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Abstract: New copolymers based on vinylidene fluoride (VDF) and 2,3,3,3-tetrafluoroprop-1-ene
(1234yf) were synthesized by organometallic-mediated radical copolymerization (OMRcP) using
the combination of bis(tert-butylcyclohexyl) peroxydicarbonate initiator and bis(acetylacetonato)cob-
alt(II), (Co(acac)2) as a controlling agent. Kinetics studies of the copolymerization of the fluoroalkenes
copolymers were monitored by GPC and 19F NMR with molar masses up to 12,200 g/mol and
dispersities (Ð) ranging from 1.33 to 1.47. Such an OMRcP behaves as a controlled copolymerization,
evidenced by the molar mass of the resulting copolymer-monomer conversion linear relationship.
The reactivity ratios, ri, of both comonomers were determined by using the Fineman-Ross and Kelen-
Tüdos fitting model leading to rVDF = 0.384 ± 0.013 and r1234yf = 2.147 ± 0.129 at 60 ◦C, showing that
a lower reactivity of VDF integrated in the copolymer to a greater extent leads to the production of
gradient or pseudo-diblock copolymers. In addition, the Q (0.03) and e (0.06 and 0.94) parameters
were assessed, as well as the dyad statistic distributions and mean square sequence lengths of PVDF
and P1234yf.

Keywords: 3,3,3-tetrafluoroprop-1-ene; cobalt acetylacetonate; controlled radical polymerization;
kinetics of copolymerization; organometallic radical copolymerization; RDRP; reactivity ratios;
vinylidene fluoride

1. Introduction

Fluoropolymers are outstanding specialty polymers which exhibit remarkable prop-
erties for High Tech applications [1–4]. Most fluorinated homopolymers display a high
crystallinity rate (higher than 95% for PTFE) that makes them insoluble in many common
organic solvents and further induces energetic processing costs to melt or sinter them [5].
Thus, copolymerizing fluoroalkenes overcome these limitations while also enabling better
solution characterization. In fact, copolymers of vinylidene fluoride (VDF) have led to
many studies and patents [6–8]. Among all VDF comonomers, 2,3,3,3-trifluoropropene,
HFO-1234yf (CF3CF=CH2) is a valuable example of HFO class because it has a low global
warming potential (GWP100yrs < 1), a Montreal Protocol-regulated substance with high
CO2-eq emissions, used in mobile air conditioning [9–11]. Indeed, a few radical copoly-
merizations of VDF with 1234yf have been reported, either by conventional radical copoly-
merization [12–14] or under reversible deactivation radical copolymerizations (RDRP),
either by iodine transfer copolymerization [15] or RAFT [16]. However, to the best of
our knowledge, although VDF has been successfully polymerized by cobalt-mediated
radical polymerization (CMRP) [17,18], and although that technique can be well-applied on
the copolymerization of vinyl acetate (VAc) [19], no study has been achieved on the CMR
copolymerization of VDF with 1234yf. Wang et al. [20] reported the CMR copolymer-
ization of chlorotrifluoroethylene (CTFE) with VAc initiated by AIBN in the presence of
bis(acetylacetonato)cobalt(II), Co(acac)2, as a controlling agent. Though both molar masses
and molar compositions of the resulting copolymers could be “controlled”, Ð values of
the resulting copolymers were high (~1.57). Hence, the objective of this present study
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aims at copolymerizing VDF with 1234yf in controlled conditions by simply using a perox-
ycarbonate initiator and Co(acac)2 as a mediated compound to favor the control of such
a reaction. Recently, the current authors have investigated and optimized the polymeriza-
tion conditions of OMRP of VDF by redox initiation, initiated by bis(tert-butylcyclohexyl)
peroxydicarbonate (P16) and Co(acac)2 as a controlling agent [17]. All polymerizations
were carried out in dimethyl carbonate (DMC), a suitable solvent for PVDF oligomers that
also exhibits fast rate of VDF polymerization [21]. By applying the same conditions, we
investigated the copolymerization of VDF with 1234yf (Scheme 1). The results indicate that
the process has the features of a controlled radical polymerization.
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Scheme 1. Preparation of P(VDF-co-1234yf) copolymers by OMRP mediated by Co(acac)2 and initiated by bis(tert-
butylcyclohexyl) peroxydicarbonate (P16).

