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Abstract: Structural relaxation in polymers occurs at temperatures in the glass transition range and
below. At these temperatures, crystallization is controlled by diffusion and nucleation. A sequential
occurrence of structural relaxation, nucleation, and crystallization was observed for several
homopolymers during annealing in the range of the glass transition. It is known from the literature
that all of these processes are strongly influenced by geometrical confinements. The focus of our work
is copolymers, in which the confinements are caused by the random sequence of monomer units
in the polymer chain. We characterize the influence of these confinements on structure formation
and relaxation in the vicinity of the glass transition. The measurements were performed with a
hydrogenated nitrile-butadiene copolymer (HNBR). The kinetics of the structural relaxation and the
crystallization was measured using fast differential scanning calorimetry (FDSC). This technique
was selected because of the high sensitivity, the fast cooling rates, and the high time resolution.
Crystallization in HNBR causes a segregation of non-crystallizable segments in the macromolecule.
This yields a reduction in mobility in the vicinity of the formed crystals and as a consequence
an increased amount of so-called “rigid amorphous fraction” (RAF). The RAF can be interpreted
as self-assembled confinements, which limit and control the crystallization. An analysis of the
crystallization and the relaxation shows that the kinetic of both is identical. This means that the
Kohlrausch exponent of relaxation and the Avrami exponent of crystallization are identical. Therefore,
the crystallization is not controlled by nucleation but by diffusion and is terminated by the formation
of RAF.

Keywords: crystallization kinetics; structural relaxation; random copolymer; self-assembly
confinement; fast scanning calorimetry; rigid amorphous fraction

1. Introduction

The complex interactions in and between polymer chains cause a metastable semicrystalline
structure, which consists of an amorphous and a crystalline fraction (CF) [1–5]. The molecular mobility
in the remaining amorphous fraction is heterogeneously distributed. A model to express this situation is
the separation of the non-crystalline component in a mobile amorphous fraction (MAF) and a so-called
rigid anamorphous fraction (RAF) only. The MAF contributes to the glass transition. The molecular
mobility in the RAF is reduced [6–11].

The complex interaction between structure, molecular constitution, and configuration as well
as the local molecular mobility determines the crystallization kinetics [12–16]. The complexity of
the polymer crystallization becomes evident if the crystallinity, the crystal size, and the melting
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temperature are discussed as a function of the crystallization temperature [17–21]. At a decreased
crystallization temperature, the formed crystallites are less stable, which yields a reduced melting
temperature. A drawback for the characterization with Differential Scanning Calorimetry (DSC) is the
possibility of the reorganization of crystals during the measurement [22–27]. This effect can be reduced
by an increased heating rate [20,28,29].

An important aspect of the crystallization at quiescent conditions is the crystallization with a
reduced diffusion at temperatures in the vicinity of the glass transition. Structural relaxation occurs
in the glassy state if the cooling from the melt is performed sufficiently fast [30–33]. During this
process, precursors for crystals can be formed. This observation was reported the first time for
poly(ethylene terephthalate) (PET) by Yeh and Geil [34]. Later, it was shown for various polymers that
annealing in the glassy state accelerates the subsequent cold crystallization [35–39]. Crystal nuclei form
during annealing in the glassy state. A real crystallization process during annealing below the glass
transition has been detected for poly(butylene succinate) by DSC and Temperature-Modulated DSC
(TMDSC) [40]. Schick and co-workers studied the behavior during annealing for various crystallizable
polymers by Fast Differential Scanning Calorimetry (FDSC) [41–45]. These studies indicate that the
structure formation during annealing in the glass transition range follows a sequential order. After the
completion of the structural relaxation, the occurrence of the homogeneous nucleation is followed by
the crystals’ growth [46].

Another aspect of polymer crystallization can be studied in confinements, which are formed
in micro domains in phase-separating blends and in block copolymers [47,48]. At sufficiently small
domain sizes, crystallization shifts to lower temperatures, the crystal size is reduced, and the nucleation
and growth mechanism may differ compared to bulk crystallization [49].

Hu et al. [50] recently published a review of the crystallization behavior of random copolymers.
For homogeneous random copolymers, microphase separation occurs upon crystallization due to
monomer segregation (caused by the chemical difference of the monomers) and monomer sequence
segregation (according to the sequence length of identical monomer units). Random copolymers
consist of two different monomers A and B in which only monomer A has the tendency to crystallize.
The equilibrium melting temperature, Teq, can be described by

1
Teq

=
1

T0
A

−
R

∆h0
A

ln XA (1)

where Tf
0 and ∆hA

0 are the equilibrium melting temperature and the molar equilibrium melting
enthalpy of the homopolymer A. XA is the mole fraction of the monomer A, and R is the gas constant [51].
The melting temperature of truly random copolymers depends on the content of monomer A. At low
XA, the melting temperature is close to the glass transition. In such a case, the size of the formed
crystals is quite small [50]. Therefore, random copolymers with a low fraction of A are ideal materials
to study the structural changes during annealing around the glass transition range.

To our knowledge, the competition between structural relaxation and the crystallization behavior
in random copolymers has not yet been investigated systematically. Therefore, we focus on the
crystallization kinetics of the expected small crystalline structures and the formation of a RAF as the
consequence of the microphase separation due to crystallization. In addition, we were interested in the
validation of the sequential order of structural relaxation, nucleation, and crystallization for random
copolymers with a low crystallization temperature.

