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Abstract: Density Functional Theory is employed to study structural properties and interactions
between solvent-free polymer-grafted nanoparticles. Both monodisperse and bidisperse polymer
brushes with variable chain stiffness are considered. The three major control parameters are the
grafting density, the grafted chain length, and its stiffness. The effect of these parameters on the
brush-brush overlap and attractive interaction strength is analyzed. The Density Functional Theory
results are compared with the available simulation data, and good quantitative agreement is found.
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1. Introduction

Colloids and nanoparticles grafted with polymer chains play an important role in
the scientific and technological fields of colloid stabilization [1,2], lubrication [3], and
adhesion [4]. As such, these systems have received significant experimental [5,6] and
theoretical [7,8] attention. One way of controlling the properties of sterically stabilized
systems is by tuning either the solvent quality [9–12] or the properties of the (ungrafted)
polymer matrix [13,14]. However, this method does not apply to the technologically
important solvent-free (matrix-free) nanocomposites consisting of inorganic cores grafted
with polymeric brushes [15]. These nanoparticle-organic hybrid materials exhibit superior
thermal and mechanical properties [16], and hold a strong promise for various advanced
applications [17,18]. For example, brush coating technology is used for the alignment of
one-dimension nanomaterials [19]. Accordingly, these materials have been actively studied
both experimentally [20–22] and theoretically [15,21,23–25].

Of particular importance for the present work is the recent Molecular Dynamics (MD)
simulation study of solvent-free polymer brushes, where detailed results are reported
on the equilibrium density profiles and the brush overlap as a function of the grafting
density and grafted chain length [26]. In addition to monodisperse brushes, equimolar
bidisperse brushes were also considered, which is important due to the role of bimodal
surface ligands in tunability of nanocomposites [27,28]. While MD simulations provide
exact results (with inevitable statistical noise) for a given microscopic model, they can
also be time-consuming for systems involving long polymer chains and high grafting
densities [8]. An appealing alternative is provided by mean-field techniques, such as self-
consistent field theory [10,29,30], integral equation theory [31–34], and density functional
theory (DFT) [9,12,35]. The latter method has been already applied to study solvent-free
polymer brushes [36]. However, to the best of our knowledge, the existing studies of
solvent-free brush systems are limited to fully flexible grafted chains. At the same time,
MD simulations indicate that the chain stiffness plays an important role in controlling the
interactions between polymer-grafted nanoparticles in a polymer matrix [37], as well as the
mechanical properties of polymer nanocomposites [38]. Hence, one can expect the stiffness
to be a useful control parameter in the matrix-free case as well [39].

The central goal of the present work is to develop a DFT approach for the particles
grafted with chains of variable stiffness in order to study their structure and interactions.
The three main control parameters to be considered are the grafting density, the grafted
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chain length, and its stiffness. For the fully flexible brushes, the DFT accuracy will be
assessed via a detailed comparison of the structural results with the available simulation
data, both for monodisperse and bidisperse cases.

The outline of the remainder of the paper is as follows. In Section 2 we specify our
microscopic model and in Section 3 we outline the theoretical methods used in the present
study to compute the structural and energetic properties of the polymer nanocompos-
ites. Sections 4.1 and 4.2 presents our results for flexible and semiflexible monodisperse
brushes, respectively, and the corresponding results for bidisperse brushes are given in
Sections 4.3 and 4.4. Section 5 concludes the paper.

2. Microscopic Model

In order to be able to compare our theoretical results directly with MD simulations,
we employ a microscopic model that resembles very closely the model used in the recent
simulation study [26]. Specifically, a monodisperse polymer brush is modeled as a flat
structureless wall (located in xy-plane) which is grafted uniformly with polymer chains of
length N at grafting density σg. In the case of a bidisperse brush, an equimolar mixture of
2 polymers of length N1 and N2 is grafted to the wall at the total grafting density σg. The
monomers comprising the chain are spheres of diameter σ, and all the bond lengths are
fixed at lb = σ (σ will be used as length unit throughout this work). In order to study the
effect of chain flexibility on the brush structural properties we employ a bond-bending
potential [40,41]:

Vbend(θijk) = εb[1− cos(θijk)] = εb[1−
si · si+1

σ2 ], (1)

where θijk is the bond angle formed between the two subsequent vectors si and si+1 along
the bonds connecting monomers i, j = i + 1 and j, k = i + 2, i.e. si = ri+1 − ri and
si+1 = ri+2 − ri+1. The energy parameter εb then controls the persistence length lp, which
is defined as [42]

lp/lb = −1/ ln〈cos θijk〉. (2)

While for flexible polymers (εb = 0 in Equation (1)) one has the persistence length lp ≈ lb,
for semiflexible chains with εb ≥ 2 one has the persistence length lp/lb ≈ εb/kBT = κ,
where κ is the dimensionless stiffness parameter [40,41].

The interactions between non-bonded monomers are described via Lennard-Jones
potential, truncated and shifted at rcut = 2.5σ:

Upp(r) =
{

4ε[( σ
r )

12 − ( σ
r )

6 − ( σ
rcut

)12 + ( σ
rcut

)6], r < rcut

0, r ≥ rcut
(3)

where ε is the potential well depth. The latter will be used as the energy unit throughout
this work, with the temperature fixed at T∗ = kBT/ε = 1.0.

Finally, the interaction between the monomers and the wall is modeled via the follow-
ing potential [26]:

Uwp(z) =
{

4ε[( σ
z )

12 − ( σ
z )

6 + 1
4 ], z < 21/6σ

0, z ≥ 21/6σ,
(4)

where z is the distance of the monomer from the wall.

3. Density Functional Theory

As a starting point of any DFT-based treatment, [43,44] one writes an expression of
the grand free energy, Ω, as a functional of the polymer density profile ρp(Rp), where
Rp = (r1, r2, · · · , rN) is a collective variable with the individual monomer coordinates
ri. The minimization of Ω with respect to ρp(Rp) yields the equilibrium polymer density
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distribution. The functional Ω is related to the Helmholtz free energy functional, F, via a
Legendre transform:

Ω[ρp(Rp)] = F[ρp(Rp)] +
∫

dRpρp(Rp))[Vext(Rp)− µ], (5)

where µ is the polymer chemical potential (which will be set to 0 throughout this study due
to the fact that the chains are grafted to the wall at a fixed grafting density), and Vext(Rp) is
the external field, which in the present case is due to the interaction of the polymer beads
with the wall:

Vext(Rp) =
N

∑
i=1

Uwp(ri). (6)

We employ the following approximation for the Helmholtz free energy functional,
which separates it into ideal and excess parts according to: [45]

F[ρp(Rp)] = Fid[ρp(Rp)] + Fex[ρ(r)], (7)

with the ideal functional given by [46,47]:

βFid[ρp(Rp)] =
∫

dRpρp(Rp))[ln ρp(Rp)− 1] + β
∫

dRpρp(Rp)Vb(Rp) + β
N−2

∑
i=1

∫
dRpρp(Rp)Vbend(si, si+1), (8)

where β = 1/(kBT), Vbend is given by Equation (1), and Vb(Rp) is the binding energy
given by [48]:

exp[−βVb(Rp)] =
N−1

∏
i=1

δ(|ri − ri+1| − σ)

4πσ2 =
N−1

∏
i=1

gb(|ri − ri+1). (9)

Additionally, the innermost (i = 1) bead of each chain is tethered to the wall via a
grafting potential exp[−βvg(r1)] = δ(z1 − zg), where zg is the position of the wall (located
in xy-plane) along the z-axis.

