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Abstract: Semiflexible nunchucks are block copolymers consisting of two long blocks with high
bending rigidity jointed by a short block of lower bending stiffness. Recently, the DNA nanotube
nunchuck was introduced as a simple nanoinstrument that mechanically magnifies the bending angle
of short double-stranded (ds) DNA and allows its measurement in a straightforward way [Fygenson
et al., Nano Lett. 2020, 20, 2, 1388–1395]. It comprises two long DNA nanotubes linked by a dsDNA
segment, which acts as a hinge. The semiflexible nunchuck geometry also appears in dsDNA with a
hinge defect (e.g., a quenched denaturation bubble or a nick), and in end-linked stiff filaments. In
this article, we theoretically investigate various aspects of the conformations and the tensile elasticity
of semiflexible nunchucks. We analytically calculate the distribution of bending fluctuations of a
wormlike chain (WLC) consisting of three blocks with different bending stiffness. For a system
of two weakly bending WLCs end-jointed by a rigid kink, with one end grafted, we calculate the
distribution of positional fluctuations of the free end. For a system of two weakly bending WLCs
end-jointed by a hinge modeled as harmonic bending spring, with one end grafted, we calculate the
positional fluctuations of the free end. We show that, under certain conditions, there is a pronounced
bimodality in the transverse fluctuations of the free end. For a semiflexible nunchuck under tension,
under certain conditions, there is bimodality in the extension as a function of the hinge position. We
also show how steric repulsion affects the bending fluctuations of a rigid-rod nunchuck.

Keywords: wormlike chain; hinged polymers; conformations; tensile elasticity; bimodality

1. Introduction

Semiflexible polymers are macromolecules with a finite bending stiffness. Some of the
most important biomolecules, such as DNA or the structural elements of the cytoskeleton
(F-actin, microtubules, intermediate filaments), are natural semiflexible polymers [1]. DNA
nanotudes or carbon nanotubes are synthetic ones. A widely used minimal theoretical
model of semiflexible polymers is the wormlike chain model (WLC), which represents
the polymer by a one-dimensional, locally inextensible, fluctuating curve with bending
stiffness [2,3]. The physical properties of the WLC are determined by the interplay of
bending energy and conformational entropy [4].

Bending is a defining property of semiflexible polymers, and its measurement is
an experimental task of central importance. In the case of double-stranded (ds) DNA,
various techniques have been used in order to measure the bending angle, ranging from
gel shift electrophoresis [5] to atomic force microscopy [6]. Recently, Fygenson et al.
introduced a novel physical method to measure the bending angle with minimal sample
preparation, direct visualization, and straightforward analysis procedures [7,8]. It involves
the assembly of semiflexible “nunchucks”, composed of two long DNA nanotubes of large
bending stiffness end-linked by a short segment of dsDNA, which acts as a hinge. The
whole structure is confined between two glass plates. The fluctuations of the two arms are
visualized through fluorescent video microscopy. The nunchuck arrangement effectively
magnifies the bending fluctuations of the linking dsDNA segment.
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Besides the dsDNA bending measuring nanodevice, the nunchuck geometry appears
in several other cases. Defects in dsDNA, such as denaturation bubbles (regions where
the two strands separate) [9–11] or nicks (discontinuities of the double stranded structure,
exposing a single strand), can be viewed as hinges facilitating bending. dsDNA is much
stiffer to bending than ssDNA. Assuming a hinge defect with a long lifetime (quenched),
the nunchuck geometry is a coarse representation of dsDNA with such a defect. The
semiflexible nunchuck may also be viewed as an elementary structural element of end-
linked stiff polymer networks. Another realization of the nunchuck geometry would
be a pair of end-linked F-actin filamnets. Cross-linked F-actin filaments with very short
dangling ends effectively fall in this category. The bending stiffness of the nunchuck link,
in the case of DNA nanotubes or dsDNA, can be controlled by the length of the linking
segment or defect (bubble, nick), respectively. In the case of F-actin, there is a plethora of
actin binding proteins (ABPs) with different bending stiffness [12,13].

In this article, we analytically investigate various aspects of the conformations of
semiflexible nunchucks. It is organized as folllows. In Section 1, we present some general
theoretical results for the conformations of a wormlike chain in two dimensions. We obtain
the distribution of bending fluctuations both for a uniform chain and for a chain consisting
of three parts, each with a different bending stiffness. The latter is a theoretical model of a
semiflexible nunchuck. In the stiff (weakly bending) limit, we present the joint distribution
of positional-orientational fluctuations of a uniform chain. In Section 2, we derive the
conformational probabilities of the free end for a grafted system of two weakly bending
semiflexible chains end-linked together for two cases. First, we consider a stiff link forming
a kink. Then we consider an aligning link (hinge), which acts as an orientational harmonic
spring. We show that, under certain conditions, there is a pronounced bimodality in
the distribution of transverse positional fluctuations. In Section 3, we discuss how steric
repulsion (excluded volume interaction) between the two arms of a nunchuck with stiff
arms would change the distribution of bending fluctuations. In Section 4, we consider the
response of a semiflexible nunchuck to a tensile force applied at its ends. We show that,
under certain conditions, there is bimodality in the response as a function of the position of
the hinge position: stiffening, softening, and stiffening. We summarize and conclude in
Section 5.

