou and co-workers employed deep learning techniques with sharp
interface methods in [50]. Hence, it seems unquestionable that ML and data-driven simulations are
already having a tremendous impact within the scientific community, and the future possibilities seem
nearly endless.

The main purpose of this paper is to highlight the effects caused by the non-Newtonian behavior
of the polymer solution in a multiphase flow system, performing a series of numerical simulations by
means of a computationally efficient, accurate, and robust numerical method based on a finite element
discretization of the governing equations that uses ML-inspired techniques for the reconstruction
of the polymer stress tensor, a feature that proves to be of the greatest importance for the accurate
characterization of the viscoelastic flow. Thus, after presenting this Introduction, we describe the
governing equations along with the aspects of the computational implementation in the Materials and
Methods Section 2. Then, we move to Section 3, where we present results for drop deformation under
steady, shear flows and in situations where gravitational effects drive the dynamics of the flow. Finally,
Section 4 offers some conclusions and future lines of work.
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2. Materials and Methods

In this section, we describe the main ideas, mathematical background, and computational
implementation of the FEM-based, ML-enhanced method used to perform the series of numerical
experiments carried out in Section 3 to gain insight into the impact that viscoelasticity may have on
drop deformation. We start with the finite element discretization, then moving on to the computational
implementation.

2.1. Finite Element Discretization

The problem of drop deformation in polymer solutions can be tackled using different methods.
In this work, we use an FEM-based discretization of the “macro-scale” equations governing the fluid
flow, employing a stochastic modeling of the stresses arising from the polymer fluid to account for
the “micro”-scale. Finally, we use a Particle Level Set (PLS) method to capture the interface of the
deforming drop.

2.1.1. Governing Equations

The two-phase, incompressible fluid flow studied in this work is governed, at the “macro”-scale,
by the Navier–Stokes equations, which in dimensionless form can be written in the space-time domain
Ω× [0, T] as:



Reρ
Du
Dt
−∇ ·

[
µ
(
∇u + (∇u)T

)]
+∇p = −ρez

Re
Fr2 +

c
De
∇ · τp +

Re
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u
(
ximg, t

)
= (xref, t) on δDPBC ⊂ δΩ, ∀t ∈ (0, T),

u (x, t) · n = 0 and n · τs · t = 0 on δDfree-slip = δΩ \ (δDno-slip ∪ δDpbc), ∀t ∈ (0, T).

(1)

where ρ is the density, µ the viscosity, D()/Dt the total (convective) derivative operator, p the
pressure, v the velocity, τp the polymer (“extra-”)stress tensor, Γ the interface of the drop, κ its
curvature, φ the level set function (see Section 2.1.2), Re the Reynolds number, Fr the Froude number,
We the Weber number, c the concentration parameter, De the Deborah number, T the final time,
and δΩ the boundary of the spatial domain Ω. The “no-slip”, “free-slip”, and “Periodic Boundary
Conditions” (PBC), are implemented in Section 2.2.3 for the configurations explored in the Results and
Discussion Section 3. Using a semi-Lagrangian approach, the total convective operator in Equation (1)
is discretized along the “characteristic curves” of the flow without changing the Eulerian, underlying
mesh. The resulting weak formulation can be written as a Stokes-like problem to be solved at each
instant of time, with the following form:
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where the subscript h denotes the spatial discretization of the variables; the superscripts ∗ and n their
non-dimensionality and temporal discretization at instant of time n, respectively; dt is the time step
size used in the discretization of the full interval (0, T); ψh the basis functions of velocity vector space
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Vh and qh the basis functions of the pressure space Qh. The basis functions of the finite element spaces
are chosen to be polynomials of degree {P2,P1,P2,P1} for velocity, pressure, the level set function, and
the polymer stress tensor, respectively, thus satisfying the Ladyzhenskaya–Babus̆ka–Brezzi condition.
The spatial discretization of the domain Ω is accomplished using an unstructured mesh composed
of simplices of average size h, and the surface tension effects are implemented making use of the
Laplace–Beltrami operator, as detailed in [37].

In Equation (2), we collect the “macro-scale” physics involved in the FEM-based discretization of a
multiphase flow of incompressible fluids subject to gravity, viscous, and surface tension forces, in which
the interface is retrieved by a level set function φ, and the viscoelastic effects of the polymer solution are
captured through the polymer stress tensor τp. We now take a stochastic approach to the computation
of τp avoiding closed-form constitutive equations, performing instead Brownian dynamics simulations
of polymer particles [7] modeled via the Hooke (equivalent to the Oldroyd-B constitutive equation)
and FENE (Finitely Extensible Non-linear Elastic) kinetic models [51]. To compute τp, we need to
average over the internal configurations Q of each of the Nd dumbbells (“polymer particles”), which
are scattered over the domain and follow the flow. Thus, we solve for each of the dumbbells the
following stochastic (dimensionless) differential equation:

dQ =


(

κ ·Q− 1
2De

Q
)

dt +
1√
De

dW, Hooke;(
κ ·Q− 1

2De
Q

1− ‖Q‖2/b

)
dt +

1√
De

dW, FENE;
(3)

a task that is accomplished by means of a (weak) second-order accurate predictor-corrector algorithm
proposed by Öttinger [51]. In Equation (3), κ is the velocity gradient, W a stochastic Wiener process,
the Deborah number De representing the ratio between the relaxation time of the polymer and
a characteristic time of the flow, and b is the FENE extensibility parameter so that, as b → ∞,
Hooke→FENE. A variance-reduction technique can also be implemented [37,41], performing the
average over the Nd dumbbells with uncorrelated noise that comprise each of the Nens ensembles, so
that the i-th dumbbell of each ensemble is subject to the same (correlated) stochastic “kick”, reducing
the overall noise of the simulation. Finally, the polymer stress tensor is reconstructed and evaluated at
the mesh nodes [52] using the ML-inspired techniques of Section 2.2.1.

