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Abstract: In the current study, inorganic fullerene (IF)-like tungsten disulphide (WS2) nanoparticles
from layered transition metal dichalcogenides (TMDCs) were introduced into a poly(L-lactic acid)
(PLLA) polymer matrix to generate novel bionanocomposite materials through an advantageous
melt-processing route. The effectiveness of employing IF-WS2 on the morphology and property
enhancement of the resulting hybrid nanocomposites was evaluated. The non-isothermal melt–
crystallization and melting measurements revealed that the crystallization and melting temperature
as well as the crystallinity of PLLA were controlled by the cooling rate and composition. The
crystallization behaviour and kinetics were examined by using the Lui model. Moreover, the
nucleating effect of IF-WS2 was investigated in terms of Gutzow and Dobreva approaches. It was
discovered that the incorporation of increasing IF-WS2 contents led to a progressive acceleration of
the crystallization rate of PLLA. The morphology and kinetic data demonstrate the high performance
of these novel nanocomposites for industrial applications.
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1. Introduction

Biodegradable polymers can be classified as natural or synthetic polymers accord-
ing to the source. Synthetic biodegradable polymers based on polyesters, poly(amides),
poly(phosphoesters), poly(phosphazenes), poly(orthoesters) and polyanhydride have been
widely used and have greatly promoted the development of biomedical fields because of
their biocompatibility and biodegradability. Novel polyesters with specific properties have
found diverse biomedical applications in drug delivery devices, prosthetics, implants and
tissue engineering owing to their tailorable designs or modifications [1,2]. In particular, the
use of poly(L-lactic acid) (PLLA), copolymers of lactide/glycolide and lactide/caprolactone
(PLGA and PCL-PLLA) to target bio-related applications is highly desirable for practical
applications, where the biodegradability of PLLA will allow the incorporation of native
tissue into the material over time. The correlation between the morphology, interconnec-
tivity, ability to reabsorb, and interfacial bonding can influence the long-term integrity
of the developed material and can control the interaction and integration of new tissue.
The mechanical properties, crystallinity, degradation rates and biocompatibility can be
controlled by adjusting the monomer ratios [3]. These polyesters and their monomers are
endogenous to human metabolism. As with polyesters, polymer hydrophilicity is a key
factor that influences the degradation rate. In general, the relative degradation rate of a
polyester increases with its hydrophilicity. Polyesters contain the ester linkage between
monomer units and degrade by hydrolysis. In particular, PGA is hydrophilic in nature, and
it rapidly degrades in vitro aqueous solution and in vivo. PLA is characterized by a slower
hydrolysis because it is more hydrophobic than PGA. However, to obtain intermediate
degradation rates between PGA and PLA, copolymers of PLGA have been developed [3].
Furthermore, high-performance PLLA can be processed by a wide range of processing
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techniques such as film casting, extrusion, blow moulding, and fibre spinning due to its
better thermal processability [4]. However, its commercial viability has historically been
limited by high production costs and poor ability to crystallize [5].

Today, tungsten disulphide (WS2) and molybdenum disulphide (MoS2) are two of
the most popular inorganic nanostructures of transition-metal dichalcogenides (TMDCs),
which are promising substances as potential building blocks for high technology applica-
tions [6]. They are high-band gap semiconductors with well-known structural anisotropy,
such as zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D) struc-
tural anisotropies. The first synthesis of WS2 and MoS2 inorganic nanotubes (INT, 1D)
and fullerene-like nanoparticles (IF, 0D) was reported by Tenne in 1992 and 1993, respec-
tively [7,8]. Since then, a number of engineered inorganic fullerene and nanotubes have
been developed to mimic structural reinforcement for polymer blends and nanocomposite
components, lubrication, catalysis, rechargeable batteries, solar cells, electronics [9,10] and,
more recently, for antiballistic applications [11].