2. The Theoretical Model
2.1. The Orientational Fluctuations of a Single Grafted Chain

We consider a semiflexible filament, modelled as a wormlike chain (WLC), in the
geometry shown in Figure 1. The total contour length of the chain is L, its persistence
length is lp, one of its ends is grafted (i.e., both its position and its orientation are fixed
at that point), and it is confined to fluctuate in two dimensions. We point out that the
grafting substrate shown in the figure is introduced solely for the purpose of specifying the
geometry, and it does not imply any steric interaction with the chain (it can be viewed as a
phantom substrate). The effective free energy functional of the WLC is

H =
κ

2

∫ L

0
ds
(

∂t(s)
∂s

)2

=
κ

2

∫ L

0
ds
(

∂θ(s)
∂s

)2

(1)

where κ, t, and s, are the bending stiffness, the unit tangent vector and the arc length
position of the filament, respectively. In two dimensions, lp = 2κ

kBT . θ(s) is the angle that
the tangent vector at s makes with the x-axis. The path θ(s), for 0 < s < L, uniquely
determines the conformation of the WLC in two dimensions.

The orientational fluctuations of the tangent vector at arc length position s are given
by the conditional probability density to find it in direction t, given that at s = 0, it points
in t0,

P(t|t0) = N
∫ t(s)=t

t(0)=t0

D[t(s′)]δ(|t(s′)| − 1) exp
(
− κ

2kBT

∫ L

0
ds′
(

∂t(s′)
∂s′

)2)
(2)
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where N is a normalization prefactor. D[t(s′)] denotes functional integration over all
conformations of the tangent vector t(s′). The condition |t(s)| = 1 expresses the local
inextensibility constraint of the WLC. The functional integral of Equation (2) is formally
identical to that of the density operator of a two-dimensional rigid rotator of moment of
inertia I [14–16]. The analogy is based on the following mapping: κ ↔ I, kBT ↔ h̄ and
s↔ h̄/(kBT̃) (where T̃ is the temperature of the quantum mechanical rotator). It is known
that the density operator in this case obeys an imaginary-time Schrödinger equation,

h̄
∂P
∂s

=
h̄2

2I
∂2P
∂θ2 ←→

∂P
∂s

=
kBT
2κ

∂2P
∂θ2 (3)

In quantum mechanics, the state of the rotator (in the absence of internal degrees of
freedom) is invariant under a full rotation by 2π. Thus, the wavefunction and the density
operator are expressed in terms of the angular momentum eigenfunctions [17],

|m〉 = 1√
2π

eimθ , m = 0,±1,±2, ... (4)

and the solution to Equation (3) is

P(t|t0) =
1

2π

∞

∑
m=−∞

e
−m2 s

lp eim(θ−ω) =
1

2π
ϑ3

( θ −ω

2
, e
− s

lp
)

(5)

where ω = θ(0) is the initial orientation (in the polymer case, the orientation of the

grafted end) and ϑ3(u, q) =
∞

∑
m=−∞

qm2
e2mui is the Jacobi theta function of third order. It is

clear that the solution to P(t|t0) given in Equation (5) as a function of θ has a periodicity
of 2π. Quite often, this result is directly transferred from the quantum rotator to the
WLC [18–22]. However, this mathematical analogy should not be carried too far. The two-
point orientational probability distribution of the WLC, unlike the quantum rotator density
operator or propagator, is not invariant under full rotations of the tangent vector at a point
along the chain contour. Such a rotation corresponds to a different conformation of the
polymer. Indeed, this point becomes clear in the analysis of loops in Euler elastica [23,24].
In our case, the solution to Equation (3) belongs to a different functional space from that of
the quantum rotator states and should be expressed in terms of “plane waves”,

|k〉 = 1√
2π

eikθ , −∞ < k < ∞ (6)

so that

P(t|t0) =
1

2π

∫ ∞

k=−∞
dk e

− k2s
lp eik(θ−ω) =

√
lp

4πs
exp

(
−

(θ −ω)2lp

4s

)
(7)

This is a Gaussian with average 〈θ(s)〉 = ω and standard deviation
√
〈(θ(s)−ω)2〉 =

2s/lp. In Figure 2, we plot the orientational probability of the free end of a grafted
chain calculated from Equation (7) (solid line) and from Equation (5) (dashed line) for
L/lp = 3, 1, 0.1. We see that, except for very stiff chains and ignoring very large fluctua-
tions, the discrepancy between the two approaches is quite significant.