2. Results and Discussion
Copolymerization of VDF with 1234yf

Recently, we reported that VDF could be homopolymerized by OMRP by redox initia-
tion using the combination of P16 and Co(acac)2. The best control of the polymerization
was found under optimized conditions ([P16]0/[Co(acac)2]0 = 2/1, T = 60 ◦C), leading to
PVDF homopolymers with low dispersities (Ð < 1.35) [17]. Based on similar conditions,
the copolymerization of VDF with 1234yf was performed, as illustrated by Scheme 1.

In order to get a deeper insight into the copolymerization of VDF with 1234yf, a kinetic
study was performed covering the whole conversion of polymerization. Therefore, single-
point experiments (ranging from 0.25 h to 16 h) were carried out. All copolymerizations
were conducted under similar conditions ([VDF]0/[1234yf]0/[P16]0/[Co(acac)2]0 = 80/20/2/1
at 60 ◦C in DMC) and were monitored by 19F NMR (Figure 1) and GPC measurements
equipped with a refractive index detector (Figure 2a). At this point, it should be stressed
that in order to prevent unfavorable chain terminations, all polymerizations were quenched
by TEMPO. According to the literature, TEMPO plays the role of a radical scavenger by
displacing the covalently bonded Co(acac)2 moiety from the propagating active chains [22].
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Figure 1. Stack of 19F NMR spectra recorded at 25 ◦C in (CD3)2CO of P(VDF-co-1234yf) copolymers at different polymeriza-
tion times.

The GPC chromatograms of the synthesized copolymers exhibited negative refractive
index (nD) signals since the nD increment of PVDF (and probably poly(1234yf)) in DMF
is negative [23–25]. Their profile displayed unimodal distributions showing no sign of
coupling reactions and they significantly shifted toward lower elution times throughout
the polymerization. Figure 2c illustrates the evolution of Mn and Ð versus monomer
conversion where the linear relationship between molar mass and conversion evidences
that the chain growth has a controlled behavior. At the same time, dispersities increased
progressively from 1.33 to 1.47.

The semilogarithmic kinetic plot exhibited two different regimes (Figure 2b). Initially,
a fast polymerization was observed without any sign of induction period which is expected
for a redox initiating system [26]. The copolymerization proceeded at a fast rate for 1 h, then
it slowly decreased until it terminated after 8 h where the conversion reached 33%. Similar
polymerization kinetics were found for homopolymerization of VDF by OMRP performed
under the same conditions, where the change of polymerization rate was retarded after 2 h
probably due to limited solubility of PVDF in DMC at 60 ◦C [17,18], as well as in RAFT
polymerization of VDF [27].

By means of 19F NMR spectroscopy and based on previously reported studies, it
was possible to thoroughly characterize the P(VDF-co-1234yf) copolymers synthesized by
OMRcP after quenching with TEMPO and purification.

The 19F NMR spectrum of P(VDF-co-1234yf) copolymers terminated at 8 h (Figure 3,
Table 1, Entry 8) clearly displays a number of characteristic signals attributed to both
comonomers: (i) the characteristic peaks ranging from −90.6 to −95.4 ppm correspond
to the normal or Head-to-Tail (H-T) VDF-VDF dyads (-CH2-CF2-CH2-CF2-) in the PVDF
chains, while those at −114.6 and −116.9 ppm are attributed to the reverse or Head-to-
Head (H-H) VDF-VDF dyads (-CH2-CF2-CF2-CH2-) [6,7,23,25]; (ii) signals from −95.4 to
−92.7 ppm are assigned to CH2-CF2-CH2-CF(CF3)-; (iii) the trifluoromethyl and tertiary
fluorine groups of 1234yf in the -CH2-CF2-CH2-CF(CF3)- dyads of the copolymer are
assigned from −78 to −82 ppm and in the −164 to −169 ppm range, respectively; (iv) and
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finally, closer inspection in regime between from −66 to −76 ppm revealed the presence of
a series of peaks which could be attributed to fluorine groups of VDF or 1234yf adjacent to
TEMPO end groups [17,18].
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Figure 2. Plots of (a) GPC eluograms for the VDF/1234yf copolymerization via OMRcP,
(b) ln([M]0/[M]) vs. polymerization time, and (c) evolution of Mn and Ð vs. the comonomer
conversions. Conditions [VDF]0/[1234yf] 0/[P16]0/[Co(acac)2]0 = 80/20/2/1 at T = 60 ◦C.
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Figure 3. 19F NMR spectrum recorded in (CD3)2CO of P(VDF-co-1234yf) copolymer synthesized via OMRP at 60 ◦C (Table 1,
Entry 8).