In particular, a great benefit of WS2 (and of other TMDCs) nanostructures over their
carbon equivalents is their low toxicity and biocompatibility, enabling their use for envi-
ronmental [12] and medical applications [13,14]. Multiple literature sources have reviewed
the promising tribological, mechanical and barrier properties of TMDC WS2 making them
an excellent alternative to carbon nanotubes and graphene as additives for the mechanical
reinforcement of polymeric matrices [15–18]. Coupled with these promising properties,
TMDC WS2 nanoparticles demonstrate great potential for reinforcement of a variety of
biopolymers, showing good manufacturability and performance, as well as reduced manu-
facturing costs of nanoclays, carbon nanotubes etc. [19–23]. In particular, the incorporation
of a low concentration of WS2 inorganic nanotubes (0.1 wt%) allowed the crystallization of
PLLA at a cooling rate of 10 ◦C/min, and the crystallization temperature (Tc) increased
by up to 17 ◦C. This value corresponds to the highest value observed for PLLA nanocom-
posite materials using MWCNT, SCWCNT, C60 and GO among others [24]. However, the
addition of WS2 nanosheets into the biopolymer matrix slows down the crystallization rate
of PLLA due to the inactive nucleating role of the 2D-WS2 [25], whereas the degradation
rate of PLLA accelerates markedly on the crystalline PLLA/2D-WS2 nanocomposites with
the presence of 2D-WS2, which is likely related to the accelerated release of degradation
products [25].

The aim of this paper is to demonstrate the potential of the use inorganic fullerene-like
WS2 nanoparticles to prepare novel PLLA nanocomposites using a simple melt extrusion.
The objective is to analyse the effect of IF-WS2 on the crystallization and melting behaviour
of pure PLLA.

2. Experimental Section
2.1. Materials and Processing

The poly(L-lactic acid) (PLLA) purchased from Goodfellow Ltd. (Huntingdon, UK)
was used as the base polymer in this study. The IF-WS2 nanoparticles (NanoLub) were
kindly supplied by Nanomaterials from NanoMaterials Ltd. (Yavne, Israel). They exhibit a
quasi-spherical shape with an average aspect ratio of 1.4 and a mean diameter of 80 nm [26].
A range of PLLA/IF-WS2 nanocomposites containing 0, 0.1, 0.5 and 1.0, 2.0 wt% IF-WS2
were prepared via melt compounding using a micro-extruder (Thermo-Haake Minilab
system) at 190 ◦C with a screw speed of 100 rpm.

2.2. Measurements

The dispersion morphology of the PLLA/IF-WS2 nanocomposites was observed using
an ultra-high field-emission scanning microscope (FESEM), JEOL-JSM7600F (Tokyo, Japan),
and a transmission electron microscope (TEM), JEOL-JEM 2100 (Tokyo, Japan).

Non-isothermal melt–crystallization of the PLLA/IF-WS2 nanocomposites was mea-
sured using a TA Instrument Discovery Differential Scanning Calorimeter DSC 25 (Waters
Chromatography, Madrid, Spain). Data were evaluated using the TRIOS software (Waters
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Chromatography, Madrid, Spain). The samples were heated up to 225 ◦C and held there for
5 min to eliminate small residual nuclei that might act as seed crystals. Then, the sample
was cooled to crystallize at selected constant rates ϕ (in the range from 1 to 20 ◦C/min).
Subsequently, the melting of the samples was conducted using a heating cycle of 10 ◦C/min
over the interval of temperatures between 40 and 225 ◦C. The exothermic and endothermic
curves of heat flow as a function of temperature were recorded and investigated. The
degree of crystallinity was calculated as the ratio between the crystallization enthalpy
(∆Hc) and enthalpy of melting for perfect crystals (∆H0

m= 93 J/g) [27]. All operations were
performed under a nitrogen purge of 50 mL/min. Sample weight varied between 2–5 mg.