For a WLC in three dimensions, it is customary to expand the corresponding two-
point orientational probability density in terms of spherical harmonics, but this expansion—
which is correct for a quantum particle on the unit sphere—suffers from the same symmetry
problems that we described above [3]. However, unlike its two-dimensional counterpart,
the resolution of this problem is much more challenging [25].
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x

y
L

t(s)
(s)

Figure 1. A typical configuration of a rather stiff grafted semiflexible filament. The persistence length
of the filament is lp and it has contour length of L < lp. The filament is grafted in a substrate with
grafting angle, ω.

(a) (b)

(c)

Figure 2. The probability of θ(L) (assuming ω = 0) from the Gaussian solution (solid lines) and from the quantum analogy
(dashed lines) for (a) L/lp = 3, (b) L/lp = 1, and (c) L/lp = 0.1.

2.2. The Orientational Propagator and the Fluctuations of a Semiflexible Nunchuck

The Gaussian two-point orientational probability distribution of Equation (7) is in fact
the Green’s function or propagator of Equation (3). If the probability density of the tangent
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vector orientation at point s is P(θ, s), we can find the probability density of the tangent
vector orientation at point s′ > s through integration:

P(θ′, s′) =
∫ ∞

−∞
dθ P(θ′, s′|θ, s)P(θ, s) (8)

where

P(θ′, s′|θ, s) =

√
lp

4π(s′ − s)
exp

[
−

lp(θ′ − θ)2

4(s′ − s)

]
(9)

This propagator is particularly useful in the analysis of the bending fluctuations
of DNA nunchucks. Fygenson et al. [7] attached both ends of short double-stranded
DNA (dsDNA) chains to fluorescently labeled DNA nanotubes confined to fluctuate in
two dimensions. They extracted the distribution of the bending angle of the dsDNA
through direct imaging of the nanotubes. This “nunchuck” arrangement can be used as an
instrument to characterize the properties of dsDNA according to the WLC model (bending
stiffness, contour length). The nunchuck can be viewed as a semiflexible block copolymer
consisting of three blocks: the two DNA nanotubes and the dsDNA bridge. The attachment
of the dsDNA is such that the tangent vector varies smoothly without any kink along the
three blocks.

Let us consider the most general case of a nanotube of contour length L1 and per-
sistence length lp1 connected to a nanotube of contour length L3 and persistence length
lp3 connected through a dsDNA segment of contour length L2 and persistence length
lp2. Using the orientational propagator, we can calculate the probability density of the
fluctuations of the tangent vectors at the two free ends:

P(θ|ω) =
∫ ∞

−∞

∫ ∞

−∞
dθ1 dθ2 P(θ, L3|θ2, 0) P(θ2, L2|θ1, 0) P(θ1, L1|ω, 0)

=

√
1

(4π)(L1/lp1 + L2/lp2 + L3/lp3)
exp

[
− (θ −ω)2

4(L1/lp1 + L2/lp2 + L3/lp3)

]
(10)

To connect Equation (10) with Reference [7], the middle segment of contour length L2
corresponds to the dsDNA chain. In the experiment, its elasticity is probed by measuring
the bending angle θ1 − θ2. Equation (10) and the propagator method in general provide
complementary constraints which can be used in the measurement of the bending stiffness
of the middle chain. We point out that these expressions are exact, provided that all the
chains can be described by the WLC model and there are no collisions (excluded volume)
of chain segments.

2.3. The Positional-Orientational Propagator of a Wormlike Chain in the Stiff Limit

In this subsection, we consider a grafted WLC (in two dimensions, as shown in
Figure 1) in the weakly bending stiff limit. Because of the large value of the bending rigidity,
L � lP, and since the deflection away from the grafting direction is small, sin(θ − ω) ≈
θ −ω and cos(θ −ω) ≈ 1. The positional-orientational propagator of the chain is denoted
by GL,lp(x, y, θ|x0, y0, ω) and can be interpreted as the conditional probability density to
find the endpoint of the chain at position (x, y) with orientation θ given that it is grafted at
position (x0, y0) with orientation ω.

In the weakly bending regime, the propagator is calculated as a closed analytic
expression [26–30]
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GL,lp(x, y, θ|x0, y0, ω) =
1

NG
exp[−

3lp

L3 ((y− y0) cos(ω) (11)

−(x− x0) sin(ω))2 − lp
L (θ −ω)2]

×exp[ 3lp
L2 ((y− y0) cos(ω)− (x− x0) sin(ω))(θ −ω)]

×δ[(x− x0) cos(ω) + (y− y0) sin(ω)− L]

where δ(x) is the Dirac δ-function and the factor NG is determined by the normalization
condition, ∫ ∫ ∫

dxdydθ GL,lp(x, y, θ|x0, y0, ω) = 1 (12)

In the remainder of this article, we use the notation
∫
≡
∫ +∞
−∞ for the sake of simplicity.