Table 1. Results on the kinetics of the copolymerization of VDF with 1234yf via OMRP. Conditions
[VDF]0/[1234yf]0/[P16]0/[Co(acac)2]0 = 80/20/2/1 at T = 60 ◦C.

Entry Polymerization Time (h) Conv. (%) a Mn (g/mol) b Ð b

1 0.25 12 6500 1.33
2 0.5 13 6800 1.16
3 0.75 15 7700 1.32
4 1 18 8600 1.34
5 2 26 10,300 1.29
6 4 27 11,000 1.36
7 6 30 11,500 1.39
8 8 33 12,200 1.47

a The conversion was calculated gravimetrically, b number of average molar mass and dispersity of the copolymers
measured by GPC relative to poly(methyl methacrylate) standards in DMF at 40 ◦C.

Additionally, the monomer reactivity ratios of the copolymers prepared by OMRcP
were determined via the correlation of the copolymer-monomer feed composition relation-
ship. Therefore, a series of seven P(VDF-co-1234yf) copolymers was carried out by OMRcP
from initial [VDF]0/[1234yf]0 molar ratios ranging from 90/10 to 16/84 in DMC at 60 ◦C
using a predetermined amount of P16 and Co(acac2) of which the molar ratio was always
maintained at 2/1. The copolymer conversion was limited to less than 10–15% to minimize
the drift of copolymer formation. The VDF molar fraction contained in the copolymer was
assessed from 19F-NMR spectra based on Equation (1) (Figure 4, Table 2).
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tions were stopped at low monomer conversion (<10%).

Table 2. Compositions of the feed (f, mol fraction) and composition (F, mol fraction) in the P(VDF-co-
1234yf) copolymer.

fVDF f1234yf FVDF F1234yf

90 10 79 21
79 21 62 38
74 26 57 43
57 43 38 62
43 57 14 86
23 77 8 92
16 84 1 99

It is obvious from the above analysis that the mole fraction of VDF in the copolymers
is lower than in the feed (fVDF > FVDF). This result clearly indicates that there is a significant
difference in the reactivity ratios between the fluoromonomers. The reactivity ratios of
VDF and 1234yf were determined by applying the Fineman-Ross [28] (Figure 5a) and
Kelen-Tüdös [29] (Figure 5b) approaches. It is clear that regardless of the method chosen
to estimate such parameters, the obtained data is rather similar in each case (Table 3).
Specifically, the reactivity ratios are equal to rvdf = 0.384 ± 0.013, r1234yf = 2.147 ± 0.129 at
60 ◦C. As can be concluded from the calculations, the reactivity ratio of 1234yf is, in every
case, significantly higher than that of VDF. The latter signifies that VDF propagation is
not preferred in contrast to VDF and 1234yf cross-propagation while on the other hand,
1234yf prefers to undergo a homopolymerization rather than a copolymerization. Addi-
tionally, the product of the reactivity ratios for the copolymerization of VDF with 1234yf
(rvdf×r1234yf) = 0.8) is close to 1, indicating a slight deviation from random polymerization
kinetics and the formation of gradient copolymers of P(VDF-co-1234yf) copolymers. These
results are in agreement with those of the literature in previous studies on P(VDF-co-1234yf)
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copolymers synthesized by iodine transfer polymerization and free radical polymerization
where VDF is frequently reported as a less reactive monomer in copolymerization proce-
dures [13,15], except with hexafluoropropylene [30] and perfluoromethylvinyl ether [31].
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Table 3. Reactivity ratios of VDF and 1234yf determined at 60 ◦C in DMC using initiated by P16 in
the presence of Co(acac)2.

Method VDF/1234yf

Fineman-Ross rvdf = 0.384 ± 0.013, r1234yf = 2.147 ± 0.129
Kelen-Tüdös rvdf = 0.434 ± 0.054, r1234yf = 2.285 ± 0.054

The parameters of specific reactivity (Q) and polarity (e) of a monomer refer to its
stabilization by resonance and polar effects, respectively. To the best of our knowledge, as
never reported in the literature, such parameters can be calculated for 1234yf using Alfrey
and Price equations (Equations (1) and (2)) [32].

rVDF =
QVDF

Q1234yf
exp[−eVDF

(
eVDF − e1234yf

]
(1)

r1234yf =
Q1234yf

QVDF
exp

[
−e1234yf

(
e1234yf − eVDF

)]
(2)

According to the literature, Q-e values of VDF have been reported to be 0.015 and 0.5,
respectively [33]. These values, incorporated in Equations (1) and (2), enable the calculation
of the respective Q-e values of 1234yf as follows: Q1234yf = 0.04 and e1234yf = 0.94 and
Q1234yf = 0.03 and e1234yf = 0.06. As expected, a positive e1234yf confirms that this monomer
is electron-withdrawing (or acceptor), characteristic of fluoroalkenes, while a Q1234yf value
much higher than QVDF highlights a higher reactivity than VDF (or a lower activity of VDF
growing radical).