2.1.2. Interface Capturing Technique

The interface Γ is captured as the zero isocontour of a level set function φ, which is transported by
the characteristic curves of the flow through the total derivative operator:

Dφ

Dt
=

∂φ

∂t
+ v · ∇φ = 0. (4)

As we did with Equation (1), the convective terms in Equation (4) are dealt with using a
semi-Lagrangian approach, as proposed first in [53]. The level set function φ is initialized as a
signed-distance function to improve the regularity and behavior of the transported solution. However,
as time goes on, discretization errors build up in the form of numerical artifacts that may eventually
propagate into the interface and destroy it. To prevent this undesired effect, an Eikonal-based,
redistancing procedure [54] is performed at each time step, so that we ensure that, within a band
around the interface, the level set function preserves the signed-distance property. To improve mass
conservation and shape definition, we add Nmp marker particles [18] that are passively advected by
the flow, helping to correct the interface by defining local level set functions with a variable radius
0 ≤ rmin ≤ rn

p ≤ rmax < h, accounting for lost resolution in the sub-grid scales (see [37] for details).
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2.2. Computational Implementation

Next, we describe some of the topics involved in the computational implementation of the
ML-enhanced, FEM-based method utilized to tackle the drop deformation problems proposed in
Section 3. All code was written in the C programming language and compiled using the open-source
GNU-C compiler gcc. Efficiency and robustness are two features pursued in this implementation;
accordingly, all simulations presented in this work can be run in a commodity personal computer with
a 4-core processor. All 2D plots were made using the open-source library matplotlib [55] and/or the
TikZ and PGF packages [56], while the 3D graphics make use of Mayavi [57]. For data manipulation
and data analysis, we use the pandas [58] package.

2.2.1. Machine Learning Enhancement

Radial basis functions are a family of kernel methods [59] widely used in Machine Learning (ML)
for their flexibility in generating spaces of trial functions with excellent approximation properties. This
close relation to approximation theory allows for a solid mathematical background, which proves
extremely useful when offering bounds in supervised learning problems [43] for the necessary number
of training data required to provide a model trained with such data and having a small generalization
error. Combining these concepts with novel applications in the field of image processing [60,61],
we leverage RBFs to reconstruct the discrete solution of the polymer stress tensor over the whole
domain, using the scattered data provided by the values of the polymer stress tensor defined at each
of the position of the ensembles. The main advantage of this idea is the mesh independence property
guaranteed by the RBF approach; the relevance of this feature cannot be overstated in the context of
“micro-macro” methods for non-Newtonian flows [29,34,41]. Traditional methods use particles for the
kinetic modeling of the polymer solution; however, spatial mesh refinement hinders the accuracy of
the stochastic model (given the reduced number of particles surrounding a certain mesh node), thus
requiring compromising on the accuracy of either the “micro-” (internal configurations of the polymer
and “extra-”stress tensor) or the “macro-” (velocity, pressure) scales. This is no longer the case with
our approach: now, using the smooth approximation built via RBFs, we can evaluate the tensor at any
position (e.g., a certain mesh point), virtually decoupling the “micro-” and “macro-”scales and paving
the way for adaptive mesh refinement in “micro-macro” methods.

Thus, at each instant of time, we retrieve the positions {xi} , i = 1, .., Nens of all the ensembles
scattered over the domain. Then, we compute τp,i, the value of the polymer stress tensor at the
ensemble i using Kramers’ expression averaging over the Nd dumbbells contained at the ensembles:

τp,i = nkBΘ

[
1

Nd

Nd

∑
j=1

F
(

Qi
j

)
⊗Qi

j − I

]
. (5)

As kernels of approximation, we focus on compactly-supported RBFs [59,62] for their computational
efficiency and remarkable accuracy, since the matrices resulting from a suitable formulation of the
approximation problem are sparse. In particular, we use Wendland’s ϕ3,k(C2k), k = 0, .., 3, suitable for
problems of space dimension d ≤ 3, and degree of smoothness 2k:

ϕ3,0(r) = (1− r)2
+,

ϕ3,1(r) = (1− r)4
+(4r + 1),

ϕ3,2(r) = (1− r)6
+(35r2 + 18r + 3),

ϕ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1),

(6)
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so that outside the support size χ, ϕ3,k(r > χ) = 0, whereas inside the support, they are positive
definite on Rd and provide optimal convergence rateO(hΩ)2k+d+1, with hΩ the fill distance [62]. Using
these kernels, we build an interpolant s of the form:

s(x) = p(x) + ∑
i

λi ϕ(‖x− xi‖), (7)

with p(x) a quadratic function defined by coefficients ci and and λi a set of real-valued interpolation
coefficients for the CSRBFs. The formulation can then be reduced to a system of equations equivalent to
a saddle-point problem of the form [Q P; PT 0]] [l; c] = [f; 0], which can be solved efficiently
using the two-step approach described in [52] to obtain the solution vectors [l;c] required to build
the interpolant s. After building the interpolant and having reconstructed the polymer stress tensor,
we can straightforwardly evaluate each component at any given point (e.g., at one mesh node).

The use of CSRBFs as approximation kernels calls for the determination of the support size χ,
for each of the ensembles scattered over the domain. The technique used to perform this potentially
expensive computation is taken from the classification problems usually found in ML: the Nearest
Neighbor (NN) classification algorithm [42,43]. Using this approach, along with an implementation of
kd-tree as data structures, we are able to obtain, at each instant of time, the nearest neighbors of each
ensemble, within a certain support size χ.

2.2.2. PETSc-Based Solver

The solution of the linear systems arising from the FEM discretization of the coupled
velocity-pressure system is carried out taking advantage of PETSc, the Portable, Extensible Toolkit
for Scientific Computation [63]. This step is key to the overall efficiency and viability of the method
as an appropriate candidate to tackle Newtonian and non-Newtonian multiphase flows in which
large density and viscosity ratios are involved, as those taking place in experiments dealing with
drop and bubble deformation. As the ratio increases, so does the condition number of the resulting
velocity matrix, which hampers the convergence of traditional iterative approaches to the solution of
the coupled velocity-pressure system such as preconditioned conjugate gradient techniques [64]
or traditional “splitting” techniques, usually problematic at low (viscosity-dominant) Reynolds
numbers [65]. Instead, we use a physics-based, block-preconditioning approach presented by
Elman and collaborators [66] and implemented in the PETSc-FieldSplit preconditioner: we define
separate fields for the discrete velocity and pressure and combine them using a Schur-complement
factorization [67] of the total system matrix, which is efficiently stored as a MatNest structure
K = [A B; BT 0], in which the corresponding sub-matrices for the discrete velocity, discrete gradient,
and discrete divergence are the four entries K_ij, for i,j = 1,2. The following snippet collects a
sample function to build the block matrix.
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sub-matrices for the discrete velocity, discrete gradient, and discrete divergence, are the four entries202

K_ij, for i,j=1,2. The following snippet collects a sample function to build the block matrix.203

PetscErrorCode fun_petsc_construct_block_matrix_PETSC_Stokes_system (...)
{

...
/* Build first sub-matrix "K00" */
ierr = MatDuplicate(K00,MAT_COPY_VALUES,& (Stokes_Problem_system->K_ij[0]));CHKERRQ(ierr);
ierr = MatAssemblyBegin(Stokes_Problem_system->K_ij[0],MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(Stokes_Problem_system->K_ij[0],MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
...
/* Build complete, block matrix "K" from sub-matrices "K_ij" as a nested matrix */
ierr = MatCreateNest(PETSC_COMM_WORLD, 2, NULL, 2, NULL, \

Stokes_Problem_system->K_ij, & (Stokes_Problem_system->K)); CHKERRQ(ierr);
ierr = MatAssemblyBegin(Stokes_Problem_system->K,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(Stokes_Problem_system->K,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
...