In this report, fully hydrogenated nitrile-butadiene copolymer (HNBR) was selected as an example
for a crystallizable random copolymer. For comparison, also the feedstock for the synthesis of
HNBR, the amorphous nitrile-butadiene copolymer (NBR) was investigated. The measurements were
performed using fast differential scanning calorimetry (FDSC) due to the improved time resolution
and the opportunity to characterize HNBR in the amorphous state. For additional measurements,
a conventional DSC was used.
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2. Materials and Methods

2.1. Materials

A Nipol 1082 V from Zeon Corp. (Chiyoda, Japan) with an acrylonitrile (ACN) content of 34 wt %
(34.4 mol%) was chosen as a typical copolymer of acrylonitrile and butadiene (NBR). The 1.4-cis
butadiene isomer content is approximately 80%. The polybutadiene segments consist of typically 6–8%
vinyl butadiene [52]. Therban 3407 from Lanxess A.G. (Köln, Germany) is an HNBR with a comparable
macromolecular structure with 34 wt % (35.2 mol%) ACN. Both materials are random copolymers.
In Figure 1, the schematic chemical structures of the polymers are shown.
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Figure 1. Simplified chemical structure of nitrile-butadiene copolymer (NBR) and fully hydrogenated
NBR (HNBR). In each acrylonitrile (ACN)-butadiene or ACN-tetra-methylene sequence, k and m are
random numbers.

2.2. Conventional Differntial Scanning Calorimete (DSC)

For conventional DSC measurements, a DSC 3+ (Mettler-Toledo GmbH, Nänikon, Switzerland)
was used. The device was equipped with an HSS 9+ sensor and an Intra-Cooler (TC100 from Huber
Gältemaschinenbau AG, Offenburg, Germany). The DSC cell was purged with nitrogen (40 mL/min).
A nitrogen flow of 100 mL/min was taken as protective gas to prevent freezing. The temperature
and enthalpy calibration was performed with n-octane, water, and indium. For each temperature,
the thermal lag was determined according to the operation instruction. The samples (typical sample
mass of 10 mg) were encapsulated in hermetically sealed 40 µL standard Al-crucibles.

2.3. Fast Differential Scanning Calorimetry (FDSC)

The FDSC technique enables cooling and heating measurements at fast rates up to several
thousand Kelvin per second. To reach such high scanning rates, a removable MEMS chip sensor is used
(MEMS: microelectromechanical system). The chip sensor consists of a thin silicon-nitrate/silicon-oxide
membrane with two embedded DSC furnaces. The active zone (furnace) of the USF-1 sensor has
a diameter of 500 µm. The sensor has a nominal temperature range up to 450 ◦C and can be used
up to 520 ◦C. The sensor is described in reference [53]. The UFS-1 sensor was installed in a Flash
DSC 1 (Mettler-Toledo GmbH, Nänikon, Switzerland), which is connected with a TC100 Intra-Cooler
(Huber Kältemaschinenbau AG, Offenburg, Germany). The ready temperature of −95 ◦C was selected,
and the Flash DSC was purged with a nitrogen gas flow of 30 mL/min. Details of this technique
including low-temperature calibration are reported elsewhere [19,54,55].

2.4. Sample Preparation for FDSC

To reach the fast scanning rates in FDSC, small samples with a good thermal contact to the sensor
are required. Due to the static and dynamic temperature gradients, the sample thickness should not
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exceed 10 µm [56,57]. The requirements of the sample preparation and an operation method for
vulcanized [55] and un-vulcanized rubbery polymers [58] was discussed recently. According to these
findings, small amounts of the material were placed with a single hair on the center of the active
zone of the sensor and heated to 200 ◦C. To achieve a homogenization of the sample thickness and to
generate of a good thermal contact, the sample was stored at this temperature for 3 min. Too high
samples were flattened on the sensor using a thin and soft copper wire.

The determination of the sample mass for FDSC measurements is an important task for quantitative
evaluations [59–61]. If amorphous polymers are characterized, the sample mass is estimated using
the intensity of the glass transition. In a first step, the change of the specific heat capacity at the glass
transition, ∆cp, is measured with a conventional DSC. In the next step, the step height of the heat flow
at the glass transition, ∆ΦTg, is determined by FDSC. Finally, the sample mass can be estimated by

m =
∆ΦTg

β ∆cp
(2)

where β is the scanning rate of the FDSC measurement. The mass of the FDSC samples was in the
range between 100 and 1000 ng with an experimental uncertainty of approximately 10%.

3. Results and Discussion

3.1. NBR and HNBR by Conventional DSC

3.1.1. Characterization of the Materials

Conventional DSC measurements are performed with a heating rate of 10 K/min. The samples
were previously cooled from 100 to −80 ◦C with 20 K/min. The heating curves are shown in Figure 2.
For HNBR, the glass transition temperature is Tg = −24.0 ◦C and the intensity is ∆cp = 0.426 J/(g K).
Before the heating measurement, the sample was not completely amorphous, the melting peak appears
directly after the glass transition with an enthalpy of ∆hm = 5.24 J/g (Figure 2). The crystals formed
during previous cooling with 20 K/min. After annealing at −10 ◦C, the melting peak increases, and the
peak temperature shifts to 5 ◦C.Polymers 2020, 12, x FOR PEER REVIEW 5 of 20 
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The shape of the glass transition in copolymers is an indication for the nano- and microstructure.
Block copolymers tend to show phase separation, and two glass transitions can be observed. As a
result of structural variations, gradient copolymers show a relatively broad glass transition. In contrast,
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random copolymers, such as the investigated polymers, have a single narrow glass transition with the
width below 20 K. This is also characteristic for homopolymers and indicates the absence on nano-
and microphase segregation [62,63]. This agrees with the DSC measurements of NBR and HNBR.
In addition, dielectric measurements in HNBR showed only a single non-structured main relaxation
process [64]. A separate relaxation of acrylonitrile-rich domains was not found. The enthalpy peaks
after annealing at −10 ◦C are not caused by enthalpy relaxation but by crystallization. The amount of
enthalpy production is too large for a structural relaxation.