The excess term is written as a functional of the monomer density given by: [46,47]

ρ(r) =
∫

dRp

N

∑
i=1

δ(r− ri)ρp(Rp). (10)

We write the excess free energy functional as a sum of repulsive and attractive terms [45]:

Fex[ρ(r)] = Frep[ρ(r)] + Fatt[ρ(r)]. (11)

For the former, we adopt the weighted density approximation [49]:

βFrep[ρ(r)] =
∫

drρ(r) frep(ρ̄(r)), (12)

with the weighted density given by:

ρ̄(r) =
∫

dr′ρ(r′)w(|r− r′|). (13)

In the above, frep(ρ) is the excess free energy density per site of the polymer melt with
site density ρ arising from the short-ranged hard-core repulsive interactions. We compute
it from the Wertheim’s expression which was obtained on the basis of the first-order
thermodynamic perturbation theory [50]:

frep(ρ) =
4η − 3η2

(1− η)2 − (1− 1
N
) ln

1− η/2
(1− η)3 (14)
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where η = πσ3ρ/6 is the monomer packing fraction.
In the present work we employ the simple square-well form for the weighting function

w(r), whose range is given by the diameter σ of the polymer segment [12]:

w(r) =
3

4πσ3 Θ(σ− r), (15)

where Θ(r) is the Heaviside step function. While more sophisticated forms of the weighting
function are available in the literature (e.g., those used in the Fundamental Measure Theory
version of DFT [51]), earlier studies [52] have shown relative insensitivity of DFT results
for polymeric systems to the specific choice of the weight function.

Regarding the attractive contribution to the excess free energy, Ref. [53] in our earlier
DFT study of nanoparticle interactions in a polymer melt, Ref. [54] we have found that the
most accurate results for polymer density profiles and PMFs were obtained using a simple
mean-field approximation for the attractive part of Fex:

Fatt[ρ(r)] =
1
2

∫
dr
∫

dr′ρ(r)ρ(r′)Uatt
pp(|r− r′|), (16)

where [55]

Uatt
pp(r) =


Upp(21/6σ), r ≤ 21/6σ

Upp(r), 21/6σ < r ≤ rcut
0, r > rcut.

(17)

The minimization of the grand free energy functional Ω yields the following result for
the equilibrium polymer density profile [56]:

ρp(Rp) = Npδ(z1 − zg)
N−1

∏
i=1

gb(|ri − ri+1)
N−2

∏
i=1

exp[−βVbend(si, si+1)]
N

∏
i=1

exp[−λ(ri)], (18)

where
λ(r) = β

δFex

δρ(r)
+ βUwp(r), (19)

and Np is the normalization constant chosen to give the desired grafting density σg. Sub-
stitution of ρp(Rp) into Equation (10) then yields an integral equation for the monomer
density distribution ρ(r) which needs to be solved numerically [56].

In this study we focus on two opposing interacting polymer brushes with the two
parallel walls located at zg1 and zg2, respectively. In this geometry the equilibrium monomer
density distribution ρ(z) is a function of a single variable z. The potential of mean force
(PMF) W(z) between the two brushes as a function of the distance between the walls is
obtained by taking the difference between the free energy F at the wall separation z and at
the wall separation zmax = 2Nσ, where the two bushes no longer overlap [57]. The value
z = H where W(z) passes through a minimum corresponds to the equilibrium separation
between the two walls. Following the MD simulation study [26], we define the overlap
parameter P between the two brushes at the equilibrium separation as follows:

P =

∫ zg2
zg1

dz[ρ1(z) ∩ ρ2(z)]∫ zg2
zg1

dz(ρ1(z) + ρ2(z))
, (20)

where ρ1(z) and ρ2(z) are the monomer density distributions of the two brushes grafted at
zg1 and zg2, respectively.

We note that our description of the DFT methodology has been formulated for
monodisperse brushes comprised of grafted chains of length N. In what follows, we
will also consider bidisperse brushes comprised of two types of grafted chains of length
N1 and N2, respectively (all other properties of these two chain types will be taken to



Polymers 2021, 13, 2296 5 of 18

be identical, e.g., their stiffness parameter κ1 = κ2). The above DFT formalism can be
generalized to the case of a two-component system in a straightforward way [58,59].

Regarding the numerical implementation of the DFT procedure, the integral equation
for the monomer density distribution ρ(z) was solved numerically on an equidistant grid
with the grid spacing ∆z = 0.02. Simple Picard iteration procedure was employed [60],
and tolerance criterion for terminating the iterative procedure was set to 10−6.

4. Results

We employ the DFT formalism outlined in Section 3 to study both structural (overlap
P given by Equation (20)) and energetic (PMF W(z)) properties of two overlapping flat
brushes. Both monodisperse and bidisperse brushes are considered, with three main
control parameters being the grafted chain length N, the grafted chain stiffness parameter
κ, and the grafting density σg.

4.1. Monodisperse Brush: Flexible Chains

We start by studying monodisperse brushes comprised of fully flexible (κ = 0) chains
of length N. Figure 1a shows representative DFT results for the grafted chain monomer
density distributions at the equilibrium wall-wall separation H. Only the density profiles
ρ(z) of the monomers of the chains grafted at the left wall are shown (as a function of z/H),
the corresponding profiles of the chains grafted at the right wall are mirror symmetric
(around the mid-point of the gap between the two walls), because the two opposing brushes
are identical. The upper panel of Figure 1a shows the DFT results for the grafting density
σg = 0.125 and three values of the grafted chain length: N = 16, 32, and 64. The lower
panel of Figure 1a shows the corresponding results for the grafted chain length N = 32
and three values of the grafting density: σg = 0.0625, σg = 0.125, and σg = 0.25.
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Figure 1. (a) Upper panel: DFT results for the equilibrium monomer density distributions for monodisperse flexible
brushes at equilibrium separation H vs z/H; grafting density is σg = 0.125 and three values of the grafted chain length
are considered: N = 16, 32, and 64. Only monomer density distributions of the chains grafted at the left wall are shown;
the distributions of the chains grafted at the right wall are mirror-symmetric (around the mid-point of the gap between
the walls) with respect to the left-wall grafted chains. Lower panel: DFT results for the equilibrium monomer density
distributions for monodisperse flexible brushes at equilibrium separation H vs z/H; grafted chain length is N = 32 and
three values of grafting density are considered: σg = 0.0625, σg = 0.125, and σg = 0.25. (b) Upper panel: PMF between two
monodisperse flexible brushes as a function of wall-wall separation at the grafting density σg = 0.125 for four values of
the grafted chain length N, as indicated. Lower panel: PMF between two monodisperse flexible brushes as a function of
wall-wall separation for the grafted chain length N = 32 for four values of the grafting density σg, as indicated.

One sees from Figure 1a that both with increasing chain length (at a fixed grafting
density, upper panel) and with increasing grafting density (at a fixed chain length, lower
panel), the monomer density distribution becomes more bell-shaped (i.e., more localized
at the grafting wall), in agreement with MD simulation results [26]. Keeping in mind
that the two brushes grafted at the left and right walls are identical (and their respective
density profiles are mirror symmetric around the gap mid-point), it follows that the overlap
between the two opposing brushes decreases both with increasing N (at fixed σg) and
with increasing σg (at fixed N). These trends are also in agreement with MD simulation
results [26], and can be quantified via the overlap parameter P given by Equation (20) (see
the discussion of Figure 2 below).