}

The previous approach can now be used to tackle the saddle-point problem resulting204

from our FEM-based discretization of the Navier-Stokes equations using the PETSc-FieldSplit205
The previous approach can now be used to tackle the saddle-point problem resulting

from our FEM-based discretization of the Navier–Stokes equations using the PETSc-FieldSplit
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preconditioner for the system matrix, collecting all the information in a suitable structure such as the
PETSc_Saddle_point_system sample structure included in the following code snippet.
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preconditioner for the system matrix, collecting all the information in a suitable structure such206

as the PETSc_Saddle_point_system sample structure included in the following code snippet.207

/* Structure with all the information required to solve a saddle-point problem */
typedef struct
{
Mat K; /*MatNest matrix with 4 sub-matrices: K = [K00 K01; K10 K11]*/
Mat K_ij[4]; /*each of the four sub-matrices of block matrix "K"*/
Mat Pmat; /*MatNest precond-matrix: Pmat = [Pmat00 Pmat01; Pmat10 Pmat11]; */
Mat Pmat_ij[4]; /*each of the four sub-matrices of precond-matrix "Pmat"*/
Vec x; /*solution of system*/
Vec b; /*right hand side vector*/
KSP ksp; /*solver context*/
MatNullSpace nullsp; /*Nullspace for pressure (in Stokes solved by PCFieldSplit)*/
PC pc; /*preconditioner context*/
IS isg[2]; /* index sets (rows) of splits "0" and "1" (e.g. velocity, pressure)*/

}
PETSC_Saddle_point_system;

The CHOLMOD package [68] is used to perform the sparse direct Cholesky factorization of the208

positive-definite block matrix K00=A, while the least-squares commutator (LSC) preconditioner [67]209

takes care of the second field (pressure) involved in the upper factorization of the Schur complement,210

using a combination of the Conjugate Gradient and Additive-Schwarz methods [69] for the multigrid211

levels of the ML (Multi-Level) preconditioner package [70] used for LSC. The following options passed212

to PETSc were found to offer excellent performance in demanding multiphase flow problems with high213

density ratios such as those found in Section 3.2.214

/* KSP00=preonly (cholesky,CHOLMOD); KSP11:preonly (lsc); ksp_lsc: cg (ml(+asm)). */
char options_pc_stokes[] = "-stokes_ksp_rtol 5.e-9 -stokes_ksp_diagonal_scale \
-stokes_ksp_type fgmres -stokes_pc_type fieldsplit -stokes_pc_fieldsplit_type schur \
-stokes_pc_fieldsplit_schur_fact_type upper -stokes_pc_fieldsplit_detect_saddle_point \
-stokes_fieldsplit_0_pc_type cholesky -stokes_fieldsplit_0_pc_factor_mat_solver_package cholmod \
-stokes_fieldsplit_0_ksp_type preonly -stokes_fieldsplit_1_pc_type lsc -stokes_fieldsplit_1_lsc_pc_type ml \
-stokes_fieldsplit_1_lsc_mg_coarse_pc_factor_shift_type NONZERO \
-stokes_fieldsplit_1_lsc_mg_levels_1_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_2_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_3_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_4_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_5_pc_type asm -stokes_fieldsplit_1_lsc_ksp_max_it 3 \
-stokes_fieldsplit_1_lsc_ksp_type cg -stokes_fieldsplit_1_lsc_ksp_constant_null_space \
-stokes_fieldsplit_1_ksp_type preonly";

These are some of the general configuration options and data structures that are most responsible215

for the performance boost we find for the kind of complex, polymer flows studied in this work. Given216

the platform-independent model of C and PETSc, the snippets could be included with little modification217

in any existing C code used by any researcher with a similar underlying mathematical problem,218

independently of the particular field of knowledge.219

2.2.3 Boundary conditions220

The viscous and viscoelastic flows presented here for the analysis of drop deformation in polymer221

solutions make use of several types of boundary conditions: the “no-slip” boundary condition to ensure222

that the fluid adhere to the adjacent solid boundary; the “free-slip” boundary condition to neglect223

friction forces at the fluid-solid interface; and Periodic Boundary Conditions (PBCs) at the inlet and224

outlet of the domain to model sufficiently large domains.225

In our FEM-based method, the “free-slip” condition can be applied naturally as a Neumann-type226
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The CHOLMOD package [68] is used to perform the sparse direct Cholesky factorization of the
positive-definite block matrix K00=A, while the Least-Squares Commutator (LSC) preconditioner [67]
takes care of the second field (pressure) involved in the upper factorization of the Schur complement,
using a combination of the conjugate gradient and additive-Schwarz methods [69] for the multigrid
levels of the ML (Multi-Level) preconditioner package [70] used for LSC. The following options passed
to PETSc were found to offer excellent performance in demanding multiphase flow problems with
high density ratios such as those found in Section 3.2.
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preconditioner for the system matrix, collecting all the information in a suitable structure such206

as the PETSc_Saddle_point_system sample structure included in the following code snippet.207

/* Structure with all the information required to solve a saddle-point problem */
typedef struct
{
Mat K; /*MatNest matrix with 4 sub-matrices: K = [K00 K01; K10 K11]*/
Mat K_ij[4]; /*each of the four sub-matrices of block matrix "K"*/
Mat Pmat; /*MatNest precond-matrix: Pmat = [Pmat00 Pmat01; Pmat10 Pmat11]; */
Mat Pmat_ij[4]; /*each of the four sub-matrices of precond-matrix "Pmat"*/
Vec x; /*solution of system*/
Vec b; /*right hand side vector*/
KSP ksp; /*solver context*/
MatNullSpace nullsp; /*Nullspace for pressure (in Stokes solved by PCFieldSplit)*/
PC pc; /*preconditioner context*/
IS isg[2]; /* index sets (rows) of splits "0" and "1" (e.g. velocity, pressure)*/