The reactivity of each monomer can be illustrated by the statistical distribution of
the dyad monomer sequences as VDF-VDF, 1234yf-1234yf, and VDF-1234yf, calculated
according to the Igarashi method [34] based on Equations (3)–(5) (where ϕVDF represents
the VDF mole fraction in the copolymer).

fVDF−VDF = ϕVDF −
2ϕVDF(1 −ϕVDF)

1 +
√[

(2ϕVDF − 1)2 + 4rVDFr1234yfϕ1234yf(1 −ϕVDF)
] (3)

f1234yf−1234yf = 1 −ϕVDF −
2ϕVDF(1 −ϕVDF)

1 +
√[

(2ϕVDF − 1)2 + 4rVDFr1234yfϕ1234yf(1 −ϕVDF)
] (4)

fVDF−1234yf = 1 −ϕVDF −
4ϕVDF(1 −ϕVDF)

1 +
√[

(2ϕVDF − 1)2 + 4rVDFr1234yfϕ1234yf(1 −ϕVDF)
] (5)

Mean sequence lengths PVDF and P1234yf were also calculated using
the Equations (6) and (7) [35].

µVDF = 1 + rVDF

(
MVDF

M1234yf

)
(6)

µ1234yf = 1 + r1234yf

(M1234yf

MVDF

)
(7)

The data are summarized in Table 4, whereas Figure 6 displays the variation of
the dyad fractions versus the 1234yf mole fraction in the copolymer.
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Table 4. Structural data (monomer dyads and mean sequence lengths of PVDF and P1234yf) for the statistical P(VDF-co-
1234yf) copolymers.

FVDF F1234yf VDF-VDF 1234yf-1234yf VDF-1234yf µVDF µ1234yf

0.79 0.21 0.5977 0.0177 0.3846 2.4445 1.5707
0.62 0.38 0.3454 0.1054 0.5491 1.6265 2.3159
0.57 0.43 0.2899 0.1498 0.5603 1.5090 2.6196
0.38 0.62 0.1921 0.4321 0.3758 1.2353 4.5030
0.14 0.86 0.0821 0.8021 0.1158 1.0625 14.1887
0.08 0.92 0.0482 0.8882 0.0636 1.0333 25.6905
0.01 0.99 0.0062 0.9862 0.0076 1.0038 213.5535
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Figure 6 displays the variations of the dyad fractions versus the 1234yf mole fraction
in the P(VDF-co-1234yf) copolymer. The results show that the mole fraction of the VDF-
VDF dyad is constantly decreasing as the 1234yf mole fraction increases, while the same
trend was also observed for VDF-1234yf dyads. On the other hand, the mole fraction of
1234yf-1234yf dyads increased gradually with 1234yf mole fraction. The above trend is
a clear evidence of a great difference of monomer reactivity which was also verified by
the calculation of the reactivity ratios values for the corresponding monomers.

3. Experimental Section
3.1. Materials and Methods

1,1-Difluoroethylene (VDF) and 2,3,3,3-tetrafluoropropene (1234yf) were kindly sup-
plied by Arkema (Pierre-Bénite, France). Bis(tert-butylcyclohexyl) peroxydicarbonate
(Perkadox® 16, P16, 90%,) was obtained from AkzoNobel, reagentPlus grade; dimethyl
carbonate (DMC, >99%, Merk, Darmstadt, Germany), Cobalt(II) acetylacetonate (Co(acac)2,
97%), 2,2,6,6-tetramethylpiperidine 1-oxy (TEMPO, 98%), and n-pentane (95%) were
purchased from Sigma Aldrich and used as received. Deuterated acetone (acetone-d6)
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(purity > 99.8%) used for 1H and 19F NMR spectroscopy was purchased from Euroiso-top
(Grenoble, France).

3.2. Characterizations
3.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy

19F NMR spectra were recorded on a Bruker AC 400 Spectrometer (376 MHz for 19F)
using acetone-d6 as solvent. The sample temperature was set to 298 K. Chemical shifts
and coupling constants are given in Hertz (Hz) and parts per million (ppm), respectively.
The experimental conditions for recording the 19F NMR spectra were as follows: flip angle
30◦, acquisition time 0.7 s, pulse delay 5 s, number of scans 64, and a pulse width of 5 µs
for 19F NMR.