Moving next to the PMF between the two brushes, the upper panel of Figure 1b shows
DFT results for W(z) for 4 different chain lengths at the fixed grafting density σg = 0.125,
while the lower panel gives DFT results for W(z) for 4 different grafting densities at the
fixed grafted chain length N = 32. The upper panel shows that the attractive interaction
between the two brushes becomes weaker with increasing chain length (at fixed σg), while
the lower panel indicates the the attraction between the two brushes becomes stronger with
increasing grafting density (at fixed N). In addition, the equilibrium wall-wall separation
(corresponding to the minimum location of W(z)) increases monotonically both with N
and with σg, as one would expect [10].
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Figure 2. (a) Upper panel: overlap P defined via Equation (20) as a function of the grafted chain length N for two
monodisperse flexible brushes at equilibrium separation; grafting density is σg = 0.125. Solid line shows the present DFT
results, and symbols are from MD simulations [26]. Lower panel: DFT results for the (negative) minimum of the PMF
between two monodisperse flexible brushes as a function of the grafted chain length N; grafting density is σg = 0.125. (b)
Upper panel: overlap P defined via Equation (20) as a function of the grafting density σg for two monodisperse flexible
brushes at equilibrium separation; grafted chain length is N = 32. Solid line shows the present DFT results, and symbols are
from MD simulations [26]. Lower panel: DFT results for the (negative) minimum of the PMF between the two monodisperse
flexible brushes as a function of the grafting density σg; grafted chain length is N = 32.

The DFT results for both structural (overlap) and energetic (PMF) properties of
monodisperse flexible brushes and their dependence on the chain length and grafting
density are summarized in Figure 2, where a quantitative comparison with the correspond-
ing MD data [26] is also performed. In particular, the upper panel of Figure 2a shows the
MD [26] (symbols) and DFT (lines) results for the overlap P as a function of the grafted
chain length N; the grafting density is fixed at σg = 0.125. The overlap is computed at the
equilibrium separation between the two brushes z = H corresponding to the minimum
of the brush-brush PMF (see the upper panel of Figure 1b). One sees that DFT is in good
quantitative agreement with MD, both methods show that the overlap decreases mono-
tonically with the grafted chain length N, as one could already anticipate from the density
profiles shown in the upper panel of Figure 1a. The lower panel of Figure 2a shows the
(negative) minimum of the PMF between the two brushes as a function of the grafted chain
length N, -Wmin decreases monotonically with N, indicating that the attraction between
the two bushes becomes weaker as the chain length is increased (see the upper panel of
Figure 1b).

The upper panel of Figure 2b shows the MD [26] (symbols) and DFT (lines) results
for the overlap P as a function of the grafting density σg, the grafted chain length is fixed
at N = 32. DFT is again seen to be in good agreement with MD, both methods show
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that the overlap decreases monotonically with the grafting density, thereby quantifying
the qualitative trend seen in the density profiles shown in the lower panel of Figure 1a.
The lower panel of Figure 2b shows the (negative) minimum of the PMF between the
two brushes as a function of the grafting density, -Wmin increases monotonically with σg,
indicating that the attraction between the two bushes becomes stronger as the grafting
density is increased (see the lower panel of Figure 1b).

In summary, with increasing chain length at fixed grafting density (Figure 2a), both P
and −Wmin decrease, i.e., the amount of overlap directly correlates with the strength of the
attractive brush-brush interaction. At the same time, increasing the grafting density at fixed
N (Figure 2b) leads to decreasing P, while −Wmin increases. In other words, in the latter
case the amount of overlap anti-correlates with the strength of the attractive brush-brush
interaction.

4.2. Monodisperse Brush: Semiflexible Chains

Having considered fully flexible brushes, we next study the effect of varying the
grafted chain stiffness on the structural and energetic properties of monodisperse brushes.
To this end, we fix the grafting density at σg = 0.0625 and the grafted chain length at
N = 16, and vary its stiffness parameter κ. Representative DFT results for the monomer
density distribution of two opposing monodisperse semiflexible brushes (at equilibrium
separation H) are shown in Figure 3a. The upper panel of Figure 3a presents the results
for ρ(z) vs z/H for κ = 2, while the lower panel gives the results for stiffer chains with
κ = 10. Here ρ1(z) is the monomer density distribution of the brush grafted at the left wall
(zg1 = 0), and ρ2(z) is the (mirror-symmetric) monomer density distribution of the brush
grafted at the right wall (zg2 = H). The sum ρ1(z) + ρ2(z) and the product ρ1(z)ρ2(z) of the
two profiles are also shown. The width at half-maximum of the latter serves as a measure
of the thickness of the interpenetration region [61]. The latter quantity can be viewed as an
alternative to overlap P in characterizing the degree of interpenetration of the two brushes.
Both these measures show that the overlap is stronger in the lower panel compared to the
upper panel, indicating that the overlap between the brushes increases with increasing
chain stiffness (see also the upper panel of Figure 4 below). This trend is due to the fact
that the extension of the chains away from the grafting wall increases with their stiffness.
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Figure 3. (a) Upper panel: DFT results for the equilibrium monomer density distributions for two monodisperse semiflexible
brushes at equilibrium separation H vs z/H; grafting density is σg = 0.0625, grafted chain length is N = 16, and the
chain stiffness parameter is κ = 2. ρ1(z) is the monomer density distribution of the brush grafted at the left wall (zg1 = 0),
ρ2(z) is the monomer density distribution of the brush grafted at the right wall (zg2 = H). The sum ρ1(z) + ρ2(z) and the
product ρ1(z)ρ2(z) of the two profiles are also shown. Lower panel: same as the upper panel but for the chain stiffness
parameter κ = 10. (b) PMF between two monodisperse semiflexible brushes as a function of wall-wall separation at the
grafting density σg = 0.0625 and the grafted chain length N = 16 for five values of the grafted chain stiffness parameter κ,
as indicated.

Considering next the PMF between the two monodisperse semiflexible brushes,
Figure 3b shows the DFT results for W(z) for 5 different values of the chain stiffness
parameter at the fixed grafting density σg = 0.0625 and chain length N = 16. DFT results
show that the strength of the brush-brush attraction decreases with increasing chain stiff-
ness. This general trend is in general qualitative agreement with MD simulation results [37],
but no quantitative comparison between MD and DFT is possible due to the fact that MD
simulations were performed for spherical brushes under athermal conditions. One can
also note that the equilibrium wall-wall separation decreases slightly with increasing chain
stiffness, albeit the effect is rather weak.

The DFT results for both structural and energetic properties of monodisperse semi-
flexible brushes and their dependence on the chain stiffness are summarized in Figure 4,
with the upper panel showing the overlap P and the lower panel presenting the (negative)
PMF minimum -Wmin as a function of the chain stiffness parameter. As expected from
the trends seen in Figure 3, P increases and -Wmin decreases monotonically with κ, with
the former reaching saturation around κ = 10 (for longer chains one would expect the
saturation to occur at larger values of κ [62]). As in the case of Figure 2b, the amount of
overlap anticorrelates with the attraction strength between the two brushes.
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Figure 4. Upper panel: DFT results for the overlap P as a function of the grafted chain stiffness
parameter κ for two monodisperse semiflexible brushes at equilibrium separation H; grafting density
is σg = 0.0625 and grafted chain length is N = 16. Lower panel: DFT results for the (negative)
minimum of the PMF between two monodisperse semiflexible brushes as a function of the grafted
chain stiffness parameter κ.