}
PETSC_Saddle_point_system;

The CHOLMOD package [68] is used to perform the sparse direct Cholesky factorization of the208

positive-definite block matrix K00=A, while the least-squares commutator (LSC) preconditioner [67]209

takes care of the second field (pressure) involved in the upper factorization of the Schur complement,210

using a combination of the Conjugate Gradient and Additive-Schwarz methods [69] for the multigrid211

levels of the ML (Multi-Level) preconditioner package [70] used for LSC. The following options passed212

to PETSc were found to offer excellent performance in demanding multiphase flow problems with high213

density ratios such as those found in Section 3.2.214

/* KSP00=preonly (cholesky,CHOLMOD); KSP11:preonly (lsc); ksp_lsc: cg (ml(+asm)). */
char options_pc_stokes[] = "-stokes_ksp_rtol 5.e-9 -stokes_ksp_diagonal_scale \
-stokes_ksp_type fgmres -stokes_pc_type fieldsplit -stokes_pc_fieldsplit_type schur \
-stokes_pc_fieldsplit_schur_fact_type upper -stokes_pc_fieldsplit_detect_saddle_point \
-stokes_fieldsplit_0_pc_type cholesky -stokes_fieldsplit_0_pc_factor_mat_solver_package cholmod \
-stokes_fieldsplit_0_ksp_type preonly -stokes_fieldsplit_1_pc_type lsc -stokes_fieldsplit_1_lsc_pc_type ml \
-stokes_fieldsplit_1_lsc_mg_coarse_pc_factor_shift_type NONZERO \
-stokes_fieldsplit_1_lsc_mg_levels_1_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_2_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_3_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_4_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_5_pc_type asm -stokes_fieldsplit_1_lsc_ksp_max_it 3 \
-stokes_fieldsplit_1_lsc_ksp_type cg -stokes_fieldsplit_1_lsc_ksp_constant_null_space \
-stokes_fieldsplit_1_ksp_type preonly";

These are some of the general configuration options and data structures that are most responsible215

for the performance boost we find for the kind of complex, polymer flows studied in this work. Given216
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These are some of the general configuration options and data structures that are most responsible
for the performance boost we find for the kind of complex, polymer flows studied in this work.
Given the platform-independent model of C and PETSc, the snippets could be included with little
modification in any existing C code used by any researcher with a similar underlying mathematical
problem, independently of the particular field of knowledge.

2.2.3. Boundary Conditions

The viscous and viscoelastic flows presented here for the analysis of drop deformation in polymer
solutions make use of several types of boundary conditions: the “no-slip” boundary condition to
ensure that the fluid adheres to the adjacent solid boundary; the “free-slip” boundary condition to
neglect friction forces at the fluid-solid interface; and Periodic Boundary Conditions (PBCs) at the inlet
and outlet of the domain to model sufficiently large domains.

In our FEM-based method, the “free-slip” condition can be applied naturally as a Neumann-type
condition that is satisfied automatically by the weak formulation of the problem [7,37]. However, the
implementation of PBCs in unstructured meshes for the configuration presented in Section 3.1 for
drop deformation in shear flows is not straightforward. Following Pask et al. [71] and Sukumar and
Pask [72], we carry out an efficient implementation of the PBCs in structured and unstructured finite
element meshes using the idea of “reference” and “image” nodes at the inlet and outlet, respectively
(see Figure 1). First, we obtain the connectivity lists for the assembled sub-matrices K_00,K_01,K_10
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of the block matrix K = [K00 K01; K10 K11]; then, we perform row operations (first) and column
operations (later) to K00,K01,K10 and to the right-hand side F, as described in [72]; finally, we update
the values of the (pressure,velocity) “image” nodes with the values obtained from the corresponding
“reference” nodes. The addition of dumbbells and marker particles to deal with multiphase flows and
non-Newtonian fluids adds complexity to the actual implementation, but not to the general concept.

As for the “no-slip” conditions, they translate into homogeneous or non-homogeneous
Dirichlet-type conditions that can be applied efficiently using the symmetry-conserving procedure
MatZeroRowsColumns to perform row and column operations on the PETSc-based assembled matrices
K00,K01,K10 and right-hand side F.
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Figure 1. Schematic of the computational domain for a drop deforming in shear flow.

3. Results and Discussion

The main purpose of this paper is to explore the behavior of drops immersed in polymer solutions
through a series of numerical experiments that try to highlight the effects of viscoelasticity in the
shape of the drop, as well as in the emerging flow patterns. First, we focus on drop deformation
under a steady, shear flow, offering results under two configurations: Newtonian drop in a Newtonian
“matrix” (ambient fluid) and non-Newtonian drop in a Newtonian matrix. Then, we make use of
our ML-enhanced, FEM-based method to investigate stronger viscoelasticity effects in flows where
gravitational forces and surface tension effects can become relevant, showing the influence that the
discretization employed and the numerical techniques utilized may have on the accurate reconstruction
of the polymer stress tensor and on the quality of the discrete solution for the multiphase flow.

3.1. Drop Deformation in Steady, Shear Flow

We start the exploration of viscoelastic effects on drop deformation by considering the problem of
a drop immersed in another, ambient fluid and subject to a steady, shear flow. First, we show results
for a Newtonian/Newtonian system; then, we introduce viscoelasticity in the system, comparing
our results with others obtained using a constitutive (Oldroyd-B) model, equivalent to our stochastic,
Hookean dumbbell approach. The configuration is represented in Figure 1: a drop of a viscous (real)
fluid of radius a placed at the center of a domain [2L× 2H], with H = 4a and L = 8a, experiences
a steady, shear flow of rate γ̇ = V/H produced by the top and bottom lids moving at velocity V in
opposite directions.
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The inlet and outlet walls have Periodic Boundary Conditions (PBCs), the implementation of
which is detailed in Section 2.2.3. At the top and bottom panels, the “no-slip” boundary condition
is considered.