Using Equation (11), we can easily calculate the probability density of the the x component
of the free endpoint position,

Px(x)=
∫ ∫

dydθGL,lp(x, y, θ|0, 0, ω) (13)

=

√
3lp

4πL3 sin2(ω)
exp

(
−

3lp(x− L cos(ω))2

4L3 sin2(ω)

)

The probability density of the the y component of the free endpoint position is

Py(y)=
∫ ∫

dxdθGL,lp(x, y, θ|0, 0, ω) (14)

=

√
3lp

4πL3 cos2(ω)
exp

(
−

3lp(y− L sin(ω))2

4L3 cos2(ω)

)

In addition, the probability density of the orientation of the free endpoint is given by

Pω(θ)=
∫ ∫

dxdyGL,lp(x, y, θ|0, 0, ω) (15)

=

√
lp

4πL
exp

(
−

lp(θ −ω)2

4L

)

We point out that even though Equations (13) and (14) rely on the validity of the
weakly bending approximation, Equation (15) is exact.

3. Conformational Probabilities of Kinked and Hinged Stiff Chains
3.1. Positional Fluctuations of Two Weakly Bending WLCs Jointed at a Stiff Kink Point

We consider two WLCs, both in the stiff limit, which can have different persistence
lengths. They are jointed at a kink, and the kink angle, γ, is fixed (it does not fluctuate). In
Figure 3, we show the configuration of such a grafted kinked pair of arms. The first arm is
grafted on the substrate with orientation ω and it has persistence length lp1 and contour
length L1. The second arm is attached to the endpoint of the first arm at the kink point, and
it has persistence length lp2 and contour length, L2. We label the endpoint of the first arm
by the number 1, which is also the kink point. We also label the endpoint of the second arm
of the structure by the number 2. The endpoint of the structure is the same as the endpoint
of the second arm.
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x

WLC of

Grafted Point

Kink Point

Hinge Point

L

L

L

2

1

1

L
2

1

2

l
P2

WLC of

l
P1(fixed)

(fluctuating)

Figure 3. Upper panel: A configuration of two jointed weakly bending semiflexible filaments. The
stiff joint (kink point) has a kink angle γ. The first filament has length L1 and persistence length
lp1. The second filament has length L2 and persistence length lp2. The first filament is grafted on a
substrate with a grafting angle ω. Lower panel: A configuration of two jointed semiflexible filaments
with a hinged point. It differs from the system in the upper panel in that the kink angle γ fluctuates
about an average value γ0. The hinge point has a rotational stiffness Kh. For Kh → ∞, the hinge point
becomes a kink point and we recover the upper panel case.

Concatenating the propagators associated with the two arms, we calculate the proba-
bility density to find the x component of the position of the free endpoint of the kinked
structure at a given value x2,

Pkx(x2)=
∫ ∫ ∫

dx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (16)

×
∫ ∫

dy2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

Similarly, we calculate the probability density to find the y component of the position
of the endpoint of the filament at y2,

Pky(y2)=
∫ ∫ ∫

dx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (17)

×
∫ ∫

dx2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

By performing the integrals in Equation (16), we obtain an analytic expression for
Px(x2):

Pkx(x2) =
1√

πσkx
exp

(
− (x2 − L1 cos(ω)− L2 cos(ω + γ))2

σkx
2

)
(18)
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where

σkx
2 =

4
3lp1lp2

[lp1L3
2 + 3lp2L1L2

2] sin(ω + γ)2

+
12

3lp1
L2

1L2 sin(ω) sin(ω + γ)

+
4

3lp1
L3

1 sin(ω)2 (19)

Similarly, the Gaussian integrals in Equation (17) yield an analytic expression for
Py(y2):

Pky(y2) =
1√

πσky
exp

(
− (y2 − L1 sin(ω)− L2 sin(ω + γ))2

σky
2

)
(20)

where

σky
2 =

4
3lp1lp2

[lp1L3
2 + 3lp2L1L2

2] cos(ω + γ)2

+
12

3lp1
L2

1L2 cos(ω) cos(ω + γ)

+
4

3lp1
L3

1 cos(ω)2 (21)

In the weakly bending approximation, all the integrals are Gaussian. As a consistency
check, we look at two limiting cases. In the first case, γ = 0, L1 = L2 = L

2 and lp = lp1 = lp2,
while in the second case, L1 = 0, γ = 0 and lp = lp2. In both cases, the two probability
density functions of Equations (18) and (20) reduce to Equations (13) and (14) respectively,
which correspond to a single filament with length L.

3.2. Bimodality in the Positional Fluctuations of Two Weakly Bending WLCs Jointed at a
Hinge Point

The transverse fluctuations of a stiff grafted WLC (L� lp) are Gaussian. As we see
from Equation (14), if we set ω = 0, Py(y) is peaked at y = 0 and the variance of y is
2L3/(3lp). It is known that, as the stiffness of the WLC (given by lp/L) decreases, Py(y)
changes from its original Gaussian form and develops a bimodality, which can be viewed
as the hallmark of semiflexibility (lp/L ≈ 1) [22,30–33]. Bimodality has also been observed
in molecular dynamics simulations of semiflexible polymers in two dimensions under
shear flow [34]. In the opposite limit of a flexible chain (L� lp), Py(y) becomes Gaussian
again (corresponding to an ideal chain).