The composition of the crystals formed in HNBR depend on the ACN content. For HNBR with
about 50% ACN, the crystals contain dyads of acrylonitrile and tetramethylene sequences [65,66].
At lower ACN contents, below approximately 35%, the crystals are only formed by tetra-methylene
sequences [66,67]. No crystallization occurs in between. This means that the chemical structure
of the crystals in the material of the investigation are comparable to polyethylene (PE) crystals
and the equilibrium melting enthalpy can be assumed to be identical to PE (∆hPE = 293.1 J/g [68]).

The crystallinity, αc, can be estimated by

αc =
∆hm

∆hPE (1− αACN)
(3)

where ∆hm is the measured specific melting enthalpy and αACN is the mass content of ACN monomers
(0.34). The crystallinity after cooling in conventional DSC is 2.4%. After annealing for 600 min at
−10 ◦C, it is αc = 5.7%. The relatively low crystallinity is a consequence of the chemical confinement of
the comonomers along the polymer chain [50].

The tetra-methylene or di-ethylene units in HNBR have the tendency to crystallize if the statistically
generated sequences are long enough. The related homopolymer is polyethylene with the equilibrium
melting temperature TA

0 = 414.6 K and the equilibrium melting enthalpy ∆hA
0 = 8.44 kJ/mol [68].

For the mole fraction of the tetra-methylene units, XA = 0.646, the Flory model (Equation (1)) predicts
an equilibrium melting temperature of Teq = 79 ◦C. It should be noted that the Flory model is based
on equilibrium thermodynamics. As a result of the metastable structure, polymer melting occurs
significantly below the equilibrium melting temperature. The second monomer in HNBR is acrylonitrile.
Homopolymers of acrylonitrile have a relatively low crystallinity (ca. 25 %) and a glass transition
temperature of about 100 ◦C [69].

A crystallization of polybutadiene is only observed at high amounts of cis1.4 units (>98%). Due to
the polymerization process of NBR, the cis1.4 content of the polybutadiene units is limited to a
maximum of ca. 80%. Therefore, NBR is fully amorphous. The glass transition temperature and
intensity of NBR with 34 wt % ACN is Tg = –22.5 ◦C and ∆cp = 0.5 J/(g K).

3.1.2. The Rigid Amorphous Fraction in HNBR

According to Wunderlich et al. [6,7], semi-crystalline polymers can be separated in three fractions:
the mobile amorphous fraction (MAF), the rigid amorphous fraction (RAF), and the crystalline
fraction (CF). The RAF forms during the crystallization process due to the hindered mobility of chain
segments, which are partially incorporated in the crystals. If γ and δ are the content of MAF and RAF,
mass conversation yields

1 = αc + δ+ γ (4)

The ratio between RAF and CF, δ/αc, depends on the crystalline structure [20,70]. During the
diffusion-controlled crystallization of small crystalline structures, e.g., the mesophase crystallization in
isotactic polypropylene (iPP) at low temperature [71], the ratio RAF/CF can be considered as constant.
In this case, the formation of RAF during crystallization terminates the crystal growth. RAF acts as a
self-assembled confinement [58].

To prevent the influence of structural relaxation on the endothermal melting peaks, HNBR was
crystallized above the glass transition temperature at −10 ◦C. The sample was cooled with 20 K/min
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from 100 ◦C to the crystallization temperature and annealed for 0 min ≤ ta ≤ 600 min. Subsequently,
the sample was cooled with 20 K/min to −80 ◦C, equilibrated for 15 min, and then heated up to 100 ◦C
with a heating rate of β = 10 K/min. The heating curves are displayed in Figure 2. The low melting
temperature (close to the glass transition) indicates the formation of thermodynamically unstable,
small crystallites.

The properties γ and αc are determined from the intensity of the glass transition, ∆cp, and the
melting enthalpy, ∆hm.. In HNBR, the glass transition and melting ranges overlap each other (Figure 2).
This complicates the evaluation of ∆cp and ∆hm. Therefore, a new evaluation procedure was developed.
This procedure is described in Appendix A. The data of ∆cp are plotted versus ∆hm in Figure 3.
This diagram shows a linear behavior

∆cp = ∆cp1 − a ∆hm (5)

with a negative slope a = 0.015 K−1 and an intercept of ∆cp1 = 0.49 J/(gK). The latter value is the glass
transition intensity of a completely amorphous sample. Equation (5) can be derived from Equation (4)
assuming that the ratio between RAF and CF is constant

δ = σ·αc (6)

σ is the contribution of the non-crystallizable rigid material in relation to the crystallinity. The chain
segments in the RAF are characterized by a significantly hindered mobility. For this reason,
these segments have no contribution to the glass transition. The amount of MAF, γ, is defined
by

γ =
∆cp

∆cp1
(7)

Combining Equations (2), (4), (6), and (7) leads to the linear equation

∆cp = ∆cp1 −
∆cp1(1 + σ)

∆hPE(1− αACN)
∆hm. (8)

A comparison of the slopes in Equations (5) and (8) yields a constant value σ = 4.9. This value is
surprisingly high. For instance, in 1.4-cis-polybutadiene, σ is 0.9 [58]. The value of the mesophase of
iPP is between 0.7 and 1.0 [71].
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Figure 3. Glass transition intensity, ∆cp, versus specific melting enthalpy, ∆hm, for HNBR crystallized
at −10 ◦C. The data are measured by DSC (solid dots) and FDSC (open dots).