3. Results
3.1. Morphology

To elucidate the dispersion of IF-WS2 in the nanocomposites in detail, Figure 1 illus-
trates the TEM micrographs of neat IF-WS2, PLLA/IF-WS2 (0.5 wt%) and PLLA/IF-WS2
(1.0 wt%) nanocomposites. Firstly, the IF nanoparticles are closed-cage hollow multi-
layered polyhedral nanoparticles with a shape ranging from spheres to ellipsoids. As
observed from our previous investigation [26], the particle aspect ratio varies between
1 (spheres) and 2.3, with a mean value of 1.4 and a standard deviation of 0.3. Most visible
nanoparticles are quasi-spherical in shape with a diameter in the range of 40–180 nm (mean
value of 80 nm). Secondly, all images exhibit highly dispersed IF-WS2 nanoparticles with
observed dark spots within the PLLA matrix. The TEM analysis reveals that the IF-WS2
nanoparticles appear as small aggregates of only a few particles.
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Figure 2 shows the morphology of fracture surface of cryogenic-fractured specimens 
for PLLA/IF-WS2 nanocomposites, in which the bright spots are the cross-section of the 
IF-WS2 nanoparticles in the whole examined area. In particular, a uniform distribution of 
light spots was also observed in all cases of this study (not shown here for brevity), im-
plying that the IF-WS2 nanoparticles were well dispersed even without the help of a com-
patibilizer or modifier, which is in good agreement with the observation made earlier dur-
ing the TEM assessment. 

Figure 1. TEM micrographs for (a) neat IF-WS2 nanoparticles, (b) PLLA/IF-WS2 (0.1 wt%) and (c) PLLA/IF-WS2 (1.0 wt%)
nanocomposites.

Figure 2 shows the morphology of fracture surface of cryogenic-fractured specimens
for PLLA/IF-WS2 nanocomposites, in which the bright spots are the cross-section of the
IF-WS2 nanoparticles in the whole examined area. In particular, a uniform distribution
of light spots was also observed in all cases of this study (not shown here for brevity),
implying that the IF-WS2 nanoparticles were well dispersed even without the help of a
compatibilizer or modifier, which is in good agreement with the observation made earlier
during the TEM assessment.
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Figure 2. High-resolution SEM micrograph for PLLA/IF-WS2 (1.0 wt%) nanocomposites. The white
arrows indicate the IF-WS2.

3.2. Non-Isothermal Crystallization and Melting Behaviour

It was important to investigate the non-isothermal crystallization to obtain infor-
mation useful for the industrial applications of PLLA. The DSC cooling and second-run
heating curves of pure PLLA and PLLA/IF-WS2 nanocomposites are illustrated in Figure 3.
The parameters of interest for both crystallization and melting behaviour, that is, melt–
crystallization temperature (Tc), crystallinity (1−λ)c, cold-crystallization temperature (Tcc),
cold crystallinity (1−λ)cc, melting temperature (Tm), and melting crystallinity (1−λ)m, are
summarized in Table 1. For all samples, the crystallization peak became wider and shifted
to lower temperatures by increasing the cooling rate. This means that at lower cooling
rates, the biopolymer matrix and nanocomposites spent a longer time within the tempera-
ture range that promotes sufficient mobility of segments for the growth of crystallization.
The addition of IF-WS2 nanoparticles to PLLA induces an increase in the crystallization
temperature even at the low cooling rate used. Furthermore, if the cooling rate is too high
(i.e., 20 ◦C/min), there will not be enough time for a conformational arrangement allowing
for the chains to progress into the crystalline state, and, therefore, they will be amorphous
(see the melting curves). Such results indicate that IF-WS2 served as a nucleating agent for
the crystallization and increased the overall crystallization rate of PLLA.
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Table 1. Melt–crystallization and melting parameters of the neat PLLA and PLLA/IF-WS2 nanocomposites.