To summarize the DFT results for monodisperse brushes, one can identify 3 control
parameters for tuning the brush-brush overlap and the attraction strength: the grafting
density, the grafted chain length, and the chain stiffness. On the one hand, the overlap
decreases monotonically with σg and N, but increases with κ. On the other hand, the
attraction strength decreases monotonically with N and κ, but increases with σg.

4.3. Bidisperse Brush: Flexible Chains

Motivated by the MD results presented in Ref. [26], we now consider bidisperse
flexible brushes. In order to perform a direct comparison between MD and DFT results, we
restrict our attention to the equimolar case studied by MD [26], whereby the mole fractions
of both components are equal to 0.5, and the two components only differ in their chain
lengths, N1 and N2 respectively.

Figure 5a shows the DFT results for the monomer density distributions of bidisperse
flexible brushes at equilibrium separation; the grafting density is fixed at σg = 0.125 and
three pairs of grafted chain lengths are considered: (N1 = 25, N2 = 16), (N1 = 81, N2 = 52),
and (N1 = 100, N2 = 64) (note that the ratio N1/N2 is kept constant at the same value as in
the MD study [26]). The upper panel of Figure 5a gives the density profiles of the longer
chains (ρ(1)(z) vs z/H), and the lower panel shows the density profiles of the shorter chains
(ρ(2)(z) vs z/H). In both panels, only monomer density distributions of the chains grafted
at the left wall are shown; the brush grafted at the right wall is identical and its density
profile is mirror-symmetric. Keeping this in mind, one sees that with increasing N1 and N2
the overlap between the two brushes decreases, in agreement with MD results [26] (see
also the discussion of Figure 6a below). In addition, for the shortest pair considered here
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(N1 = 25, N2 = 16), the density profiles of both components are rather similar (with the
longer one being more bell-shaped than the shorter one). At the same time, for the other
two pairs the shorter component is clearly localized closer to the grafting wall, while the
longer one is stretched away from it, again in agreement with simulations [26].
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Figure 5. (a) Upper panel: DFT results for the equilibrium monomer density distributions for equimolar bidisperse flexible
brushes at equilibrium separation H vs z/H; grafting density is σg = 0.125 and three pairs of grafted chain lengths are
considered: (N1 = 25, N2 = 16), (N1 = 81, N2 = 52), and (N1 = 100, N2 = 64). Only monomer density distributions of
the longer chains (length N1) grafted at the left wall are shown; the distributions of the chains grafted at the right wall
are mirror-symmetric (around the mid-point of the gap between the walls) with respect to the left-wall grafted chains.
Lower panel: same as the upper panel but for the shorter grafted chains (length N2). (b) Upper panel: DFT results for
the equilibrium monomer density distributions for equimolar bidisperse flexible brushes at equilibrium separation H vs
z/H; grafted chain lengths are (N1 = 81, N2 = 52) and three values of the grafting density are considered: σg = 0.03125,
σg = 0.0625, and σg = 0.125. Lower panel: same as the upper panel but for the shorter grafted chains (length N2). (c) Upper
panel: PMF between two equimolar bidisperse flexible brushes as a function of wall-wall separation at the grafting density
σg = 0.125 for four pairs of the grafted chain lengths (N1, N2), as indicated. Lower panel: PMF between two equimolar
bidisperse flexible brushes as a function of wall-wall separation for the grafted chain lengths (N1 = 81, N2 = 52) for four
values of the grafting density σg, as indicated.

Figure 5b shows the DFT results for the monomer density distributions of bidisperse
flexible brushes at equilibrium separation; the chain lengths are fixed at (N1 = 81, N2 = 52)
and three values of the grafting density are considered: σg = 0.03125, σg = 0.0625, and
σg = 0.125. The upper panel of Figure 5b gives ρ(1)(z) vs z/H for the longer chains and
the lower panel shows ρ(2)(z) vs z/H for the shorter chains. In both panels, only monomer
density distributions of the chains grafted at the left wall are shown; the brush grafted at
the right wall is identical and its density profile is mirror-symmetric. One sees that with
increasing grafting density the overlap between the two brushes decreases, in agreement
with MD results [26] (see also the discussion of Figure 6b below). Furthermore, the effect
of the grafting density on the density profiles and the brush overlap is seen to be much
stronger compared to the effect of the chain lengths (Figure 5a). In addition, increasing
σg results in the increased localization of the shorter chains at the grafting wall and the
stretching of the longer chains away from it. Once again, all the trends predicted by DFT
are in good agreement with the MD simulation data [26].

Moving next to the PMF between the two flexible bidisperse brushes, the upper
panel of Figure 5c shows DFT results for W(z) for 4 different pairs of chain lengths at the
fixed grafting density σg = 0.125, while the lower panel gives DFT results for W(z) for 4
different grafting densities at the fixed grafted chain lengths (N1 = 81, N2 = 52). Figure 5c
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shows that the attractive interaction between the two brushes becomes weaker (and the
equilibrium separation increases) both with increasing chain lengths at fixed σg and with
increasing grafting density at fixed chain lengths. This behavior can be contrasted with
monodisperse brushes, where the chain length and the grafting density have the opposite
effect on the brush-brush attraction strength (Figure 1b), while having the same effect on
the brush overlap (Figure 2).
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Figure 6. (a) Upper panel: overlap P defined via Equation (20) as a function of the longer grafted chain length N1 for two
equimolar bidisperse flexible brushes at equilibrium separation; grafting density is σg = 0.125, and the shorter grafted chain
length N2 is given by the integer part of the value 16N1/25. Solid line shows the present DFT results, and symbols are from
MD simulations [26]. Lower panel: DFT results for the (negative) minimum of the PMF between two equimolar bidisperse
flexible brushes as a function of the longer grafted chain length N1; grafting density is σg = 0.125, and the shorter grafted
chain length N2 is given by the integer part of the value 16N1/25. (b) Upper panel: overlap P defined via Equation (20) as a
function of the grafting density σg for two equimolar bidisperse flexible brushes at equilibrium separation; grafted chain
lengths are N1 = 81 and N1 = 52. Solid line shows the present DFT results, and symbols are from MD simulations [26].
Lower panel: DFT results for the (negative) minimum of the PMF between the two equimolar bidisperse flexible brushes as
a function of the grafting density σg; grafted chain lengths are N1 = 81 and N2 = 52.

The DFT results for both structural (overlap) and energetic (PMF well depth) proper-
ties of bidisperse flexible brushes and their dependence on the chain lengths and grafting
density are summarized in Figure 6, where a quantitative comparison with the correspond-
ing MD data [26] is also performed. In particular, the upper panel of Figure 6a shows the
MD [26] (symbols) and DFT (lines) results for the overlap P as a function of the longer
grafted chain length N1; the grafting density is fixed at σg = 0.125, and the shorter grafted
chain length N2 is given by the integer part of the value 16N1/25. The overlap is computed
at the equilibrium separation between the two brushes corresponding to the minimum of
the brush-brush PMF (see the upper panel of Figure 5c). One sees that DFT results are in
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good agreement with MD, both methods show that the overlap decreases monotonically
with the grafted chain length N1, as one could already anticipate from the density profiles
shown in Figure 5a. The lower panel of Figure 6a shows the (negative) minimum of the
PMF between the two brushes as a function of the longer grafted chain length N1, -Wmin
decreases monotonically with N1, indicating that the attraction between the two bushes
becomes weaker as the chain length is increased (see the upper panel of Figure 5c).