The segregation of ACN segments due to the crystallization of tetra-methylene segments could be
a reason for the large amount of RAF. The remaining ACN-enriched regions have an increased glass
transition temperature and are therefore part of the RAF.
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From Equation (4) and (6), the crystallinity can be deduced

αc =
1−γ
1+σ

(9)

If no MAF exists (γ = 0), the maximum crystallinity is αc = 16.9%. This is significantly higher than
the measured value. Since there are always sections with short sequences of alternating ACN and
tetra-methylene segments, which cannot crystallize, these sections contribute to the MAF. The low
melting temperature and the relatively low degree of crystallinity is a consequence of a kinetically
hindered crystallization due to the simultaneous formation of large amounts of RAF.

3.2. FDSC Measurements and Data Evaluation

3.2.1. The Temperature Program of the FDSC Measurements

We wanted to measure the sequence of structural relaxation and crystallization during isothermal
annealing around the glass transition. However, the heat release of these processes is so low that it
cannot be measured directly. We interrupted the annealing process by fast cooling and measured the
enthalpy change during annealing by analyzing related peaks during a subsequent heating segment.
The origin of the peaks could be enthalpy relaxation or melting.

A sketch of the temperature program for FDSC measurements is shown in Figure 4. Initially,
the sample is heated to 100 ◦C and stabilized for 3 s. To avoid crystallization, the sample is afterwards
cooled with 1000 K/s to the annealing temperature Ta. At this temperature, the sample is isothermally
stored for a certain annealing time ta. To interrupt the relaxation and crystallization, the sample is
subsequently cooled with 1000 K/s to −90 ◦C. After equilibration, the sample is heated with 100 K/s to
100 ◦C. This heating segment is analyzed to determine the enthalpy change during the annealing step.
The sequence between the red lines in Figure 4 is repeated for various annealing times (0 s ≤ ta ≤ 5000 s)
and temperatures (−50 ◦C ≤ Ta ≤ 10 ◦C).

Polymers 2020, 12, x FOR PEER REVIEW 7 of 20 

 

melting temperature and the relatively low degree of crystallinity is a consequence of a kinetically 
hindered crystallization due to the simultaneous formation of large amounts of RAF. 

3.2. FDSC Measurements and Data Evaluation 

3.2.1. The Temperature Program of the FDSC Measurements 

We wanted to measure the sequence of structural relaxation and crystallization during 
isothermal annealing around the glass transition. However, the heat release of these processes is so 
low that it cannot be measured directly. We interrupted the annealing process by fast cooling and 
measured the enthalpy change during annealing by analyzing related peaks during a subsequent 
heating segment. The origin of the peaks could be enthalpy relaxation or melting. 

A sketch of the temperature program for FDSC measurements is shown in Figure 4. Initially, the 
sample is heated to 100 °C and stabilized for 3 s. To avoid crystallization, the sample is afterwards 
cooled with 1000 K/s to the annealing temperature Ta. At this temperature, the sample is isothermally 
stored for a certain annealing time ta. To interrupt the relaxation and crystallization, the sample is 
subsequently cooled with 1000 K/s to −90 °C. After equilibration, the sample is heated with 100 K/s 
to 100 °C. This heating segment is analyzed to determine the enthalpy change during the annealing 
step. The sequence between the red lines in Figure 4 is repeated for various annealing times (0 s ≤ ta 
≤ 5000 s) and temperatures (−50 °C ≤ Ta ≤ 10 °C). 

 
Figure 4. Typical temperature program for the Fast Differential Scanning Calorimetry (FDSC) 
measurements. 

3.2.2. .Enthalpy Determination 

The change of enthalpy during annealing below the glass transition is schematically shown in 
Figure 5. During the cooling of a structural equilibrated super cooled melt, the glass transition occurs 
in the temperature range around Tg. The enthalpy in the glassy state is larger than the enthalpy of the 
supercooled melt at the same temperature. This enthalpy difference increases with decreasing 
temperature. During annealing at Ta < Tg, structural relaxation occurs, and the enthalpy of the glass 
decreases. This enthalpy change causes the enthalpy relaxation peak during heating. The enthalpy of 
a completely relaxed glass corresponds to that of the structural equilibrated supercooled melt at Ta. 
This is the maximum possible enthalpy change due to the structural relaxation of a glass. A larger 
enthalpy change is a clear indication for crystallization during annealing. 

 

Figure 4. Typical temperature program for the Fast Differential Scanning Calorimetry (FDSC) measurements.