3.1.1. Newtonian Drop in a Newtonian Matrix

We place a Newtonian drop in a Newtonian ambient fluid as depicted in Figure 1 to study
the shape of the interface for different values of the capillary number Ca = We/Re in terms of the
“deformation parameter” D. This parameter is usually defined as D = (L− B) / (L + B), with L and
B being the longest and shortest lengths from the center of the drop to the interface (corresponding
also to the major and minor axes of the ellipse), respectively. We also choose a small value for the
Reynolds number (Re = 0.1) so as to neglect strong inertial effects, comparing our results with those
of Zhou and Pozrikidis [73], Yue et al. [20,22], and Afkhami et al. [74]. We employ an unstructured,
uniform mesh of size h = 1/80, in a rectangular domain [0, 2]× [0, 1] with time step dt = 1/100 and
Nmp = 2.5× 105 marker particles. In Figure 2, we represent the steady value of the deformation
parameter for increasing values of the capillarity number; in all cases, we obtain excellent agreement
with the published results, especially with that by Afkhami et al. [74], deviating in the worst case
scenario < 2.5% at Ca = 0.6 from the results offered by Zhou and Pozrikidis in [73]. The steady values
of D show a linear behavior with Ca for small capillary numbers, then decreasing as Ca gets larger;
as pointed out in [20], we expect the physical insights gained by this 2D exploration to be relevant to
actual (three-dimensional) experiments.
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0.2
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D
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Zhou & Pozrikidis [73].
Yue et al. [20].
Yue et al. [22].
Afkhami et al. [74].
This work.

Figure 2. Comparison of the steady-state deformation of a Newtonian drop in a Newtonian
matrix between our results and those found in Zhou & Pozrikidis [73], Yue et al. [20,22], and
Afkhami et al. [74].

We also collect in Figure 3 the evolution of the deformation parameter D as a function of the
dimensionless time t∗ = tγ̇ and compare it with the results of [74], for a wide range of capillary
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numbers from Ca = 0.1 to Ca = 0.6. Again, an excellent agreement is obtained throughout, with
a maximum difference of less than 1.3% (for Ca = 0.6) between the two numerical methods at any
given time.
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Figure 3. Comparison of the evolution of deformation for a Newtonian drop in a Newtonian matrix of
equal viscosity, for different values of capillarity Ca, between our results (solid line) and those found in
Afkhami et al. [74] (dashed line).

Following Yue et al. [22], we now study the steady shape of the drop in polar coordinates,
collecting the radius r for each orientation angle θ ∈ [0, π], with θ defined as the angle formed by
the line connecting the center of gravity of the drop and a point in the free-surface, with the x-axis.
Thus, we show in Figure 4 the shape in polar coordinates and the actual shape for a simulation with
Ca = 0.1.
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Figure 4. Comparison of the drop shape in (a) polar coordinates and (b) the actual shape, for Ca = 0.1,
between our results (triangles) and those found in Yue et al. [22] (square markers).

We can observe in this Figure 4 very good agreement in the orientation angle of the droplet,
which can be measured at θ̂ ≈ 39.6◦, lower than 45◦ as numerical and experimental results confirm.
However, there is a major discrepancy between the results of the two methods: the radii for each polar
angle are smaller for the method of Yue et al. [22] when compared with ours (see left panel). To better
understand what is happening here, we plot the actual shape of the drop according to both methods in
the right panel of Figure 4. As can be observed, the reason for the discrepancy lies in the lack of mass



Polymers 2020, 12, 1652 11 of 24

conservation “mass-loss” incurred by the drop of [22], which loses around 5% of its initial mass at the
end of the simulation, whereas we can ensure mass conservation up to 99.98% of the initial mass in
this simulation.

3.1.2. Viscoelastic Drop in a Newtonian Matrix

After exploring the multiphase Newtonian/Newtonian system and comparing our results with
those of the literature, we now proceed with a problem in which the viscoelastic effects are present. We
focus on a viscoelastic drop modeled by the Hookean dumbbell model (equivalent to the Oldroyd-B
constitutive equation), immersed in a Newtonian, ambient fluid, using the same configuration of the
previous Newtonian/Newtonian analysis. The flow is impulsively started at t = 0 with shear rate
γ̇ = 1, using a rather coarse mesh with 80× 40 elements and Np = 107 dumbbells uniformly placed
inside the droplet; the flow is continued until dimensionless time t∗ = tγ̇ = 10, with a small time step
to accurately solve the internal configurations of the dumbbells (dt = 1/200), taking Nt = 2000 time
steps to finish each simulation; the number of marker particles to improve the definition of the interface
was Nmp = 2.5 · 105. The ratio between viscous and inertial effects in the system, represented by the
Reynolds number, are of utmost importance, in the sense that, if the method is not able to deal with
extremely low Re (“creeping” or “Stokes” flows), the inertial effects become relevant when small time
steps are used, thus affecting the history of the flow and, consequently, that of the polymer particles
(dumbbells); it is for this reason that the value of Re = 0.1, deemed appropriate in the previous section
for Newtonian flows, is now replaced by Re = 10−5 to suppress any undesired effects that inertia
may have on the computation of the steady-state values for the polymer solution. The remaining
dimensionless parameters are chosen as those found in [21], with Fr → ∞, We = 10−6, so that the
Capillary number Ca = 0.1; our concentration parameter c, according to the characteristic scales
chosen in [21], corresponds to c = 1− β, with β = 0.5 the retardation parameter of the Oldroyd-B fluid;
the Deborah numbers studied are De = {0.25; 0.5; 1; 2}; and the density and viscosity ratios between
the drop and the outer ambient fluid (matrix) are taken as ρ2/ρ1 = µ2/µ1 = 1. We performed a set
of simulations to obtain the evolution of the drop deformation and compared the results found in
Figure 1 of [21].

Despite the rather coarse mesh used (equivalent to a uniform size h = 1/40), the not-so high
number of dumbbells and the totally different approach taken by the two techniques compared—the
diffuse-interface method combined with a phase-field approach ruled by Cahn–Hilliard dynamics
to study the Newtonian/non-Newtonian problem in a unified way of [21] and our FEM-based,
stochastic method—the results presented in Figure 5 are in remarkably good agreement, especially
the steady-state values of the deformation parameter D. However, also the transient behavior shows
a noteworthy resemblance, with the overshoot appearing for sufficiently high De values and the
evolution of De = 2 being for t / 4 higher than those for De = 1. In any case, we notice the effect
of the drop viscoelasticity as a means to reduce the deformation of the interface; plots of the actual
shape of the interface (not included here for brevity’s sake) show this same trend. Apart from the
stochastic noise, the modification of the interface by the correction step of the marker particles and the
mass conservation step add to the oscillatory behavior of D observed in Figure 5, which is explicitly
computed from the discrete interface. Moreover, Figure 5 underscores the elastic effects of the drop,
since an increase in the Deborah number De produces a larger ratio between the maximum and
the steady-state value of the deformation parameter D, as a consequence of the longer time (slower
response) that the polymer molecules take to recover from the applied shear strain.