The upper panel of Figure 6b shows the MD [26] (symbols) and DFT (lines) results
for the overlap P as a function of the grafting density σg, the grafted chain lengths are
fixed at N1 = 81 and N2 = 52. DFT is again seen to be in good agreement with MD,
both methods show that the overlap decreases monotonically with the grafting density,
thereby quantifying the qualitative trend seen in the density profiles shown in the Figure 5b.
Furthermore, the decrease of P with σg is much stronger (a factor of 4 over the range of σg
studied here) compared to its decrease with N1 (a factor of 2). The lower panel of Figure 6b
shows the (negative) minimum of the PMF between the two brushes as a function of the
grafting density, -Wmin decreases monotonically with σg, indicating that the attraction
between the two bushes becomes weaker as the grafting density is increased (see the lower
panel of Figure 5c).

In summary, DFT predicts that both increasing the grafting density and increasing the
chain lengths diminish the overlap between two bidisperse flexible brushes, as well as the
strength of their attraction, which stands in contrast to the case of monodisperse brushes.

4.4. Bidisperse Brush: Semiflexible Chains

In this Section we study the effect of varying the grafted chain stiffness on the structural
and energetic properties of equimolar bidisperse brushes. Here we fix the grafting density
at σg = 0.0625 and the grafted chain lengths at (N1 = 25, N2 = 16), and simultaneously
vary the stiffness parameter of both chains, κ1 = κ2 = κ. Representative DFT results for the
monomer density distribution of two opposing bidisperse equimolar semiflexible brushes
(at the equilibrium separation H) are shown in Figure 7a. The upper panel of Figure 7a
presents the results for ρ(z) vs z/H for κ = 2, while the lower panel gives the results for
stiffer chains with κ = 10. Here ρ

(1)
1 (z) (ρ(2)1 (z)) is the monomer density distribution of

the longer (shorter) brush grafted at the left wall (zg1 = 0), while ρ
(1)
2 (z) (ρ(2)2 (z)) is the

mirror-symmetric monomer density distribution of the longer (shorter) brush grafted at
the right wall (zg2 = H). The sum ρ1(z) + ρ2(z) = ρ

(1)
1 (z) + ρ

(2)
1 (z) + ρ

(1)
2 (z) + ρ

(2)
2 (z) and

the product ρ1(z)ρ2(z) = (ρ
(1)
1 (z) + ρ

(2)
1 (z))(ρ(1)2 (z) + ρ

(2)
2 (z)) of the two total profiles are

also shown. As in the case of monodisperse semiflexible brushes, the increase in the chain
stiffness results in a more pronounced extension of the chains away from the grafting wall,
yielding a stronger overlap between the two brushes (see the discussion of Figure 8 below).
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Figure 7. (a) Upper panel: DFT results for the equilibrium monomer density distributions for two equimolar bidisperse
semiflexible brushes at the equilibrium separation; grafting density is σg = 0.0625, grafted chain lengths are N1 = 25 and

N2 = 16, and the chain stiffness parameter is κ = 2. ρ
(1)
1 (z) (ρ(2)1 (z)) is the monomer density distribution of the longer

(shorter) brush grafted at the left wall (zg1 = 0), ρ
(1)
2 (z) (ρ(2)2 (z)) is the monomer density distribution of the longer (shorter)

brush grafted at the right wall (zg2 = H). The sum ρ1(z) + ρ2(z) = ρ
(1)
1 (z) + ρ

(2)
1 (z) + ρ

(1)
2 (z) + ρ

(2)
2 (z) and the product

ρ1(z)ρ2(z) = (ρ
(1)
1 (z) + ρ

(2)
1 (z))(ρ(1)2 (z) + ρ

(2)
2 (z)) of the two total profiles are also shown. Lower panel: DFT results for

the equilibrium monomer density distributions for two monodisperse semiflexible brushes at the equilibrium separation;
grafting density is σg = 0.0625, grafted chain lengths are N1 = 25 and N2 = 16, and the chain stiffness parameter is κ = 10.
(b) PMF between two equimolar bidisperse semiflexible brushes as a function of wall-wall separation at the grafting density
σg = 0.125 and the grafted chain lengths N1 = 25 and N2 = 16 for five values of the grafted chain stiffness parameter κ,
as indicated.

Considering next the PMF between the two equimolar bidisperse semiflexible brushes,
Figure 7b shows the DFT results for W(z) for 5 different values of the chain stiffness
parameter at the fixed grafting density σg = 0.0625 and chain lengths N1 = 25 and N2 = 16.
DFT results show that the strength of the brush-brush attraction decreases with increasing
chain stiffness, similar to the monodisperse case. The minimum location of W(z) is largely
insensitive to the value of the stiffness parameter κ.
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Figure 8. Upper panel: DFT results for the overlap P as a function of the grafted chain stiffness
parameter κ for two equimolar bidisperse semiflexible brushes at equilibrium separation; grafting
density is σg = 0.0625 and grafted chain lengths are N1 = 25 and N2 = 16. Lower panel: DFT results
for the (negative) minimum of the PMF between two equimolar bidisperse semiflexible brushes as a
function of the grafted chain stiffness parameter κ; grafting density is σg = 0.0625 and grafted chain
lengths are N1 = 25 and N2 = 16.

The DFT results for both structural and energetic properties of equimolar bidisperse
semiflexible brushes and their dependence on the chain stiffness are summarized in
Figure 8, with the upper panel showing the overlap P and the lower panel presenting
the (negative) PMF minimum -Wmin as a function of the chain stiffness parameter. The
grafting density is fixed at σg = 0.0625 and grafted chain lengths are N1 = 25 and N2 = 16.
As expected from the trends seen in Figure 7, P increases and -Wmin decreases monoton-
ically with κ, with the former reaching saturation around κ = 10 Thus, the amount of
overlap anticorrelates with the attraction strength between the two bidisperse brushes,
similar to the monodisperse case (Figure 4).

To summarize the DFT results for bidisperse brushes, the overlap decreases mono-
tonically with σg and N, but increases with κ. On the other hand, the attraction strength
decreases monotonically with increasing σg, N, and κ. Among these three control param-
eters, the grafting density has the strongest effect both on the overlap and the attraction
strength between the two bidisperse brushes.

5. Conclusions

In this work we have applied the DFT method to study structural and energetic
properties of two opposing solvent-free polymer brushes. The three control parameters
that we have considered are the grafting density, the grafted chain length, and its stiffness
parameter. In order to make a connection with the existing MD simulation data [26],
both monodisperse and equimolar bidisperse brushes have been studied. Starting with
monodisperse brushes, DFT results show that the monomer density profiles become more
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localized at the grafting wall, both with increasing N (at fixed σg) and with increasing σg
(at fixed N), in agreement with MD simulation results [26]. Concomitantly, the overlap
between the two brushes diminishes, and the DFT results for the overlap parameter P
are in good quantitative agreement with the corresponding MD data [26]. Increasing the
grafted chain stiffness results in a more pronounced extension of the chains away from
the grafting wall, producing a stronger overlap between the two brushes. The DFT results
for the PMF between the two monodisperse rushes show that their attraction strength
decreases with increasing N and κ, but increases with σg.