3.2.2. Gel Permeation Chromatography (GPC)

The apparent numbers of average molar masses and dispersities of the synthesized
polymers were determined using a GPC system (Varian 390-LC) multi-detector equipped
with a differential refractive index detector (RI), using a guard column (Varian Polymer
Laboratories, Church Stratton, UK, PLGel 5 µm, 50 × 7.5 mm), and two ResiPore columns
of the same type. The mobile phase was DMF with 0.1 wt% LiBr adjusted at a flow rate
of 1 mL min−1 while the columns were thermostated at 70 ◦C. The GPC system was
calibrated using narrow poly(methyl methacrylate) (PMMA) standards ranging from 550
to 1,568,000 g/mol (EasiVial-Agilent, Stockpor, Cheshire, UK).

3.2.3. OMRP of VDF with 1234yf Initiated by P16 in the Presence of Co(acac)2

The copolymerization of VDF with 1234yf was performed in a 50 mL Hastelloy
autoclave Parr system (HC 276) equipped with a manometer, a mechanical Hastelloy anchor,
a rupture disk (3000 PSI), inlet and outlet valves equipped with a special steel pipe, and
a Parr electronic controller (for stirring speed and heating control). Prior to the introduction
of the mixture solution, the autoclave was checked for any leaks by performing three
vacuum-nitrogen cycles before finally applying vacuum (40 × 10−6 bar) for 30 min to
remove any residual traces of oxygen. A typical copolymerization of VDF with 1234yf
by OMRP mediated by Co(acac)2 was performed as follows (Table 1, Entry 8): initially,
Co(acac)2 (0.40 g, 1.55 mmol) was introduced into the autoclave and then the reactor
was closed and put under vacuum (10−2 mbar) so as to remove any residual traces of
oxygen. Then, a degassed solution of DMC (30 mL) was transferred through a funnel
tightly connected to the inlet valve of the autoclave. The reactor was then cooled in a liquid
nitrogen bath, and subsequently VDF (8.34 g, 0.130 mol) and 1234yf (1.65 g, 0.014 mol)
gases were introduced in sequence under weight control. Subsequently, the autoclave
was progressively warmed up to 60 ◦C while the reaction solution was mechanically
stirred. The polymerization was triggered by the introduction of a degassed solution of P16
(1.24 g, 3.11 mmol) in DMC (10 mL) in the reactor using an HPLC pump (5.0 mL/min).
The copolymerization was conducted for 24 h and then was quenched by transferring (via
a HPLC pump) a nitrogen-purged solution of TEMPO (0.480 g, 3.11 mmol, 2 equivalents
with respect to Co(acac)2) in DMC (5 mL) into the autoclave and letting it react for 30 min
at 64 ◦C, according to a previously reported procedure [1]. Finally, the autoclave was
immersed in an ice bath, depressurized by venting, and opened to air. The purified
copolymer was obtained after two repeated precipitations in 10-fold excess (400 mL) of
chilled pentane and it was recovered by filtration followed by drying under vacuum
overnight. The final product was recovered as a white powder (3.70 g, 34% yield) (in
the case of higher 1234yf contents, whitish gums were produced) and characterized by
19F NMR spectroscopy and gel permeation chromatography. At this point, it should be
mentioned that the polymerization yield was assumed identical as the monomer conversion,
since it is particularly difficult to experimentally determine the comonomers conversion.

19F NMR (376 MHz, acetone-d6, δ (ppm), Figure 3): from −78 to −82 (-CFF3 of 1234yf
in the copolymer), from −90.6 to −95.4 (-CH2CFF2CH2CFF2-, normal addition of VDF);
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−95.4 to −92.7 (-CH2CF2-CH2CF(CF3)-) −114 (-CH2CFF2-CF2CH2-CH2, reverse addition
of VDF); −116 (-CH2CF2-CFF2CH2-CH2, reverse addition of VDF); −165 (tertiary fluorine
-CFF(CF3) of 1234yf).