We now compare the steady-state values of the polymer stress tensor obtained using the Oldroyd-B
constitutive model of [22] and the Hookean dumbbell model. The results are presented in Figure 6.
As we did for the Newtonian/Newtonian case, we represent the interface also in polar coordinates
with θ ∈ [0, π]. The normal component of the polymer stress tensor τp,n ≡ n · τp · n (with n the outer
normal at each point of the interface) is computed in Figure 6a.
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Figure 5. Comparison of the evolution of deformation for a non-Newtonian (Oldroyd-B) drop in a
Newtonian matrix of equal viscosity after the abrupt start of shear flow, for increasing values of the
Deborah number De, between our results (solid line) and those found in Yue et al. [21] (dashed line).
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Figure 6. Comparison of the (a) normal and (b) tangential stresses along the inner edge of the interface
for a non-Newtonian (Oldroyd-B) drop in a Newtonian matrix of equal viscosity, for increasing values
of the Deborah number, between our results (De = 0.5, green squares; De = 1, yellow triangles; De = 2,
inverted red triangles) and those found in Yue et al. [22].

In spite of the largely dissimilar methods, we notice a very good agreement between them. We
observe how the effects of the viscoelastic drop are not very strong on the normal component of the
polymer stress tensor, though increasing the viscoelasticity by means of De reduces the maximum
value, which is also moved towards smaller orientation angles, thus playing a part in diminishing
drop deformation. Overall, the normal polymer stress component is weakened at the poles and at the
equator of the drop as viscoelasticity increases, preventing drop deformation.
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Figure 6b shows the tangential component of the polymer stress tensor τp,t ≡ t · τp · t, with t the
unit vector tangent at all points to the interface and perpendicular to n (so that, in 2D, tx = ny, ty =

−nx). Here, the polymer stresses are much larger than for the normal component, showing again an
excellent agreement between our results and those in [22]. The larger De values intensify the tangential
stresses at the equator, being responsible to a larger extent for the reduced deformation observed for
the higher De. Despite small discrepancies, even with a coarse mesh and computationally inexpensive
simulation, our results compare very well with those of the reference, capturing the minimum and
maximum values of τp,t, as well as the evolution of τp,t along the interface.

3.2. Drop Deformation in Buoyancy-Driven Flow

After studying the problem of drop deformation in unsteady, shear flow, in this section, we focus
on following the behavior of a Newtonian drop immersed in an ambient, polymeric solution, rising
due to buoyancy effects and the density ratio between the fluids [75]. By means of a series of numerical
experiments, we gain insight into the deformation of the drop shape, characterized by the circularity �c,
the ratio between the perimeter of a circle whose area is equal to that of the drop and the perimeter of
the drop. We also shed light on the response of the “extra-” stress tensor τp to a varying degree of
polymer concentration and relaxation time, when the drop undergoes large deformation and velocity
gradients, highlighting the influence of different smoothness in the CSRBF. Finally, we observe the
effects that viscoelasticity may have on the flow, with emphasis on the flow streamlines during the full,
unsteady simulation.

Thus, we consider a dimensionless, 2D rectangular domain [0, 1]× [0, 2] in which a drop of radius
R = 0.25 is placed at position (0.5, 0.5) inside an unstructured mesh of uniform size h. The outer,
non-Newtonian polymer solution is modeled using the FENE and Hookean dumbbell models. The
flow is further defined by the density and viscosity ratios ρ2/ρ1, µ2/µ1 and dimensionless numbers
Re, We, Fr, c, De. The “no-slip” boundary condition is applied at the top and at the bottom, while we
consider “free-slip” at the lateral boundaries. All simulations are carried until dimensionless time
t = 3.

3.2.1. Convergence Results

We turn our attention to the evolution of the drop shape during the full simulation, as the mesh
size is decreased from h = 1/40 down to h = 1/320, and the number of ensembles scattered over
the domain changes, using two different kinetic models, Hooke, and FENE, and different degrees of
viscoelasticity, (c = 1, De = 1) and (c = 5, De = 3). The other relevant parameters in this case are:
Re = 35, We = 10, Fr = 1, ρ2/ρ1 = 10−1 = µ2/µ1.

In Figure 7, we present the results for convergence under mesh refinement, for the FENE and
Hooke models: for the case with weaker viscoelastic effects (c = 1, De = 1), the number of ensembles is
Nens = 5000, while the number of dumbbells inside each ensemble is Nd = 150, 000 for both stochastic
models. When the polymer concentration is increased (c = 5, De = 3), we scatter more ensembles in
the ambient (polymeric) fluid Nens = 5000 to capture the more dramatic effects in shape deformation,
reducing the number of dumbbells within each ensemble to Nd = 15, 000 to keep the computational
demands at a similar level. The results obtained here compare very well with those provided in [7]
for purely uncorrelated dumbbells, showing excellent convergence with mesh refinement for both
kinetic models and degrees of polymer concentration. Only in the coarser mesh, h = 1/40, do we
observe a slightly different behavior to that produced by the other unstructured meshes. This pattern
is more evident when using the Hooke instead of the FENE dumbbell model, due to the larger
stresses produced by the former model during drop deformation: the minimum value of the circularity
decreases for both c = 1 and c = 5, and we observe a lower local maximum at t u 2.2 for c = 5, De = 3,
with the drop showing a lack of deformation at the latter stages of the simulation (t ≥ 2.75).
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Figure 7. Evolution of the circularity of a drop rising due to buoyancy effects in a polymer solution,
using the FENE and Hookean kinetic models, variable mesh size h = {1/40, 1/80, 1/160, 1/320}, and
different degrees of viscoelasticity: c = 1, De = 1; and c = 5, De = 3.

Figure 8 shows the evolution of the circularity when the number of ensembles Nens and dumbbells
per ensemble Nd changes, keeping the product Nens × Nd = 750× 106 constant so as to maintain the
computational cost; the mesh size is h = 1/320. For the case with lower polymer concentration and
viscoelastic effects, the convergence results are remarkable for both models. When the concentration
parameter and Deborah number are increased to c = 5, De = 3, we observe a small discrepancy in
the circularity values, proving that a certain number of ensembles are required to reconstruct, in an
accurate way, the stronger polymer stresses. However, there seems to be an optimal value of Nens

and Nd for a given computational cost, with this value of Nens being larger for Hooke than for the
FENE model. In any case, such a modest diverging behavior is only observed at or after the minimum
circularity (c = 1) or local maximum circularity (c = 5) are attained.
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Figure 8. Evolution of the circularity of a drop rising due to buoyancy effects in a polymer solution,
using the FENE and Hookean kinetic models, variable number of ensembles (Nens × Nd = 750× 106),
and different degrees of viscoelasticity: c = 1, De = 1; and c = 5, De = 3.