If we have a stiff grafted WLC with a hinge point along its contour, the form of the
distribution of transverse fluctuations of the free end, Py(y), strongly depends on the
stiffness of the hinge point. An infinitely stiff hinge corresponds to the absence of hinge,
because it secures the continuity of the tangent vector. A completely soft hinge yields
a WLC freely jointed to a grafted WLC. Let us first consider the case of two perfectly
rigid rods jointed by a completely soft hinge (lower panel of Figure 3 with ω = 0 and
lp1 = lp2 = ∞). We have y = L2 sin(γ) and Ph(γ) = 1/(2π) for 0 ≤ γ < 2π. We obtain

Py(y) = Ph(γ)
∣∣∣dγ

dy

∣∣∣ = 1
2πL2

1√
1− (y/L2)2

(22)

We can see that, in this case, the probability density has a pronounced bimodality
with two integrable divergences at y = ±L2. We can easily understand this result from
the geometry of a circle. For stiff rods and a soft hinge, the free tip has equal probability
to be on any point along a circle of radius L2. Conformations with y close to the radius
correspond to more points along the circle (higher probability) than those with y ≈ 0.
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We now consider a grafted kinked filament as the one discussed in the previous
subsection and allow the kink angle to thermally fluctuate. The result is that of two
filaments jointed via a hinge point. The probability density of the x component of the
position of the endpoint of a hinged polymer is given by the following expression,

Phx(x2)=
∫ ∫ ∫ ∫

dγdx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (23)

×
∫ ∫

dy2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)Ph(γ)

which can be rewritten as follows

Phx(x2) =
∫

Ph(γ)Pkx(x2)dγ (24)

where Pkx(x2) is given by Equation (18) and

Ph(γ) =

√
Kh
2π

exp

[
− Kh(γ− γ0)

2

2

]
(25)

As we see from Equation (25), we treat the hinge as an angular spring. This may
represent an F-actin cross-linking protein, which prescribes a finite angle γ0 6= 0 (e.g.,
filamin), or it may be a coarse-grained version of a short dsDNA link of the two DNA
nanotubes in the nunchuck complex of Reference [7]. In the latter case, γ0 = 0 and
comparing Equation (25) with Equation (9) we have Kh = 2lp/s, where s is the length of
the link.

Similarly, the probability density of the y component of position of the endpoint of a
grafted hinged filament is

Phy(y2)=
∫ ∫ ∫ ∫

dγdx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (26)

×
∫ ∫

dx2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)Ph(γ)

We can rewrite the Equation (26) as

Phy(y2) =
∫

Ph(γ)Pky(y2)dγ (27)

where Pky(y2) is given by Equation (20).
We now focus on a hinge with γ0 = 0 and calculate numerically the integrals that give

Phy(y2) in order to see the dependence of its form on the bending stiffness of the hinge and
that of the two arms. In Figure 4, we use parameters appropriate for the DNA nanotube
nunchuck experiments of Reference [7]. We assume that the two arms are identical, with
contour length 3 µm and persistence length of 27 µm. We see that for a hinge strength
of Kh/(kBT) = 1.51, which corresponds to a WLC link of lp/s = 0.755, the distribution
of transverse fluctuations exhibits a plateau. For a hinge of higher stiffness, there is no
bimodality (there is a single peak). For a hinge of lower stiffness, there is bimodality,
which becomes more pronounced as the stiffness decreases. We see that the form of the
distribution (flat, bimodal, unimodal) allows us to get a rough estimate of the stiffness of
the link between the two arms of the nunchuck. In Figure 5, we see that for a link of given
bending stiffness, a bimodal distribution of transverse fluctuations becomes less sharp as
the stiffness of the nunchuck arms decreases.

In this Section, we focused on bimodality in the conformations of a nunchuck confined
in two dimensions. Even though the three-dimensional case is beyond the scope of this
article, we do not expect a qualitative case. This bimodality is similar to that in grafted
wormlike chains, and Reference [33] shows that it persists in three dimensions.
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Figure 4. The probability density of the transverse component of the free end of a grafted system
of two hinged WLCs. The curve is obtained from Equation (27). The varying parameter is the
rotational stiffness of the hinge point (in units of the thermal energy, kBT): Kh = 0.01 + 0.5× i where
i = 0, 1, 2, 3, 4, 5, 6. The lower the hinge stiffness, the sharper the bimodality of the distribution. The
fixed parameters are: L1 = L2 = 3 µm, lp1 = lp2 = 27 µm, ω = 0.