Moving next to bidisperse brushes, DFT again properly reproduces the trends seen in
the simulated [26] density profiles. In particular, either increasing both chain lengths (at
fixed σg) or increasing the grafting density (at fixed N1, N2) results in a more pronounced
localization of the shorter chains at the grafting wall and the stretching of the longer chains
away from it. In both cases, the overlap between the two brushes diminishes (with DFT
and MD results for P in quantitative agreement) and their attraction becomes weaker. In
terms of the two control parameters, the grafting density has a significantly stronger effect
on both the overlap and the PMF well depth compared to the grafted chain lengths. The
effect of the chain stiffness on the structure and energetics of the bidisperse brushes is
similar to the monodisperse case, with the overlap increasing and the attraction strength
decreasing for stiffer chains.

In the present work, we have focused exclusively on the equilibrium structural and
energetic aspects of the two interacting brushes. In addition, it would be of interest to study
various dynamic observables that were measured both in experiments [20] and in MD
simulations [26]. This goal can be achieved either by developing a time-dependent DFT [63]
or by combining the DFT framework with the mode-coupling theory [64]. Furthermore, the
present work was limited to flat brushes, while it is equally important to study solvent-free
polymer-grafted nanoparticles, whose core radius is similar to the grafted chain gyration
radius [25]. These projects will be the subject of future research.

Another important issue in the field of polymer nanocomposites concerns their glass
transition temperature [65]. For example, the proper functioning of devices based on shape
memory materials may require a lower glass transition temperature, while temperature
sensors might need a higher glass transition temperature. Accordingly, it would be of inter-
est to apply DFT- and MCT-based methodology to study the effects of brush bidispersity
and chain stiffness on the glass transition temperature of polymer nanocomposites.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The author is grateful to Sanat Kumar and Sabin Adhikari for sending their
simulation data.

Conflicts of Interest: There are no conflicts of interest to declare.

References
1. Napper, D.H. Polymeric Stabilization of Colloid Dispersions; Academic: London, UK, 1983.
2. Advincula, R.C.; Brittain, W.J.; Caster, K.C.; Rüehe, J. (Eds.) Polymer Brushes; Wiley-VCH: Weinheim, Germany, 2004.
3. Kim, D.; Archer, L.A. Nanoscale Organic-Inorganic Hybrid Lubricants. Langmuir 2011, 27, 3083–3094. [CrossRef] [PubMed]
4. Fleer, G.J.; Stuart, M.A.C.; Scheutjens, J.M.H.M.; Cosgrove, T.; Vincent, B. Polymers at Interfaces; Chapman and Hall: London, UK,

1993.
5. Akcora, P.; Liu, H.; Kumar, S.K.; Moll, J.; Li, Y.; Benicewicz, B.C.; Schadler, L.S.; Acehan, D.; Panagiotopoulos, A.Z.; Pryamitsyn,

V.; et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359. [CrossRef] [PubMed]
6. McEwan, M.E.; Egorov, S.A.; Ilavsky, J.; Green, D.L.; Yang, Y. Mechanical reinforcement of polymer nanocomposites: theory and

ultra-small angle X-ray scattering (USAXS) studies. Soft Matter 2011, 7, 2725–2733. [CrossRef]
7. Ganesan, V.; Jayaraman, A. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer

nanocomposites. Soft Matter 2014, 10, 13–38. [CrossRef]
8. Dimitrov, D.I.; Milchev, A.; Binder, K. Polymer brushes in solvents of variable quality: Molecular dynamics simulations using

explicit solvent. J. Chem. Phys. 2007, 127, 084905. [CrossRef]

http://doi.org/10.1021/la104937t
http://www.ncbi.nlm.nih.gov/pubmed/21280594
http://dx.doi.org/10.1038/nmat2404
http://www.ncbi.nlm.nih.gov/pubmed/19305399
http://dx.doi.org/10.1039/c0sm00393j
http://dx.doi.org/10.1039/C3SM51864G
http://dx.doi.org/10.1063/1.2768525


Polymers 2021, 13, 2296 17 of 18

9. Xie, F.; Woodward, C.E.; Forsman, J. Theoretical Predictions of Temperature-Induced Gelation in Aqueous Dispersions Containing
PEO-Grafted Particles. J. Phys. Chem. B 2016, 120, 3969–3977. [CrossRef]

10. Egorov, S.A.; Binder, K. Effect of solvent quality on the dispersibilty of polymer-grafted spherical nanoparticles in polymer
solutions. J. Chem. Phys. 2012, 137, 094901. [CrossRef]

11. Egorov, S.A. Insertion of nanoparticles into polymer brush under variable solvent conditions. J. Chem. Phys. 2012, 137, 134905.
[CrossRef] [PubMed]

12. LoVerso, F.; Egorov, S.A.; Binder, K. Interactions between brush-coated spherical nanoparticles: Effect of solvent quality.
Macromolecules 2012, 45, 8892–8902. [CrossRef]

13. Martin, T.B.; Jayaraman, A. Identifying the Ideal Characteristics of the Grafted Polymer Chain Length Distribution for Maximizing
Dispersion of Polymer Grafted Nanoparticles in a Polymer Matrix. Macromolecules 2013, 46, 9144–9150. [CrossRef]

14. Kulshreshtha, A.; Jayaraman, A. Dispersion and Aggregation of Polymer Grafted Particles in Polymer Nanocomposites Driven
by the Hardness and Size of the Grafted Layer Tuned by Attractive Graft-Matrix Interactions. Macromolecules 2020, 53, 1302–1313.
[CrossRef]

15. Yu, H.Y.; Koch, D.L. Structure of Solvent-Free Nanoparticle-Organic Hybrid Materials. Langmuir 2010, 26, 16801–16811. [CrossRef]
16. Liu, M.H.; Li, S.; Fang, Y.; Chen, Z.D.; Alyas, M.; Liu, J.; Zeng, X.F.; Zhang, L.Q. Mechanical and Self-Healing Behavior of

Matrix-Free Polymer Nanocomposites Constructed via Grafted Graphene Nanosheets. Langmuir 2020, 36, 7427–7438. [CrossRef]
[PubMed]

17. Lin, Y.L.; Chiou, C.S.; Kumar, S.K.; Lin, J.J.; Sheng, Y.J.; Tsao, H.K. Self-Assembled Superstructures of polymer-grafted
nanoparticles: Effects of particle shape and matrix polymer. J. Phys. Chem. C 2011, 115, 5566. [CrossRef]

18. Agrawal, A.; Choudhury, S.; Archer, L.A. A highly conductive, non-flammable polymer-nanoparticle hybrid electrolyte. RSC
Adv. 2015, 5, 20800–20809. [CrossRef]

19. Li, L.P.; Yang, T.H.; Wang, K.; Fan, H.W.; Houm, C.Y.; Zhang, Q.H.; Li, Y.G.; Yu, H.; Wang, H.Z. Mechanical design of brush
coating technology for the alignment of one-dimension nanomaterials. J. Coll. Interface Sci. 2021, 583, 188–195. [CrossRef]
[PubMed]

20. Agarwal, P.; Kim, S.A.; Archer, L.A. Crowded, Confined, and Frustrated: Dynamics of Molecules Tethered to Nanoparticles.
Phys. Rev. Lett. 2012, 109, 258301. [CrossRef]