3.2.2. Impact of CSRBF smoothness on the polymer stress tensor

Next, we investigate the influence that the degree of CSRBF smoothness has on the flow.
In particular, we are interested in observing qualitative and quantitative deviations in the shear
component and normal stress difference of the polymer stress tensor τp, in a case with strong
viscoelastic effects (c = 5, De = 3), when Wendland’s CSRBFs, ϕ3,k, ∀j = 0, .., 3, are used. The
reason behind our pursuing this investigation is twofold: since the “extra-”stress is responsible for
the viscoelastic effects, it is mandatory to represent it as accurately as possible in simulations that aim
to highlight the non-Newtonian behavior of the polymer solution; at the same time, this should be
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accomplished as efficiently as possible, opting for the CSRBFs that provide results nearly as accurate
as the more computationally expensive alternatives.

In the following simulations, we take an unstructured mesh of size h = 1/320, keeping the same
values of the dimensionless parameters found in the previous section. The number of ensembles for
the FENE model is Nens = 30, 000, and the number of dumbbells within each ensemble Nd = 25, 000;
for the numerical experiments using the Hookean dumbbell model, the parameters are Nens = 75, 000
and Nd = 10, 000. Thus, Figsures 9–12 show the shear component τp,12 and the normal stress difference
τp,11 − τp,22, at (dimensionless) instants of time t = 2 and t = 3; for the ease of representation, the
Hookean stresses are scaled down a factor of 1.81 from the results obtained with the FENE model.

Figure 9. Representation of the shear component of the polymer stress tensor, τp,12, for the FENE model
(b = 50) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for variable types of
CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.

For the shear component τp,12 of the polymer stress tensor using the FENE model (Figure 9), all
CSRBFs provide very smooth solutions at t = 2. At the final time of the simulation t = 3, when larger
stresses are produced, the Wendland ϕ3,0 CSRBF shows small oscillations and a certain roughness that
may translate into an insufficiently resolved velocity field and an overall loss of symmetry in the drop
shape. Wendland ϕ3,1 offers much better accuracy, as well as an improved spatial resolution of the
stresses, to such an extent that increasing the smoothness of the CSRBF (ϕ3,0, ϕ3,3) offers almost no
distinct enhancement.

Figure 10. Representation of the shear component of the polymer stress tensor, τp,12, for the Hookean
dumbbell model (Oldroyd-B) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for
variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.
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When the Hookean dumbbell model is used (Figure 10), τp,12 shows much larger values
throughout the whole simulation. The influence of the type of CSRBF becomes evident at the later
stages, when extreme and very localized stresses are observed. The less smooth ϕ3,0 is unable to
provide a symmetric solution, while the other Wendland functions offer much better results in terms
of symmetry.

Figure 11. Representation of the normal stress difference of the polymer stress tensor, τp,11 − τp,22, for
the FENE model (b = 50) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for
variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.

If we now inspect the results for the normal stress difference, τp,11 − τp,22, we observe that when
the FENE model is used (Figure 11), remarkable smoothness is retrieved by all the CSRBFs explored,
but for ϕ3,0, which somewhat underperforms at the last instants of the simulation, when the viscoelastic
effects have shown up and the drop attains maximum deformation.

Figure 12. Representation of the normal stress difference of the polymer stress tensor, τp,11 − τp,22, for
the Hookean dumbbell model (Oldroyd-B) with c = 5, De = 3, at dimensionless instants of time t = 2
and t = 3, for variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom
row: t = 3.
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Figure 12 represents the normal stress difference, τp,11 − τp,22, for the Hooke model. In this case,
a higher degree of smoothness has a positive effect, improving the symmetry of the solution, to a
certain extent. However, unless the spatial resolution of the velocity field and the velocity gradients is
improved, the number of ensembles distributed over the domain is large enough, and the dumbbells
per ensemble ensure a sufficiently accurate computation of the “extra-”stress at the ensembles, there is
no point in further increasing the quality of the CSRBF for polymer stress reconstruction, since
the extremely large, very localized stresses cannot be accurately computed unless the previous
conditions are met. On the other hand, all previous conditions can be satisfied so long as the necessary
computational resources are available. As a result of all the previous investigations, we find Wendland’s
ϕ3,1 CSRBF as a good choice in terms of accuracy, smoothness, and computational demands, used in
this work unless otherwise noted.

3.2.3. Flow Pattern under Increasing Viscoelastic Effects

Finally, we explore the flow pattern, streamlines, and isocontours of the polymer stress tensor,
in a series of simulations under increasing polymer concentration and relaxation times, using the
FENE dumbbell model with extensibility parameter b = 50; see Figures 13–16. For all the subsequent
numerical experiments, a uniform, unstructured mesh of size h = 1/320 is used, with the number of
dumbbells per ensemble Nd and the number of ensembles Nens being collected in Table 1. Notice that,
for stronger viscoelastic effects, a larger number of ensembles are scattered throughout the domain,
reducing the computationally available number of dumbbells per ensemble, which in turn translates
into a larger stochastic noise. Two different density and viscosity ratios are explored to underscore
the effects caused by the polymer solution on the shape deformation and flow pattern of the drop
(ρ2/ρ1 = 10−1 = µ2/µ1, Re = 35, We = 10, Fr = 1) and of the bubble (ρ2/ρ1 = 10−3,µ2/µ1 = 10−2,
Re = 35, We = 125, Fr = 1).

Table 1. Each entry in the table shows Nd / Nens for increasing viscoelastic effects and different density
ratios. Nd is the number of dumbbells per ensemble and Nens the number of ensembles scattered in the
domain.

Density Ratio c = 1, De = 1 c = 3, De = 1 c = 5, De = 3 c = 9, De = 5

10 150,000 / 5000 75,000 / 10,000 50,000 / 15,000 37,500 / 20,000
1000 150,000 / 5000 50,000 / 15,000 15,000 / 50,000 15,000 / 5000

In Figure 13, we show the final shape and filled isocontours of the normal stress difference of
the polymer stress tensor for increasing concentration of the polymer solution and longer relaxation
times for the drop (density ratio of 10), while Figure 14 presents the behavior of the shear component
under the same circumstances, for the bubble immersed in the polymeric media (density ratio 1000).
For the drop and normal stress difference, the results present an excellent degree of symmetry and
smoothness, despite the underlying stochastic procedure, even for the strongest viscoelastic effects at
(c = 5, De = 3), which produce extreme values at the top and bottom of the rising drop.