3.2.2. Enthalpy Determination

The change of enthalpy during annealing below the glass transition is schematically shown in
Figure 5. During the cooling of a structural equilibrated super cooled melt, the glass transition occurs
in the temperature range around Tg. The enthalpy in the glassy state is larger than the enthalpy of
the supercooled melt at the same temperature. This enthalpy difference increases with decreasing
temperature. During annealing at Ta < Tg, structural relaxation occurs, and the enthalpy of the glass
decreases. This enthalpy change causes the enthalpy relaxation peak during heating. The enthalpy of
a completely relaxed glass corresponds to that of the structural equilibrated supercooled melt at Ta.
This is the maximum possible enthalpy change due to the structural relaxation of a glass. A larger
enthalpy change is a clear indication for crystallization during annealing.
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The enthalpy change ∆Ha is the difference of the enthalpy between the annealed and the
non-annealed sample below Ta. In terms of heat flow, this is:

∆Ha(Ta, ta) =
1
β

T2>Tg or Tm∫
T1<Ta

(Φ(T, ta) −Φ(T, ta = 0)) dT (10)

This is illustrated in Figure 6. As an example, Figure 6a displays FDSC curves of the non-relaxed
(black) and the 10,000 s at −30 ◦C annealed (red) NBR sample. The upper curve is the difference of both.
An integration (see Equation 10) of the difference curve yields the enthalpy of relaxation. Figure 6b
shows curves for HNBR, which was annealed at −30 ◦C, −22 ◦C, and −7 ◦C.

The maximum enthalpy of the structural relaxation, ∆Hmax, was determined from cooling curves,

∆Hmax(Ta) =
1
β

T2>Tg∫
Ta

(
Φ(T) −Φliquid(T)

)
dT (11)

where Φliquid is the extrapolated heat flow above the glass transition, and Φ is the measured heat flow.
Due to the absence of an enthalpy overshoot, cooling curves are preferred for the determination of
∆Hmax.

The maximum relaxation enthalpy, ∆Hmax(Ta) for NBR at −30 ◦C of 0.77 µJ, agrees with the
measured value in Figure 6a of 0.816 µJ (see also Figure 7b). The glass is completely relaxed. For HNBR,
the values of ∆Hmax and ∆Ha for ta = 5000 s are listed in Table 1. At −30 ◦C, HNBR is completely
relaxed at ta =5000 s (∆Ha ≈ ∆Hmax). After annealing at Ta = –22 ◦C, ∆Hmax is less than ∆Ha (5000 s).
The measured peak is a superposition of enthalpy relaxation and melting. Above the glass transition
temperature at –7 ◦C, HNBR only crystallizes.
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Figure 6. Determination procedure of the enthalpy change during annealing. (a) Measurement of the
enthalpy relaxation of amorphous NBR. The lower curves are measured after annealing at −30 ◦C for
0 s (black) and 10,000 s (red). The upper curve is the differences of both curves. The enthalpy was
determined by integration. (b) Evaluation of the curves of semicrystalline HNBR after annealing at
–30 ◦C, –22 ◦C, and −7 ◦C. The measurement curves after 0 s and 5000 s are shown below. The black
curves are measured without annealing. The upper curves show the differences, which were used for
the evaluation of the enthalpy by integration.

Table 1. Maximum annealing enthalpy ∆Hmax (Equation (11)) and the measured enthalpy of annealing
after ∆Ha (5000 s) (Figure 6b) for selected annealing temperatures of HNBR.

Ta (◦C) ∆Hmax (µJ) ∆Ha (5000 s) (µJ)

−30 6.66 6.11
−22 0.95 11.94
−7 0.00 7.26

3.2.3. Kinetic Evaluation

The enthalpy change during isothermal annealing is usually modeled by a stretched
exponential function

∆Ha(ta) = ∆H∞

(
1− exp

(
−

( ta

τ

)b))
(12)

where ∆H∞ is the maximum enthalpy change of the occurring process, τ is the characteristic time, and
b is the stretched exponent. Equation (12) describes both relaxation and crystallization. For 0 < b ≤
1, this equation is the Kohlrausch function [72,73], which is used for relaxation processes. If 1 ≤ b,
the equation is the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation, which describes the kinetics
of crystallization [74–76]. The rate constant in the KJMA equation is k = τ-b.

A linearization of a stretched exponential (Equation (12)) yields

log
(
− ln

(
1−

∆Ha(ta)

∆H∞

))
= −b log τ+ b log ta (13)

One might expect that three processes could occur during annealing. The first is the structural
relaxation [77,78], the second is the primary crystallization, and the third is the secondary
crystallization [79]. For a couple of homopolymers, it was shown that nucleation and crystallization
follow the structural relaxation during annealing below and in the glass transition region [42]. In this
paper, we want to clarify whether this finding can be generalized for polymers with chemical
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confinements due to the molecular structure. In this case, the annealing kinetics should be described
by the sum of three stretched exponential functions.

DSC curves of an amorphous NBR are shown in Figure 7a. The enthalpy change ∆Ha (5000 s) is
shown in Figure 7b (filled blue dots) as a function of Ta. For annealing below −30 ◦C, the annealing
time of 5000 s is not sufficient to reach the structural equilibrated liquid with ∆Ha = ∆Hmax (solid curve
in Figure 7b). At Ta > −30 ◦C, ∆Ha (5000 s) agrees with ∆Hmax. In the glass transition region (0 ◦C ≥ Ta

≥ -10 ◦C), the relaxation becomes fast (about 20 s), and the enthalpy change is small. Above the glass
transition, no relaxation occurs. The parameters of the stretched exponential function (Equation (12))
∆H∞, τ and b are determined by a last-square fit. ∆H∞ for different temperatures is included in
Figure 7b and agrees with ∆Hmax (open dots). The linearized diagram according to Equation (13) is
plotted in Figure 7c. A linear function in this diagram is a good indication that the structural relaxation
follows the stretched exponential behavior. The slope corresponds to 0.23 ≤ b ≤ 0.31. The Kohlrausch
exponent, b, increases slightly with increased annealing temperature.
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Figure 7d shows DSC curves of HNBR for selected temperatures between −40 and 0 °C. An 
exothermal peak occurs also after annealing above the glass transition range (Ta > −15 °C). This 
indicates crystallization during annealing. The solid curve in Figure 7e is the maximum enthalpy due 