IF-WS2
(wt%)

ϕc
(◦C/min)

Tc
(◦C)

(1−λ)c
(%)

Tcc
(◦C)

(1−λ)cc
(%)

Tm1
(◦C)

Tm2
(◦C)

(1−λ)m
(%)

0.0

1
2
5

10
20

123.1
124.3
117.7
108.1
94.7

58.1
57.5
53.8
49.7
28.0

-
-
-
-

95.0

-
-
-
-

19.7

154.2
159.0
162.5
163.0

-

157.2
164.8
168.1
169.7
168.7

66.7
65.6
64.5
62.9
52.2

0.1

1
2
5

10
20

124.2
122.9
121.5
115.1
97.9

56.1
57.0
55.8
49.8
33.6

-
-
-
-

88.8

-
-
-
-

1.8

-
157.8
160.3
162.5
163.2

156.8
162.0
164.5
167.5
168.9

63.3
64.6
64.4
61.0
47.7

0.5

1
2
5

10
20

126.3
127.9
123.2
113.1
96.0

55.8
57.0
51.8
43.4
22.5

-
-
-
-

92.1

-
-
-
-

5.7

-
-

164.5
164.5

-

157.6
162.5
169.1
170.3
169.2

60.8
62.8
57.1
50.1
41.9

1.0

1
2
5

10
20

126.3
127.9
123.2
113.0
95.9

55.7
57.0
51.8
43.6
23.6

-
-
-
-

92.0

-
-
-
-

5.9

157.6
161.6
164.9
164.5
165.0

160.5
165.9
168.6
170.3
169.2

61.7
62.8
56.7
50.5
41.9

In order to support the previous observations, Figure 4 illustrates the variation in Tc
with cooling rate and composition, and two clear trends were observed. Firstly, higher
cooling rates induced a downward shift in Tc to the low-temperature range (Figure 4a).
Secondly, the addition of highly compatible IF-WS2 with the PLLA matrix may favour the
formation of the critical crystal nuclei. This effect was clearly observed to be a function of
the composition showing an increase of 7 ◦C in Tc, for example, with only 0.1 wt.% IF-WS2
at a cooling rate of 10 ◦C/min (Figure 4b). This highlights the effective nucleating role of
IF-WS2 in PLLA crystallization, which induces rapid growth of the PLLA crystals on the
nanoparticles surface, as suggested in previous literature for PLLA composites reinforced
by 1D-WS2 inorganic nanotubes [24] as well as other fillers [5,28]. In particular, the effect of
the size and shape of nanoparticles on the nucleation of polymer/IFs was deeply explored
by Enyashin et al. using a mesoscopic model of Van der Waals’ force field [29]. It was found
that in the absence of chemical interaction, the size of the nanoparticle is a dominating
factor for the adhesion strength, while the number of sulphide layers composing the cage
is not critical. In contrast, 2D-WS2 nanosheets were recently found to be ineffective in the
crystallization process of PLLA [25]. This was due to the PLLA chains not being able to
easily adsorb on the WS2 nanosheets, hindering crystal growth. Such differences suggest
that the structural anisotropy of layered transition-metal dichalcogenides (0D-, 1D- and
2D-TMDC WS2) plays a fundamental role in PLLA crystallization. In the same way, the
effect of cooling on the crystallinity (1−λ)c of PLLA and its PLLA/IF-WS2 nanocomposites
is to be expected, because, at lower rates, macromolecules theoretically have more time for
crystallization, which results in fewer defects and thus higher crystal formation (Table 1).
However, the influence of IF-WS2 on the variation of (1−λ)c values of PLLA appears to
only be relevant at a high cooling rate.
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Figure 4. Variation of the melt–crystallization temperature (Tc) for PLLA/IF-WS2 nanocomposites
with (a) cooling rate and (b) composition.