Figure 5. The probability density of the transverse component of the free end of a grafted system
of two hinged WLCs. The curve is obtained from Equation (27). The varying parameter is lp;
lp ≡ lp1 = lp2 = 4.5× i µm where i = 1, 2, 3, 4, 5, 6. The lower the value of lp, the smoother the
bimodality of the curves. The fixed parameters are: L1 = L2 = 3 µm, Kh

2 = 0.005 and ω = 0.
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4. Rigid-Rod Nunchuck with Excluded Volume Interaction

In our analysis so far, we have assumed that the system does not experience any
excluded volume interaction. In Section 3.2, we integrate the hinge angle γ from −∞ to
+∞, assuming that the two arms of the nunchuck can twist on top of each other. A more
realistic approach would be to take into account the excluded volume interaction. Calculat-
ing conformational distributions with excluded volume interaction is a very challenging
problem, which goes beyond the scope of the present article. However, we can do that for
the simple case of a nunchuck that consists of two arms of infinite bending stiffness and a
harmonic hinge. In that case, the conformations of the system are determined by the hinge
angle, which is confined to fluctuate in the range −π < γ < π.

We consider the hinge as a WLC whose orientational fluctuations obey the diffusion-
like equation, Equation (3). In Section 2.1, we showed that if the range of the bending angle
is from −∞ to +∞, the distribution is Gaussian. If the range of fluctuations is restricted
because of the excluded volume interaction of the nunchuck arms, we have to impose
absorbing boundary conditions to the “diffusion” process [35]. We consider the geometry
of Figure 1 with the “starting” angle ω = 0. In order to solve Equation (3), we use a
factorization ansatz,

P(θ, s) = Q(θ) exp(−λs) (28)

which yields the eigenfunction equation

[ d2

dθ2 + k2
]

Q(θ) = 0 , k2 =
2λκ

kBT
(29)

The eigenfunctions of the harmonic oscillator are sines and cosines, and those consis-
tent with the absorbing boundary conditions,

Q(±π) = 0 (30)

are cosines, cos(knθ), with

kn = n +
1
2

, n = 0, 1, 2, ... (31)

The solution of Equation (3) with absorbing boundary conditions reads

P(θ, s) = N
∞

∑
n=0

cos
( (2n + 1)θ

2

)
exp

(
− (2n + 1)2s

4lp

)
(32)

where N is the normalization prefactor,

N = 4
∞

∑
n=0

(−1)n

2n + 1
exp

(
− (2n + 1)2s

4lp

)
(33)

The standard deviation of the hinge angle in the nunchucks of Reference [7] lies in the
interval [20◦, 83◦], which corresponds to a flexibility s/lp in the interval [0.174, 0.724]. If
we plot P(θ, s) as Gaussian from Equation (7) and as the solution of the diffusion equation
with absorbing boundary conditions from Equation (32), we do not see any noticeable
difference for s/lp = 0.174. For s/lp = 0.724, the discrepancy caused by the boundary
conditions is small but noticeable. In Figure 6, we plot the bending distribution according
to the usual Gaussian, Equation (7), against that of Equation (32) for s/lp = 2, and we see a
significant discrepancy.



Polymers 2021, 13, 2031 12 of 17

Figure 6. The probability density of the bending angle of a WLC hinge with ratio of contour length to
persistent length s/lp = 1.2. The dashed line is the usual Gaussian, whereas the solid line is obtained
by imposing absorbing boundary conditions to Equation (3).

We point out that modeling the excluded volume interaction between the two rigid
arms of the nunchuck via absorbing boundary conditions for the orientational distribution
of the hinge WLC, P(θ, s), is an approximation even for infinitely long arms. The absorbing
boundary conditions that we assume in order to obtain Equation (32) apply to the orienta-
tional conformations θ(s) over the entire contour length [0, s] of the WLC and not just the
end point. Thus, they become unrealistic for a flexible hinge with s/lp � 1. On the other
hand, a flexible hinge would trivially yield a uniform distribution. Therefore, we conclude
that Equation (32) is a good approximation for hinge links with s/lp . 1.

5. Bimodality in the Tensile Elasticity of a Semiflexible Nunchuck

We consider a nunchuck in two dimensions, consisting of two rigid arms of length bL
and (1− b)L, jointed by a fully flexible hinge and subjected to a tensile force f (0 < b < 1).
The partition function reads

Z2d =
∫ 2π

0

∫ 2π

0
dθ1dθ2 exp

( f bL
kBT

cos(θ1) +
f (1− b)L

kBT
cos(θ2)

)
= (2π)2 I0

( f bL
kBT

)
I0

( f (1− b)L
kBT

)
(34)

where In is the modified Bessel function of the first kind of order n. The force-extension
relation is obtained by taking the derivative,

〈z〉 = kBT
∂ ln(Z)

∂ f
= Lb

I1( f bL/(kBT))
I0( f bL/(kBT))

+ L(1− b)
I1( f (1− b)bL/(kBT))
I0( f (1− b)bL/(kBT))

(35)

where 〈z〉 is the average end-to-end distance in the direction of the force. If we plot 〈z〉 as
a function of the hinge position b as we do in Figure 7, we get a single minimum at the
middle b = 1/2 for small forces and a pronounced bimodality for higher forces. We can
understand this as follows. For a strong tension, the long arm of the nunchuck is weakly
tilting. On the other hand, the short arm reaches a length bL such that bL f . kBT and
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fluctuates very strongly, causing the end-to-end distance to shrink before it gets back to its
value corresponding to a single rod as b→ 0.