Figure 7. Measured annealing behavior of NBR (above) and HNBR (below) at selected annealing
temperatures: (a) measurement curves of NBR. (b) Enthalpy as a function of temperature: solid circles
are the enthalpy after annealing for 5000 s, the open circles are the maximum enthalpy for the curve
fit with Equation (12). The curve is the maximum enthalpy determined from the FDSC cooling curve
with Equation (11). (c) Representation of the enthalpy change during annealing in the linearized
diagram (Equation (13)). (d) Measurement curves of HNBR. (e) Enthalpy versus temperature. (f) Linear
representation of the enthalpy change during annealing.

Figure 7d shows DSC curves of HNBR for selected temperatures between −40 and 0 ◦C.
An exothermal peak occurs also after annealing above the glass transition range (Ta > −15 ◦C).
This indicates crystallization during annealing. The solid curve in Figure 7e is the maximum enthalpy
due to structural relaxation, ∆Hmax (Equation (11)). The measured enthalpy after annealing for 5000 s
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is displayed with solid circles. The open circles represent ∆H∞. Below −30 ◦C, ∆Ha (5000 s) is smaller
than ∆Hmax and ∆H∞ matches with ∆Hmax. In this temperature range, the measurement behavior can
be described completely by structural relaxation. Above −30 ◦C, ∆Ha (5000 s) is slightly lower than
∆H∞ but significantly larger than ∆Hmax.

The linearized diagram in Figure 7f is sensitive to the variation of the Kohlrausch exponent. In the
case of successive relaxation and crystallization, a change of the slope is expected. If nucleation occurs
after the structural relaxation is completed (this is the case described in reference [42]), the measured
curve should behave in a non-linear manner, since the parameter b tends to change from a typical
Kohlrausch exponent to zero. If crystallization follows the structural relaxation directly, the slope will
increase according to the change of b to a value of a typical Avrami exponent.

However, the curves in Figure 7f always show a constant slope, which is slightly increased with
increasing Ta. This behavior is also observed in temperature ranges where no structural relaxation
(Ta ≥ −15 ◦C) occurs. The slope is always below 0.4, which is not expected for crystallization.

The behavior during annealing at temperatures in the glass transition range (between −25 and
−10 ◦C) is shown in Figure 8a. The displayed curve are consecutively shifted downwards by −0.1 on
the ordinate with increasing Ta to achieve a more concise visualization. The annealing kinetics show
no transition from structural relaxation to crystallization. In Figure 8b, the exponent b is plotted versus
the annealing temperature. The exponent increases with increasing temperature. Above the glass
transition range (Ta > −15 ◦C), the exponent seems to reach a constant value of approximately 0.35.

At Ta ≥ −15 ◦C, Figure 7e indicates a steep decrease of the crystallinity and an increased
crystallization temperature. The reason could be an increased critical crystalline size with increasing
temperature. The reduced number of sufficiently long tetra-methylene sequences reduces the maximum
crystallinity at higher temperature.
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Figure 8. Data of H34. (a) Linearized diagram of the stretched exponential function in the temperature
range between −25 and −10 ◦C. For a clearer visibility, the graphs are shifted in the direction of the
ordinate with increasing temperature by an increment of −0.1. (b) The stretching exponent b versus the
annealing temperature. The dashed line is a guide for the eyes.

3.2.4. The Avrami Exponent and the Model for Relaxation and Overall Crystallization

HNBR crystallizes during annealing between −30 and 0 ◦C (Figures 7e and 8b). The kinetics
follows the KJMA equation with an Avrami exponent 0.25 ≤ b ≤ 0.40. Such small values are usually
not observed. Before we discuss this finding, we briefly review the interpretation of the Avrami
exponent b. Evens discussed the case of a constant growth rate (R ∝ t, R is the particle size) [80].
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As a result, the exponent can be expressed by an integer between 1 and 4 depending on the growth
dimension and the mechanism of nucleation. Turnbull showed that in this case, the growth is surface
controlled [81]. If concentration gradients occur in the surrounding of the formed particles, the growth
rate is reduced with increasing time according to R ∝ (D t)1/2 (where D is the diffusion coefficient in
the liquid matrix) [81,82]. Thermal diffusion behaves accordingly. In the case of local overheating
due to fast crystallization with a high heat release and/or low thermal diffusivity κ, the growth rate
R is proportional to (κ t)1/2 [83]. This reduces b by a factor of 1/2. We summarize this in a general
expression of the Avrami exponent

b =
ng

nd
+ nn (14)

where ng is the dimension of growth (1, 2 or 3), nn describes the kind of nucleation (1 for instantaneous
or heterogeneous and 2 for spontaneous or homogeneous nucleation), and nd characterizes the influence
of diffusion on the growth rate. For a constant growth rate, nd is 1. In the case of diffusion control,
nd is 2.

According to Equation (14), the smallest possible Avrami exponents is b = 0.5 for heterogeneous
nucleated, diffusion controlled, one-dimensional crystallization. Avrami exponents in the order of 0.5
are measured in block copolymers as consequents of confinements due to phase segregation [84–86].
Such values are interpreted as the result of processes between sporadic and instantaneous nucleation [84].