21. Yu, H.Y.; Srivastava, S.; Archer, L.A.; Koch, D.L. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials:
density-functional theory and small angle X-ray scattering. Soft Matter 2014, 10, 9120–9135. [CrossRef]

22. Agrawal, A.; Wenning, B.M.; Choudhury, S.; Archer, L.A. Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle
Blends. Langmuir 2016, 32, 8698–8708. [CrossRef]

23. Yu, H.Y.; Koch, D.L. Self-diffusion and linear viscoelasticity of solvent-free nanoparticle-organic hybrid materials. J. Rheol. 2014,
58, 369–395. [CrossRef]

24. Riest, J.; Athanasopoulou, L.; Egorov, S.A.; Likos, C.N.; Ziherl, P. Elasticity of polymeric nanocolloidal particles. Sci. Rep. 2015,
5, 15854. [CrossRef]

25. Midya, J.; Rubinstein, M.; Kumar, S.K.; Nikoubashman, A. Structure of Polymer-Grafted Nnaoparticle Melts. ACS Nano 2020,
14, 15505–15516. [CrossRef]

26. Chang, Y.Y.; Yu, H.Y. Structural and Dynamical Coupling in Solvent-Free Polymer Brushes Elucidated by Molecular Dynamics
Simulations. Langmuir 2021, 37, 3331–3345. [CrossRef]

27. Li, Y.; Tao, P.; Viswanath, A.; Benicewicz, B.C.; Schadler, L.S. Bimodal Surface Ligand Engineering: The Key to Tunable
Nanocomposites. Langmuir 2013, 29, 1211–1220. [CrossRef] [PubMed]

28. Nair, N.; Wentzel, N.; Jayaraman, A. Effect of bidispersity in grafted chain length on grafted chain conformations and potential
of mean force between polymer grafted nanoparticles in a homopolymer matrix. J. Chem. Phys. 2011, 198, 194906. [CrossRef]
[PubMed]

29. Lin, E.K.; Gast, A.P. Self-consistent field calculations of interactions between chains tethered to spherical interfaces. Macromolecules
1996, 29, 390. [CrossRef]

30. Sgouros, A.P.; Revelas, C.J.; Lakkas, A.T.; Theodorou, D.N. Potential of Mean Force between Bare or Grafted Silica/Polystyrene
Surfaces from Self-Consistent Field Theory. Polymers 2021, 13, 1197. [CrossRef] [PubMed]

31. Jayaraman, A.; Schweizer, K.S. Effective Interactions, Structure, and Phase Behavior of Lightly Tethered Nanoparticles in Polymer
Melts. Macromolecules 2008, 41, 9430–9438. [CrossRef]

32. Jayaraman, A.; Schweizer, K.S. Effective interactions and self-assembly of hybrid polymer-grafted nanoparticles in a homopolymer
matrix. Macromolecules 2009, 42, 8423–8434. [CrossRef]

33. Rabani, E.; Egorov, S.A. Solvophobic and solvophilic effects on the potential of mean force between two nanoparticles in binary
mixtures. Nanoletters 2002, 2, 69. [CrossRef]

34. Rabani, E.; Egorov, S.A. Integral equation theory for the interactions between passivated nanocrystals in supercritical fluids:
Solvophobic and solvophilic cases. J. Phys. Chem. B 2002, 106, 6771. [CrossRef]

35. Patel, N.; Egorov, S.A. Dispersing nanotubes with surfactants: A microscopic statistical mechanical analysis. J. Am. Chem. Soc.
2005, 127, 14124–14125. [CrossRef]

36. Tai, C.H.; Pan, G.T.; Yu, H.Y. Entropic Effects in Solvent-Free Bidisperse Polymer Brushes Investigated Using Density Functional
Theories. Langmuir 2019, 35, 16835–16849. [CrossRef]

http://dx.doi.org/10.1021/acs.jpcb.6b01419
http://dx.doi.org/10.1063/1.4747196
http://dx.doi.org/10.1063/1.4757017
http://www.ncbi.nlm.nih.gov/pubmed/23039611
http://dx.doi.org/10.1021/ma301651z
http://dx.doi.org/10.1021/ma401763y
http://dx.doi.org/10.1021/acs.macromol.9b02587
http://dx.doi.org/10.1021/la102815r
http://dx.doi.org/10.1021/acs.langmuir.0c00971
http://www.ncbi.nlm.nih.gov/pubmed/32508099
http://dx.doi.org/10.1021/jp112088x
http://dx.doi.org/10.1039/C5RA01031D
http://dx.doi.org/10.1016/j.jcis.2020.09.050
http://www.ncbi.nlm.nih.gov/pubmed/33002691
http://dx.doi.org/10.1103/PhysRevLett.109.258301
http://dx.doi.org/10.1039/C4SM01722F
http://dx.doi.org/10.1021/acs.langmuir.6b01814
http://dx.doi.org/10.1122/1.4862316
http://dx.doi.org/10.1038/srep15854
http://dx.doi.org/10.1021/acsnano.0c06134
http://dx.doi.org/10.1021/acs.langmuir.0c03422
http://dx.doi.org/10.1021/la3036192
http://www.ncbi.nlm.nih.gov/pubmed/23092225
http://dx.doi.org/10.1063/1.3590275
http://www.ncbi.nlm.nih.gov/pubmed/21599087
http://dx.doi.org/10.1021/ma9505282
http://dx.doi.org/10.3390/polym13081197
http://www.ncbi.nlm.nih.gov/pubmed/33917245
http://dx.doi.org/10.1021/ma801722m
http://dx.doi.org/10.1021/ma901631x
http://dx.doi.org/10.1021/nl015645r
http://dx.doi.org/10.1021/jp025693f
http://dx.doi.org/10.1021/ja0530570
http://dx.doi.org/10.1021/acs.langmuir.9b02873


Polymers 2021, 13, 2296 18 of 18

37. Palli, B.; Padmanabhan, V. Chain flexibility for tuning effective interactions in blends of polymers and polymer-grafted
nanoparticles. Soft Matter 2014, 10, 6777–6782. [CrossRef]

38. Wang, Z.X.; Zheng, Z.J.; Liu, J.; Wu, Y.P.; Zhang, L.Q. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with
Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility. Polymers 2016, 8, 270. [CrossRef] [PubMed]

39. Egorov, S.A.; Hsu, H.P.; Milchev, A.; Binder, K. Semiflexible Polymer Brushes and Brush-Mushroom Crossover. Soft Matter 2015,
11, 2604–2616. [CrossRef] [PubMed]

40. Egorov, S.A.; Milchev, A.; Binder, K. Anomalous fluctuations of nematic order in solutions of semiflexible polymers. Phys. Rev. Lett.
2016, 116, 187801. [CrossRef]

41. Egorov, S.A.; Milchev, A.; Virnau, P.; Binder, K. A New Insight into the Isotropic—Nematic phase transition in lyotropic solutions
of semiflexible polymers: Density-Functional Theory tested by Molecular Dynamics. Soft Matter 2016, 12, 4944–4959. [CrossRef]

42. Hsu, H.P.; Paul, W.; Binder, K. Standard Definitions of Persistence Length Do Not Describe the Local “Intrinsic” Stiffness of Real
Polymer Chains. Macromolecules 2010, 43, 3094–3102. [CrossRef]

43. Evans, R. Nature of the liquid-vapor interface and other topics in the statistical-mechanics of nonuniform, classical fluids. Adv.
Phys. 1979, 28, 143–200. [CrossRef]

44. Evans, R. Density functionals in the theory of nonuniform fluids. In Fundamentals of Inhomogeneous Fluids; Henderson, D., Ed.;
Dekker: New York, NY, USA, 1992; Chapter 3, p. 85.