(a) (b)

Figure 7. The average projection of the end-to-end distance n the direction of the force as a function of the hinge position for
(a) f = kBT/L and (b) f = 20kBT/L

This should be contrasted with the elastic response in three dimensions. In that case,
the partition function reads

Z3d =
∫ 2π

0
dφ1

∫ π

0
sin(θ1)dθ1

∫ 2π

0
dφ2

∫ π

0
sin(θ2)dθ2 exp

( f bL
kBT

cos(θ1) +
f (1− b)L

kBT
cos(θ2)

)
= (4π)2 sinh( f bL/(kBT)

f bL/(kBT)
sinh( f (1− b)L/(kBT)

f (1− b)bL/(kBT)
(36)

The corresponding force-extension relation is

〈z〉
L

= b coth
( f bL

kBT

)
+ (1− b) coth

( f (1− b)L
kBT

)
− 2

kBT
f L

(37)

If we plot 〈z〉 as a function of the hinge position b, we always get a convex function
with a single minimum at the middle, b = 0.5. We can rigorously confirm this by calculating
its second derivative and checking its sign. The markedly different behavior from the
two dimensional case is due to the extra space that is available to the strongly fluctuating
small arm of the nunchuck. More specifically, for the weakly tilting long arm, we have
decoupling of the two transverse dimensions. Thus, the corresponding contribution to the
entropic elasticity is twice that of the two-dimensional case. On the other hand, the small
segment responds linearly, and the corresponding tensile compliance in 3d is 3/2 times
that in 2d. The increase in the fluctuations of the long arm overshadows the contribution
from the short arm, and this results in a convex curve.

Let us now consider a nunchuck with semiflexible arms. In Reference [36], the force-
extension relation of a semiflexible nunchuck with a hinge modeled as an orientational
harmonic spring is calculated analytically, in the weakly bending approximation. (We point
out that the weakly bending approximation may hold because of a strong tensile force
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or because of a large bending stiffness.) Adapting that result for a flexible hinge in two
dimensions, we obtain

〈z〉
L

= 1− L
lp

1
f̃
− 1

2
L
lp

coth(
√

f̃ b)
√

f̃ b

f̃
− 1

2
L
lP

coth(
√

f̃ (1− b))
√

f̃ (1− b)

f̃
(38)

where the dimensionless force is defined as f̃ = f L2/κ. It can also be written as f̃ = (L/l f )
2

with l f =
√

κ/ f . This result is based on the force-extension relation of an intact WLC of
contour length L with free hinged–hinged boundary conditions (in the weakly bending
approximation) [19,36,37],

〈z〉
L

= 1− 1
2

L
lP

coth(L/l f )(L/l f ) + 1
(L/l f )2 (39)

In order to understand the physical meaning of the tension-dependent characteristic
length l f , we compare the strong stretching limit of a WLC with that of a freely jointed
chain (FJC) in two dimensions. To the leading order, the WLC yields

〈z〉
L

= 1− 1
4

kBT√
κ f

(40)

while the FJC yields
〈z〉
L

= 1− kBT
2l f

(41)

κ is the bending stiffness of the WLC, and l is the elementary segment (link) length of the
FJC. Comparing the two expressions, we see that, under strong stretching, a WLC behaves
as a FJC with a tension-dependent link length equal to 2l f . Thus l f plays the role of an
orientational correlation length for a WLC under strong tension.

If we plot the extension of a hinged WLC under strong tension (L � l f ) from
Equation (38) as a function of the hinge position, we see that it exhibits a plateau and
decreases as the hinge approaches the end points. The decrease is significant within a
contour distance∼ l f from the end points. This is understood because the small segment at
the end fluctuates strongly. However, there is a problem with this result. As b approaches
0 or 1, we should recover the result of the intact chain. The reason behind this appar-
ent inconsistency is the breakdown of the weakly bending approximation for the small
segment at the end. For a WLC with L = lp subject to tension, the extension given by
Equation (39), which is based on the weakly bending approximation, vanishes at l f ≈ L,
and it turns negative for smaller forces. In order to remedy this problem, we consider
the small segment at the end of the nunchuck as a rigid rod freely jointed to the weakly
bending WLC. We recall that the force-extension relation of freely rotating rigid rod of
length L in two dimensions is

〈z〉
L

=
I1( f L/(kBT))
I0( f L/(kBT))

(42)

We point out that this is a general result and holds even beyond the weakly bending
approximation. For a small segment at the end with length bL, the tensional energy
becomes comparable to or smaller than the thermal energy, bL f . kBT, and that makes
it fluctuate strongly. If we combine this with the force-extension relation of the weakly
bending WLC of length (1− b)L, we obtain