Avrami exponents in the order of 0.3 are measured for thermotropic copolyesters [87,88].
These materials consist of rigid macromolecules without chain folding and anisotropic molecular
motion in the supercooled melt. The small exponents are interpreted as the consequence of a restricted
mobility due to previously formed crystals [87] or of a crystallization with a limited size of the
crystallites [88].

In the system that we characterized, the macromolecules are flexible. Due to the limited length of
the tetra-methylene sequences, the formation of folding crystals is unlikely. The statistic distribution
of the comonomers along the polymer chain creates chemical confinements. As a consequence,
the formation of a large amount of RAF occurs with crystallization.

The curves in Figure 8a show no difference between structural relaxation and crystallization.
This cannot be explained with the common interpretation of the Avrami exponents. Our preferred
model assumes an identical molecular rearrangement process for the structural relaxation and the
crystallization. A crystalline structure with a critical size and the surrounded RAF is formed randomly.
On the one hand, the RAF stabilizes the crystalline structure; on the other hand, it limits any further
growth. The reduced molecular mobility and the reduced concentration of crystallizable sequences
in the amorphous fraction decrease the possibility of the formation of further crystalline structures.
For such a process, there is no difference among structural relaxation, nucleation, and crystallization,
since the origin and kinetics of all processes are based on the same restricted molecular rearrangements.
This model also explains the relatively low crystallinity and melting temperature.

3.2.5. The Crystallization Half Time

It is common to characterize crystallization processes with the half time t1/2,

t1/2 = τ ln(2)1/b (15)

Figure 9 shows t1/2 as a function of the annealing temperature for NBR and HNBR.
NBR shows structural relaxation during annealing. The half time is a measure of the average

relaxation time. The temperature behavior of t1/2 in Figure 9 is characterized by different curvature
compared to the Vogel–Fulcher–Tammann behavior. This deviation is caused by a deviation from the
structural equilibrium in the vitrified state [31,89].

During annealing below −35 ◦C, HNBR does not crystallize and behaves similar to NBR.
For Ta ≥ –35 ◦C, the half time remains in the range between 100 and 1000 s, which slightly increases with
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temperature. This can be interpreted as the vitrification of RAF during crystallization. After the RAF is
formed, it controls the molecular transport of crystallizable molecular segments to the growth face.
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3.2.6. Determination of RAF from FDSC Measurement

In contrast to conventional DSC, HNBR can be easily kept in an amorphous state by FDSC. In this
section, we compare the RAF content and the kinetics of crystallization measured with both techniques.
The FDSC measurement curves from Figure 7d for Ta = −10 ◦C were utilized for further evaluations
due to the relatively large melting enthalpy and the fact that practically no enthalpy relaxation occurs.

The overlap of the glass transition and the melting in the FDSC curves does not allow the
direct evaluation of ∆cp and ∆hm. The utilized procedure of evaluation is described in Appendix A.
The results are plotted as open circles in Figure 3. These results are in good agreement with the DSC
data. Both techniques yield the identical ratio between CF and RAF.

A difference between both techniques becomes evident if the crystallization rates are compared.
The annealing time to reach an enthalpy of 10 J/g with the DSC measurements (ca. 300 min) is about
four times longer than for the FDSC measurement (ca. 80 min). This discrepancy can be explained
with initial structural differences before annealing. The relatively fast crystallization in the FDSC starts
from a completely amorphous material. The initial DSC sample is partially crystalline due to the low
cooling rate. The existence of RAF hinders the rearrangements on the growth front and delays further
crystallization [90].

4. Conclusions

The influence of confinements in HNBR on the mechanism of crystallization was investigated.
The confinements in HNBR are caused by the chemical structure due to the statistical arrangement of
the comonomers in the polymer chain. The comparison of the intensity of the glass transition, ∆cp,
and the melting enthalpy of semicrystalline HNBR shows that a rigid amorphous fraction (RAF) with
reduced molecular mobility is formed during crystallization. The ratio between RAF and the crystalline
fraction (CF) is significantly higher than for other polymeric nanophases (RAF/CF ≈ 5). This indicates
that each crystallite is covered by an amorphous fraction with reduced mobility. In homopolymers,
the mobility of chain segments in the vicinity of the crystals is hindered due to the incorporation of
segments in the crystals. In random copolymers such as HNBR, the crystallization-induced segregation
of ACN sequences yields increased RAF. The ACN-enriched regions have an increased glass transition
temperature and therefore contribute to the RAF.
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The high fraction of RAF indicates small crystallites. We assume that fringed micelles or crystalline
nanoclusters are formed. The formation of small crystallites and a large amount of non-crystallizable
material is also supported by the low melting temperature and enthalpy.

The measured melting enthalpy decreases significantly after annealing at Ta > −15 ◦C. At higher
temperature, the critical size of the formed crystals increases. Consequently, the possibility of crystal
formation due to a smaller number of sufficient long tetra-methylene sequences decreases. The large
amount of RAF formed during crystallization stabilizes small crystallites and hinders further growth
due to the reduced diffusion.

During annealing in the glass transition range, many homopolymers show a sequence of structural
relaxation, nucleation, and crystallization [43]. Such a behavior was not measured in HNBR. In the glass
transition, range structural relaxation and crystallization follow the same kinetics. Thus, a difference of
both processes could not be found, and it seems that both processes occur simultaneously. The Avrami
exponent (for crystallization) and the Kohlrausch exponent (for relaxation) are identical. The measured
exponents are between 0.3 and 0.4. This means that in HNBR, only one single stretched exponential
describes relaxation and crystallization. It can be concluded that the same molecular rearrangements
control both the structural relaxation and the crystallization.