The bubble depicted in Figure 14 with the shear stress isocontours shows how the harder
computational demands of this simulation translate into a modest reduction of the overall symmetry
along with more dramatic changes of the bubble shape. Nevertheless, the smoothness of the discrete
solution obtained for the polymer stress tensor, even when the stronger polymer concentration is
used, is such that it is possible to retrieve the maximum values at the wake of the bubble, with a high
degree of accuracy and symmetry. Figures 13 and 14 also evince elastic effects, with heightened drop
deformation caused by larger values of the Deborah number (i.e., relaxation time of the polymer) and
polymer concentration, while viscous and surface tension forces are kept at the same level.
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Figure 13. Drop shape and isocontours of normal stress difference of the polymer τp,11 − τp,22 for
the FENE model (b = 50) with ρ2/ρ1 = 10−1 = µ2/µ1, at t = 3. From left to right, c = 1, De = 1;
c = 3, De = 1; c = 5, De = 3; and c = 9, De = 5.

Next, we focus on the streamlines of the flow under increasing viscoelastic effects. In Figure 15,
we represent the flow pattern for the drop (moderate density and viscosity ratios), with Figure 15a
presenting a snapshot at time t = 2, while Figure 15b shows the pattern at the final instant of time,
t = 3. For these high values of polymer concentration and relaxation times, at t = 3, we observe the
downwards velocities that characterize the “negative wake” effect [23,76].

For large density and viscosity ratios, Figure 16 depicts the behavior of the deforming bubble
at t = 3. At the higher levels of polymer concentration and relaxation times, the area in which
downwards velocities are observed, comprising the “negative wake”, is much larger than in the case
of the deforming drop.
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Figure 14. Drop shape and shear component of the polymer stress tensor τp,12 for the FENE model
(b = 50) with ρ2/ρ1 = 10−3, µ2/µ1 = 10−2, at t = 3. From left to right, c = 1, De = 1; c = 3, De = 1;
c = 5, De = 3; and c = 9, De = 5.
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Figure 15. Drop shape and streamlines for the FENE model (b = 50), with ρ2/ρ1 = 10−1 = µ2/µ1 at
different instants of time: (a) t = 2 and (b) t = 3. For each panel, the left figure (yellow line) shows the
streamlines for c = 5, De = 3; the right figure (red line), those for c = 9, De = 5.

Figure 16. Drop shape and streamlines for the FENE model (b = 50) with ρ2/ρ1 = 10−3, µ2/µ1 = 10−2,
at t = 3. From left to right, c = 1, De = 1 (blue line); c = 3, De = 1 (green line); c = 5, De = 3 (yellow
line); and c = 9, De = 5 (red line).

4. Conclusions

This paper presents a series of numerical experiments in an effort to gain insight into the
impact that viscoelasticity may have on drop deformation, under a number of multiphase flow
configurations. The numerical method employed is based on an FEM-based spatial discretization,
using a semi-Lagrangian approach to deal with the convective terms, a kinetic modeling of the polymer
contribution to the stress tensor, and ML-inspired techniques for building, over the whole domain,
each of the components of the extra-stress tensor, which effectively decouples the “microscopic” and
“macroscopic” scales. Hence, the process of mesh refinement is no longer hampered by the low number
of polymer particles at a certain computational cell, allowing us to use very refined meshes and achieve
excellent smoothness and accuracy in kinetic-based, complex flow simulations.

The results on drop deformation under shear flow agree extremely well with those in the literature
produced by an equivalent constitutive (Oldroyd-B) model and indicate that drop viscoelasticity
prevents deformation to some degree, underscoring the efficiency and viability of the stochastic
approach in multiphase flows. For more demanding situations in buoyancy-driven flow, we obtain
remarkable mesh (macro) and ensemble (micro) convergence for both the FENE and Hooke models;
as for the degree of CSRBFs smoothness required to accurately build the “extra-”stress tensor, the
numerical study points to a minimum degree of C2 smoothness guaranteed by ϕ3,1, with higher
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smoothness providing small benefits compared to the additional computational cost. Finally, we
observe dramatic changes of flow pattern, including viscoelastic (“negative-wake”) effects and
extremely large values of shear and normal stress differences close to the drop interface, as the
polymer concentration and relaxation times increase.

In future investigations of multiphase flow of polymeric liquids, we will try to address improved
resolutions and problem configurations taking advantage of this ML-enhanced method to combine
isotropic and anisotropic mesh adaptation [77] with a kinetic modeling approach.
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PGC2018-097565-B-I00.
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Abbreviations The following abbreviations are used in this manuscript:
µ1 Viscosity of the continuous phase
µ2 Droplet viscosity
ρ1 Density of the continuous phase
ρ2 Droplet density
τp Polymer (“extra-”)stress tensor
τp,12 Shear component of the polymer stress tensor
τp,11−22 Normal stress difference of the polymer stress tensor
φ Level set function
ϕ Compactly-supported Wendland function
χ Support size of the CSRBF
ψ Trial basis function
b FENE extensibility parameter
c Concentration parameter

�c Droplet circularity
dt Time step size
h Grid size of the uniform, unstructured mesh
p Pressure field
v Velocity field
s Approximation interpolant of the CSRBF
D Deformation parameter
Nd Number of uncorrelated dumbbells per ensemble
Nens Number of ensembles of polymer particles
Nmp Number of marker particles
Ca Capillary number
Fr Froude number
Re Reynolds number
We Weber number
ALE Arbitrary Lagrangian-Eulerian method
BD Brownian Dynamics simulations
CSRBF Compactly-Supported Radial Basis Function
FEM Finite Element Method
FENE Finitely Extensible Non-linear Elastic model
LS Level Set method
LSC Least Squares Commutator preconditioner
ML Machine Learning
NN Nearest Neighbor
PBC Periodic Boundary Conditions
PLS Particle Level Set
RBF Radial Basis Function
VOF Volume-Of-Fluid method
[l c] Vector of interpolation coefficients for the CSRBF
K Discrete matrix system
PETSc Portable, Extensible Toolkit for Scientific Computation
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