45. Egorov, S.A. Effect of repulsive and attractive interactions on depletion forces in colloidal suspensions: A density functional
theory treatment. Phys. Rev. E 2004, 70, 031402. [CrossRef] [PubMed]

46. Chubak, I.; Likos, C.N.; Egorov, S.A. Multiscale Approaches for Confined Ring Polymer Solutions. J. Phys. Chem. B 2021,
125, 4910–4923. [CrossRef] [PubMed]

47. Woodward, C.E. A density functional theory for polymers: Application to hard chain-hard sphere mixtures in slitlike pores.
J. Chem. Phys. 1991, 94, 3183. [CrossRef]

48. Egorov, S.A. Interactions between nanoparticles in supercritical fluids: From repulsion to attraction. Phys. Rev. E 2005,
72, 010401(R). [CrossRef]

49. Egorov, S.A. Interactions between polymer brushes in solvents of variable quality: A density functional theory study. J. Chem. Phys.
2008, 129, 064901. [CrossRef] [PubMed]

50. Wertheim, M.S. Thermodynamic perturbation theory of polymerization. J. Chem. Phys. 1987, 87, 7323. [CrossRef]
51. Roth, R. Fundamental measure theory for hard-sphere mixtures: a review. J. Phys. Cond. Matt. 2010, 22, 063102. [CrossRef]
52. Turesson, M.; Forsman, J.; Akesson, T. Simulations and density functional calculations of surface forces in the presence of

semiflexible polymers. Phys. Rev. E 2007, 76, 021801. [CrossRef]
53. Müller, M.; MacDowell, L.G.; Yethiraj, A. Short chains at surfaces and interfaces: A quantitative comparison between density-

functional theories and Monte-Carlo simulations. J. Chem. Phys. 2003, 118, 2929. [CrossRef]
54. Patel, N.; Egorov, S.A. Interactions between nanocolloidal particles in polymer solutions: Effect of attractive interactions.

J. Chem. Phys. 2005, 123, 144916. [CrossRef]
55. Varga, S.; Boda, D.; Henderson, D.; Sokolowski, S. Density functional theory and the capillary evaporation of a liquid in a slit. J.

Coll. Interface Sci. 2000, 227, 223. [CrossRef]
56. Egorov, S.A.; Milchev, A.; Virnau, P.; Binder, K. Semiflexible polymers under good solvent conditions interacting with repulsive

walls. J. Chem. Phys. 2016, 144, 174902. [CrossRef]
57. Striolo, A.; Egorov, S.A. Interactions between Sterically Stabilized Spherical Colloidal Particles: Implicit and Explicit Solvent.

J. Chem. Phys. 2007, 126, 014902. [CrossRef] [PubMed]
58. Egorov, S.A.; Milchev, A.; Nikoubashman, A.; Binder, K. Phase Separation and Nematic Order in Lyotropic Solutions: Two Types

of Polymers with Different Stiffnesses in a Common Solvent. J. Phys. Chem. B 2021, 125, 956–969. [CrossRef] [PubMed]
59. Egorov, S.A.; Binder, K. When does Wenzel’s extension of Young’s equation for the contact angle of droplets apply? A density

functional study. J. Chem. Phys. 2020, 152, 194707. [CrossRef] [PubMed]
60. Egorov, S.A.; Stephens, M.D.; Skinner, J.L. Absorption line shapes and solvation dynamics of CH3I in supercritical Ar. J. Chem. Phys.

1997, 107, 10485. [CrossRef]
61. Adhikari, S.; Nikoubashman, A.; Leibler, L.; Rubinstein, M.; Midya, J.; Kumar, S.K. Gas Transport in Interacting Planar Brushes.

ACS Polym. Au 2021, in press. [CrossRef]
62. Milchev, A.; Egorov, S.A.; Nikoubashman, A.; Binder, K. Nematic order in solutions of semiflexible polymers: Hairpins, elastic

constants, and the nematic-smectic transition. J. Chem. Phys. 2018, 149, 174909. [CrossRef]
63. Milchev, A.; Egorov, S.A.; Binder, K. Absorption/expulsion of oligomers and linear macromolecules in a polymer brush.

J. Chem. Phys. 2010, 132, 184905. [CrossRef]
64. Chen, R.J.; Poling-Skutvik, R.; Howard, M.P.; Nikoubashman, A.; Egorov, S.A.; Conrad, J.C.; Palmer, J.C. Influence of polymer

flexibility on nanoparticle dynamics in semidilute solutions. Soft Matter 2019, 15, 1260–1268. [CrossRef]
65. Lu, H.B.; Huang, W.M. On the origin of the Vogel-Fulcher-Tammann law in the thermo-responsive shape memory effect of

amorphous polymers. Smart Mater. Struct. 2013, 22, 105021. [CrossRef]

http://dx.doi.org/10.1039/C4SM00991F
http://dx.doi.org/10.3390/polym8090270
http://www.ncbi.nlm.nih.gov/pubmed/30974590
http://dx.doi.org/10.1039/C4SM02862G
http://www.ncbi.nlm.nih.gov/pubmed/25687784
http://dx.doi.org/10.1103/PhysRevLett.116.187801
http://dx.doi.org/10.1039/C6SM00778C
http://dx.doi.org/10.1021/ma902715e
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1103/PhysRevE.70.031402
http://www.ncbi.nlm.nih.gov/pubmed/15524521
http://dx.doi.org/10.1021/acs.jpcb.1c01953
http://www.ncbi.nlm.nih.gov/pubmed/33938750
http://dx.doi.org/10.1063/1.459787
http://dx.doi.org/10.1103/PhysRevE.72.010401
http://dx.doi.org/10.1063/1.2968545
http://www.ncbi.nlm.nih.gov/pubmed/18715103
http://dx.doi.org/10.1063/1.453326
http://dx.doi.org/10.1088/0953-8984/22/6/063102
http://dx.doi.org/10.1103/PhysRevE.76.021801
http://dx.doi.org/10.1063/1.1535893
http://dx.doi.org/10.1063/1.2049275
http://dx.doi.org/10.1006/jcis.2000.6891
http://dx.doi.org/10.1063/1.4947254
http://dx.doi.org/10.1063/1.2409710
http://www.ncbi.nlm.nih.gov/pubmed/17212514
http://dx.doi.org/10.1021/acs.jpcb.0c10411
http://www.ncbi.nlm.nih.gov/pubmed/33440121
http://dx.doi.org/10.1063/5.0005537
http://www.ncbi.nlm.nih.gov/pubmed/33687230
http://dx.doi.org/10.1063/1.474212
http://dx.doi.org/10.1021/acspolymersau.1c00006
http://dx.doi.org/10.1063/1.5049630
http://dx.doi.org/10.1063/1.3414996
http://dx.doi.org/10.1039/C8SM01834K
http://dx.doi.org/10.1088/0964-1726/22/10/105021

	Introduction
	Microscopic Model
	Density Functional Theory
	Results
	Monodisperse Brush: Flexible Chains
	Monodisperse Brush: Semiflexible Chains
	Bidisperse Brush: Flexible Chains
	Bidisperse Brush: Semiflexible Chains

	Conclusions
	References