Below the glass transition (Ta < −40 ◦C), the HNBR behaves similar to the amorphous NBR:
only structural relaxation occurs during annealing up to 5000 s. In the glass transition range of HNBR,
relaxation and crystallization take place. The characteristic time of the overall process stabilizes at
about 100 s and is nearly temperature independent. This could be interpreted as the vitrification of RAF.
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Appendix A

Appendix A.1 General Comment about the Evaluation of the Glass Transition by Conventional DSC

For the determination of the glass transition temperature, Tg, and the intensity of the glass
transition, ∆cp, the extrapolated tangents of the heat flow curve below Φglass(T) and above the glass
transition range Φliquid(T) are needed. The glass transition temperature, Tg, is the temperature of the
intersection point of the DSC curve with the bisecting line of the two tangents (Φglass(T) and Φliquid(T)).
The intensity of the glass transition, ∆cp, is usually determined form the vertical distance between the
two extrapolated tangents at Tg:

∆cp =
Φliquid

(
Tg

)
−Φglass

(
Tg

)
m β

(A1)

where m and β are the sample mass and the scanning rate.
In our opinion, it is important to mention the method of the determination of ∆cp, because several

methods are specified in standards that differ in content from Equation (A1). These methods describe
the shape of the glass transition, but they cannot be used for a quantitative analysis.

Appendix A.2 Determination of ∆cp and ∆hm for HNBR

The DSC curve of HNBR in Figure 2 show an overlap between the glass transition and the melting
peak. This makes it difficult to find the best baseline for the peak integration and the correct high
temperature tangent, Φglass(T), for the evaluation of the glass transition.
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HNBR with 40 wt % ACN (Zetpol 2001 from Zeon Corp., Tokyo, Japan) does not crystallize
during cooling at 20 K/min. This material was used to determine the glass transition intensity
∆cp,0 = 0.49 J/(g K) of completely amorphous HNBR. The DSC heating curves of both types of HNBR
are shown in Figure A1 (left). In DSC heating curves, the glass transition, measured at rates that are
not much higher than the rates of the subsequent cooling process, shows no considerable enthalpy
relaxation peak. The temperature of the inflection point of the measured glass transition step is then
nearly Tg. We assume that CF and RAF reduce the glass transition intensity in such a way that the ratio
of the step height before and after the inflection point is not changed. This assumption is successfully
tested in Appendix A.3.
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In HNBR (with 34 wt % ACN), the melting peak appears at the high temperature side of the
glass transition and does not influence the shape of the glass transition below the inflection point
(Figure A1a). The height of the heat capacity step between a temperature in the glassy state and the
inflection temperature, ∆c1/2, can be determined by integration of the first derivative of the DSC curve
using a horizontal baseline:

∆c1/2(ta) =
1
β

T2∫
T1

(
dΦ(ta)

dT

)
dT (A2)

where T1 and T2 are a temperature below the glass transition range and the temperature of the
extremum of the derivative of the heat flow curve in the glass transition range. For non-crystalline and
semi-crystalline HNBR, this integration is shown in Figure A1b. The glass transition intensity is

∆cp(ta) =
∆c1/2(ta)

∆c1/2,0
∆cp,0 (A3)

where ∆c1/2,0 is the value of ∆c1/2 for non-crystallized material.
The evaluation of the glass transition and the melting peak is shown in the example of the

semicrystalline HNBR (with 34 % ACN) in Figure A1b. From Equation (A3) follows ∆cp = 0.43 J/(g K).
The high temperature limit of the tangent Φliquid(T) is selected shortly above the end of the melting
peak. The slope of this tangent is varied in such a way that the resulting glass transition intensity
agrees with the calculated ∆cp. This tangent is also taken as the baseline for the enthalpy determination.
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The lower integration limit is selected as the intersection of this tangent with the heat flow curve. In the
example in Figure A1, the melting enthalpy is ∆hm = 5.24 J/g.

Appendix A.3 Validation of the evaluation method using poly(ethylene terephthalate) as an example

Poly(ethylene terephthalate) (PET) is a relatively slowly crystallizing polymer with a glass
transition temperature at about 70 ◦C. After crystallization at 225 ◦C and subsequent rapid cooling,
cold crystallization and melting occur well separated from the glass transition. Consequently, PET can
be used as a material to investigate the evaluation method mentioned above.

The PET is taken from the Tutorial Kid for Thermal Analysis (from Mettler-Toledo, Nänikon,
Switzerland). The sample was crystallized at 225 ◦C for 0 min, 10 min, 20 min, and 40 min.
After crystallization, the sample was taken out of the furnace and placed on an Al-plate at RT.
In the subsequent heating run, the glass transition, crystallization, and melting were measured.
The crystallinity was determined by integration of the crystallization and the melting peak with a
single baseline [91]. The glass transition evaluation is displayed in Figure A2a.

The determination of ∆c1/2 from the derivative of the DSC curve is shown in Figure A2b. From
∆c1/2, the intensity of the glass transition, ∆cp, is determined with Equation (A3) and listed in Table A1.
The measured and calculated values of ∆cp agree well at least up to a crystallinity of about 15%. This is
sufficient for the analysis of HNBR and indicates the applicability of the used procedure.
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Table A1. Glass transition intensity of differently crystallized PET at 225 ◦C. The measured ∆cp is
determined from Figure A2a. ∆c1/2 is determined by integration of the low-temperature side of the first
derivative in Figure A2b. The calculated data are determined by Equation (A3).
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