〈z〉
L

= b
I1( f bL/(kBT))
I0( f bL/(kBT))

+ (1− b)− 1
2

L
lP

coth(
√

f̃ (1− b))
√

f̃ (1− b) + 1

f̃
(43)
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We can easily see that for b→ 0, we recover the extension of the intact WLC (without
a hinge) with contour length L. The interesting feature of the extension as a function of the
hinge position according to Equation (43) is that it has a minimum below the plateau of
Equation (38) and that the minimum occurs at a value of b for which Equation (43) holds.
Because the two ends are symmetric, we obtain bimodality in the response of a nunchuck
to stretching as a function of the hinge position. Equation (43) holds for bL . l f , whereas
Equation (38) holds for bL & 2l f . Even though we do not have an exact result for the entire
range of b, the bimodality is a robust feature. These features are shown in Figure 8. The
tension and the bending stiffness of the arms correspond to l f ≈ 0.058L.

Figure 8. The mean extension of a semiflexible nunchuck in 2d as a function of the hinge position
b for lp = L and f = 150kBT/L. The solid line corresponds to the weakly bending approximation
of the hinged WLC (Equation (38)). The dotted line corresponds to a nunchuck whose small arm
is a rigid rod and the long arm a weakly bending WLC (Equation (43)). The dashed line gives the
extension of the corresponding intact WLC (without any hinge).

If we have a semiflexible nunchuck under tension in three dimensions, Equation (38)
still holds, and the change in dimensionality only affects lp (2κ/(kBT) in 2d and κ/(kBT)
in 3d). Equation (43), which gives the force–extension relation of a mixed nunchuck (rigid
rod jointed to a semiflexible arm), will have a different first term,

〈z〉
L

= b coth
( f bL

kBT

)
− kBT

f L
+ (1− b)− 1

2
L
lP

coth(
√

f̃ (1− b))
√

f̃ (1− b) + 1

f̃
(44)

If we carry out the same analysis as we did for the 2d case, we see that the bimodality
in the extension as a function of the hinge position persists, at least for lp ≈ L. As lp
increases, the bimodality becomes less pronounced and eventually disappears because at
the limit lp → ∞, we recover the rigid-arm nunchuck in 3d, described by Equation (7).

6. Conclusions

In this article, we theoretically investigated several aspects of the conformational
and elastic behavior of the semiflexible nunchucks. Our results may help the analysis of
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experimental data. As some of our results have not been tested experimentally, they may
motivate future experiments.

At first, we rigorously derive the distribution of bending fluctuations of a WLC in
2d and discuss the discrepancy with a widely used result, which is based on an imperfect
analogy with a quantum rigid rotator. We point out that a similar analogy in 3d gives
a propagator in terms of spherical harmonics [3], which is also widely used and suffers
from the same problems (unjustified periodicity) as its counterpart in 2d. However, as
opposed to the 2d case, there is no simple resolution to this problem [25]. Concatenating
Gaussian propagators, we obtain the distribution of bending fluctuations of a three-block
WLC comprising two long segments of high bending stiffness and a short segment of lower
bending stiffness in the middle, which models a semiflexible nunchuck.

Using the positional-orientational propagator for the weakly bending approximation,
which is valid for stiff WLCs, we analytically obtain the positional distribution of the free
end of a pair of WLCs jointed by a rigid kink, assuming the other end to be grafted. If
we replace the kink by an aligning hinge that acts a harmonic bending spring, we obtain
(up to an integral that has to be calculated numerically) the probability of transverse
fluctuations of the free end. We show that, depending of the stiffness of the hinge and
the bending stiffness of the two arms, this distribution exhibits a pronounced bimodality,
which gradually flattens and eventually vanishes as the hinge becomes stiffer. As the hinge
can be viewed as a coarse-grained version of a short WLC linking the two arms of the
nunchuck, the distinctive qualitative features of the distribution of transverse fluctuations
(bimodal, flat, unimodal) could help us get a rough estimate of the stiffness of the hinge.

In most of this work, we ignore the excluded volume interaction. We assume that
the two arms of the nunchuck are free to strongly fluctuate past each other. However, we
also analyze the case of a nunchuck with rigid rod arms and excluded volume interaction.
We show how the bending distribution changes from the Gaussian which is valid in the
“phantom” case.

In the case of nunchucks with a soft (fully flexible) hinge, we analyze the response
to a stretching force applied at the two ends. We are interested in the dependence of
the nunchuck extension in the direction of the force on the hinge position. In the 2d
case, if the two arms are rigid rods, we get a single minimum of the extension when the
hinge is at the middle. However, for strong tension, we get bimodality. For a hinge close
to the ends, we get two minima separated by a plateau. Interestingly, this bimodality
(for a rigid-rod nunchuck) does not persist in 3d. For semiflexible nunchucks, at least
when the total contour length of the intact WLC (without the hinge) is of the order of the
persistence length, we obtain this bimodality under strong stretching, both in two and in
three dimensions.
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