3.2.4. Determination of the Reactivity Ratios of VDF and 1234yf

In order to determine the reactivity ratios of VDF and 1234yf by OMRP, seven copoly-
merizations were performed at different feed monomer compositions, with the VDF feed
composition (f VDF) ranging from 0.16 to 0.90 (Table 2). Initially, solutions containing
appropriate amounts of Co(acac)2, P16, and DMC were transferred via a metal syringe into
a borosilicate Carius tube (length, 130 mm; internal diameter,18 mm; thickness, 2.5 mm;
total volume, 16 cm3). The Carius tubes were then cooled in a liquid nitrogen bath and
predetermined amounts of VDF and 1234yf gaseous monomers were transferred into
the frozen tubes using a custom-made manifold that enables accurate measurement of
the quantity of the gas (using “pressure drop versus mass of monomer” calibration curves). In
all polymerization reactions, the concentration of the gaseous monomers to solvent was
kept constant to 0.42 g/mL in order to ensure similar polymerization conditions. Subse-
quently, the bottleneck of the tubes was flame-sealed while keeping the content frozen in
a liquid N2 bath. The polymerizations were started by immersing the tubes in a preheated
and shaking bath thermostated at 60 ◦C. All copolymerizations were stopped after 15 min
by freezing the tubes into liquid nitrogen and then opened to air, in order to ensure that
the overall conversion of monomers was lower than 10%. The total product mixture was
recovered, dried under vacuum overnight and characterized by 19F NMR spectroscopy
in acetode-d6 for the determination of the molar fraction of VDF in the copolymer (FVDF)
molar copolymer compositions (Figure 4 displays the stack of the 19F NMR spectra of
all experiments).

3.2.5. Determination of Reactivity Ratios with the Fineman-Ross and Kelen-Tüdös Model

The molar fractions of VDF base units in the copolymer were determined using
Equation (1) by taking the ratios of the integrals of all signals of −CF2 in VDF monomer
units with respect to those of the signals of −CF3 in 1234yf units in the 19F NMR spectra:

mol% VDF in copolymers =
(
∫ −96
−91 CF2 +

∫ −118
−113 CF2)/2

(
∫ −96
−91 CF2 +

∫ −118
−113 CF2)/2 +

∫ −84
−82 CF3/3

× 100 (8)

The reactivity ratios were determined by applying mathematical models of copoly-
merization which correlate the relationship between the composition of the monomer feed
(fVDF) and the composition of the copolymers (FVDF). In the present study, Fineman-Ross
(FR) and Kelen-Tüdös (KT) fitting curve methods were applied for the accurate calculation
of the reactivity ratios. The former is expressed by Equation (2).

G = H × r1 − r2 (9)

Plotting G = f1(2F1−1)
(1− f1)F1

as ordinate versus H = f1
2(1−F1)

(1− f1)
2F1

as abscissa yields a straight

line, the slope of which represents r1 value while the intercept is −r2 value. The Kelen-
Tüdös method employs the following Equation (3):

η =

[
r1 + r2

α

]
µ− r2

α
(10)

involving η and µ parameters which are mathematical functions related to the mole ratios
in the monomer feed and in the copolymer and an arbitrary constant α. Such parameters
are defined as η = G

(a+H)
and µ = H

(α+H)
and α = (Hmin Hmax)0.5, where Hmin and Hmax are

the highest and lowest values of H from the Fineman-Ross method. Thus, a plot of η versus
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µ gives a straight line which can be extrapolated at µ = 0 and µ = 1, thereby yielding r2
a and

r1 as the respective η intercepts.

4. Conclusions

For the first time, the OMR copolymerization of VDF and 1234yf initiated by the pres-
ence of P16 using Co(acac)2 as a controlling agent was successfully conducted. Polymer-
ization kinetic was found to lead to an acceptable control under optimized conditions
([P16]0/[Co(acac)2]0 = 2/1, T = 60 ◦C), leading to P(VDF-co-1234yf) copolymers with
relatively low dispersities (Ð < 1.47) until conversion up to 33%. The molar masses of
such copolymers, determined by GPC, increased linearly with the monomer conversions.
The reactivity ratios of both comonomers were calculated based on Fineman-Ross and
Kelen-Tüdös models where similar ratios were obtained in both cases: rVDF = 0.384 ± 0.013
and r1234yf = 2.147 ± 0.129 at 60 ◦C, denoting that 1234yf is more reactive than VDF, thus
likely favoring the formation of gradient copolymers. The result is in agreement with
the dyad statistical distribution in the copolymers. Finally, the Q-e values could also
be calculated for the first time. The above results demonstrate that Co(acac)2-mediated
controlled radical copolymerization of VDF and 1234yf initiated by P16 is possible. Finally,
future works will look more closely into further optimization of this synthetic strategy
which could open the route towards the synthesis of well-defined block terpolymers that
will offer the desired combination of properties for advanced applications.
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