The cooling rate also has a significant effect on the melting behaviour of semicrystalline
polymers (Figure 3). Two kinds of different melting behaviours could be identified with
the cooling rate increasing from 1 to 20 ◦C/min. As can be seen, the double melting peaks
(Tm1 and Tm2) appears at around 154 and 157 ◦C, and the appearance of a double melting
endotherm is closely related to IF-WS2 concentration and cooling rate. It is necessary to
note that the double-melting behaviour of the samples is mainly derived from the melting–
recrystallization–remelting processes upon heating [24,30]. During heating, the exothermic
peaks related to the cold crystallization process appear for the samples crystallized at
higher cooling rates, which suggests that the melt–crystallization process of the samples
is incomplete during the cooling. In particular, it was observed that the presence of
inorganic fullerene-like WS2 nanoparticles induces a decrease in the Tcc value of PLLA
(e.g., Tcc,PLLA = 95.0 ◦C and Tcc,PLLA/IF-WS2 (0.5 wt%) = 88.8 ◦C), confirming the fact that the
addition of IF-WS2 enhances the cold crystallization process of PLLA. Figure 5 shows the
evolution of the crystallinity (1−λ)m of PLLA/IF-WS2 nanocomposites calculated from
the double endothermic curves with the cooling rate and composition. In particular, it
was noted that the dependence of crystallinity (1−λ)m of PLLA/IF-WS2 nanocomposites,
shown in Figure 5 both as a function of ϕ and IF-WS2 concentration, is consistent with the
previously mentioned observation of crystallization temperature curves. This behaviour
is expected, because, at slower ϕ, the polymer chains have more time to organize into
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crystalline domains with fewer defects and, thus, higher (1−λ)m. However, the addition
of WS2 inorganic fullerenes showed a similar trend as a function of ϕ, but a much lower
(1−λ)m was observed. These results also confirm that the role of IF-WS2 in the variation in
the (1−λ)m values of PLLA appears to be only relevant at a high cooling rate.
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3.3. Lui Analysis

The polymer non-isothermal crystallization process can be described by the Lui
model [31] by combining the well-known Avrami equation [32] with the Ozawa equa-
tion, [33] and it can successfully address the non-isothermal crystallization behaviour of
PLLA [5,30]; its final form is given below:

ln ϕ = ln f (T)− α ln t (1)

where the kinetic parameter f (T)= [k′(T)/k]1/m refers to the value of the cooling rate that
has to be chosen at the unit crystallization time when the measured system amounts to
a certain degree of crystallinity; α is the ratio of the Avrami exponent n to the Ozawa
exponent m (α = n/m). According to Equation (1), at a given degree of conversion, the
f (T) parameters of the linear relationship between the plots of lnϕ vs. lnt are obtained
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(Figure 6). This indicates that the Lui model fits well with the experimental data of the
new PLLA/IF-WS2 nanocomposites. From the slopes and the intercepts of these lines, the
values of α and f (T) could be obtained (Table 2). As can be seen, the values of f (T) for
PLLA and its PLLA/IF-WS2 nanocomposites progressively increases with the increase in
the relative crystallinity, which indicates that at unit crystallization time, a higher cooling
rate should be used to obtain a higher degree of crystallinity. In all cases, the values of α
are almost constant (i.e., about 1.0–1.1). However, the most relevant observation was the
influence of IF-WS2 concentration on the value of f (T) of PLLA for a particular degree of
conversion. In particular, it was observed that the value of f (T) for PLLA is higher than that
for the PLLA/IF-WS2 nanocomposites, suggesting that the nanocomposites require a lower
heating rate to approach an identical degree of crystalline transformation. This implies
the acceleration of the crystallization rate of PLLA due to the nucleation effect of IF-WS2,
while the crystallization mechanism of PLLA remained unchanged in spite of nanoparticle
loading. This is because the values of the α parameter are approximately the same for both
PLLA and the PLLA/IF-WS2 nanocomposites (1.0–1.1).
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Table 2. Values of α and f (T) vs. conversion (x) based on the Liu model for pure PLLA and PLLA/IF-
WS2 nanocomposites.

IF-WS2
(wt%)

x
(%) α f (T)

0.0

10
30
50
70
90

1.07
1.08
1.09
1.10
1.11

4.88
4.96
5.00
5.05
5.12

0.1

10
30
50
70
90

1.06
1.07
1.08
1.09
1.10

4.83
4.90
4.94
4.98
5.04

0.5

10
30
50
70
90

1.07
1.09
1.10
1.10
1.11

4.86
4.92
4.97
5.01
5.08

1.0

10
30
50
70
90

1.06
1.07
1.07
1.08
1.08

4.81
4.86
4.90
4.93
4.98

3.4. Nucleation Activity

The addition of reinforcing transition-metal dichalcogenides (TMDCs) in polymers
can enhance their mechanical properties and thermal stability [10,24,25]. Furthermore,
in many cases, substrates such as IF-WS2 can act as active or inactive nucleating agents
depending on polymer matrix and concentration [34]; therefore, the magnitude of the effect
of nucleating activity should be measured. Dobreva and Gutzow [35,36] have developed a
simple method to measure the effect of nucleating agents, denominating nucleating activity
(ϕ) as follows:

ϕ =
B∗

B
(2)

where B* stands for the parameter during heterogeneous nucleation, while B stands for that
in homogeneous nucleation. If the foreign substrate is extremely active, ϕ approaches 0,
while for inert particles, ϕ approaches 1. B and B* can both be experimentally determined
from the slope of the following equation:

ln ϕ = A− B(or B∗)
∆T2

p
(3)

where ϕ is the cooling rate, A is a constant, and ∆Tc denotes the degree of supercooling
(T0

m−Tc). Plots of lnϕ vs. 1/∆Tc for pure PLLA and PLLA/IF-WS2 nanocomposites are
shown in Figure 7. It is apparent that a linear relationship is obtained for each sample,
assuming the equilibrium melting point T0

m of PLLA as 195 ◦C [37]. The values of B and
B* are obtained from the slope of the fitted lines, and the nucleation activity is calculated
from their ratio. The corresponding ϕ values are 1.07, 0.80 and 0.81 for PLLA/IF-WS2
(0.1 wt%), PLLA/IF-WS2 (0.5 wt%) and PLLA/IF-WS2 (1.0 wt%), respectively. These results
indicate that IF-WS2 behaves as an effective nucleating agent when the concentration of
IF-WS2 is set between 0.5 and 1.0 wt%. However, the excellent nucleation-promoting effect
was achieved when the WS2 nanoparticles were added as nanotube-like nanoparticles
(ϕ = 0.22–0.25) [24]. In contrast, the incorporation of WS2 nanosheets induced a significant
reduction in the crystallization rate of PLLA due to the inactive nucleating role of WS2 [25].
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Such differences again suggest that the nanoparticle shape plays a fundamental role in
PLLA crystallization.
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4. Conclusions

In the present work, a series of melt-processable PLLA/inorganic fullerene-like WS2
nanoparticles were successfully prepared at various IF-WS2 loadings ranging from 0.1 to
1. wt%. TEM and SEM results indicate that IF-WS2 is well dispersed in the PLLA matrix
without the help of a compatibilizer or modifier. The experimental DSC data show that
non-isothermal melt–crystallization peak temperatures are slightly higher in the nanocom-
posites than in neat PLLA; moreover, the overall non-isothermal melt–crystallization rates
are significantly greater in the nanocomposites than in neat PLLA, indicating that IF-WS2
acts as a nucleating agent for PLLA. A convenient Lui model appeared to be helpful
in elucidating the complex kinetics of PLLA/IF-WS2 nanocomposites occurring during
continuous cooling. All rate parameters (i.e., f (T)) suggested that the addition of IF-WS2
is an effective approach to speed up the crystallization of PLLA. On the other hand, the
study of the nucleation activity using the Gutzow and Dobreva model revealed that the
shape of TMDCs nanostructures (0D-, 1D- and 2D-WS2) plays a fundamental role in the
promotion and/or retardation of PLLA crystallization. In particular, IF-WS2 nanoparticles
exhibited nucleation activity when the concentration of IF-WS2 was set between 0.5 and
1.0 wt%. On subsequent heating, double-melting peaks for PLLA and its nanocomposites
can be attributed to a melt–recrystallization mechanism. The addition of IF-WS2 appears to
have slight influence on the crystallinity value of PLLA, becoming higher as the cooling
rate is increased. These results have considerable practical significance for technologi-
cal processing of PLLA-based materials. PLLA/layered transition metal dichalcogenide
(TMDC) nanocomposites can be employed as low-cost biodegradable materials for many
eco-friendly and medical implant applications.
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