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Abstract: In recent decades, quantum chemical calculations (QCC) have increased in accuracy, not
only providing the ranking of chemical reactivities and energy barriers (e.g., for optimal selectivities)
but also delivering more reliable equilibrium and (intrinsic/chemical) rate coefficients. This increased
reliability of kinetic parameters is relevant to support the predictive character of kinetic modeling
studies that are addressing actual concentration changes during chemical processes, taking into
account competitive reactions and mixing heterogeneities. In the present contribution, guidelines
are formulated on how to bridge the fields of computational chemistry and chemical kinetics. It is
explained how condensed phase systems can be described based on conventional gas phase compu-
tational chemistry calculations. Case studies are included on polymerization kinetics, considering
free and controlled radical polymerization, ionic polymerization, and polymer degradation. It is also
illustrated how QCC can be directly linked to material properties.

Keywords: ab initio; chain growth; step growth; rate coefficients; solvation models

1. Introduction

Polymers are typically produced in large-scale industrial reactors, yielding (i) low-cost
bulk commodity materials for e.g., household goods, including packaging, construction
materials, and heat insulation, as well as (ii) high-added value polymers, which are typi-
cally fine chemicals and pharmaceuticals for high-tech niche applications e.g., biomedical
devices, medicines, and electronics [1–11]. These polymers can be produced through
two main mechanisms, i.e., chain-growth polymerization and step-growth polymerization,
each involving numerous elementary reaction steps. In the former mechanism, one has
in essence initiation, chain initiation, and many propagations, until termination creates
“dead” polymer molecules on a very short time scale ((m)second scale) [12]. In the latter
mechanism, functional groups are combined step by a step, and a gradual transition from
monomer to dimer to n-mer takes place [13].

Due to the complex interplay of the elementary reactions in the given polymerization
process, the link between the initial process parameters and the molecular and material
properties of the final polymers is not straightforward. Thus, for optimal performance
of industrial polymerization processes, it is advised to perform model-guided process
design, which relates the changes in polymerization kinetics through variations of physical
parameters (e.g., temperature, pressure, reactant concentrations, and solvent choice) with
macromolecular properties (e.g., viscosity and strength).

From an engineering point of view and as shown in Figure 1, three levels for the
length-scale-based description of polymerization processes exist: the (1) micro-scale (with
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as sub-scale the molecular scale), (2) meso-scale, and (3) macro-scale [14]. Most of the
focus in engineering studies has been on the micro-scale, which is defined as the scale at
which (molar) concentrations can be defined. The key input parameters for that scale are
typically Arrhenius and diffusion parameters, which are determined based on data fitting
to experiments [15,16]. This emphasis on the micro-scale is also clear from an inspection of
more recent reviews with only a few works addressing either the molecular or meso/macro-
scale [17–21]. At the industrial or macro-scale, polymerization reactors are frequently
inhomogeneous, leading to the formation of zone-dependent bulk concentrations and/or
polymerization temperatures, resulting in a high level of product inhomogeneity between
the zones (or thus lower length scale). The meso-scale is only relevant if particulate systems
are considered with e.g., the recent work of Marien et al. [22] displaying that the evolution
of the chain length and particle size distribution is coupled in miniemulsion polymerization
at which the “reactor” size is very low (below 200 nm).

Figure 1. Scales in polymerization, leading to different calculation levels. A case is shown with particles present so that a
meso-scale is recommended.

From a more fundamental point of view, the molecular scale should be treated with
care and properly connected with the engineering micro-scale. In other words, the detailed
description of polymerization processes requires significant chemistry driven efforts, as
the reaction mechanisms contain a large number of elementary reactions involving likely
both uni- and macromolecular species and for sure involving main and side reactions. The
associated reactivities may significantly depend on the chain length; thus, ideally, for each
macromolecular species type, a complete chain length distribution has to be taken into
account [23–30]. Additional complexity arises for those processes with multiple reactive
species. For example, in the radical polymerization of acrylates, two main types of active
species exist, namely end-chain radicals and mid-chain radicals with the former much
more reactive than the latter. Even more complex is for instance the radical polymerization
of vinyl chloride with ca. 10 radical types and multiple reactive sites in the polymer
backbone that need to be accounted for in an advanced kinetic model also aiming at the
understanding of poly(vinyl chloride) stability [14,29,31].

The occurrence of side (or secondary) reactions can largely influence the molecular
structure of the polymer molecules, e.g., the formation of head-to-head effects, unsatu-
rations, and branches, therefore altering the macroscopic behavior. For example, at high
monomer conversion, chain transfer to polymer or intermolecular chain transfer can take
place and long-chain branches (LCBs) can be formed, whereas short-chain branches (SCBs)
can be created through shift reactions, including backbiting. Focusing again on polyacry-
lates, a more branched structured has a much more complex viscosity behavior as a function
of shear rate during subsequent processing in a final product. If a copolymerization is
considered, the compositional drift may also affect the molecular structure and one can
require reactivity models acknowledging penultimate and thus monomer neighboring
effects. The reactivities for these secondary reactions are unfortunately often difficult,
sometimes even impossible to access via experimental techniques, due to the inability to



Polymers 2021, 13, 3027 3 of 39

decouple them from other primary and secondary reactions involved in the polymerization
mechanism [20,32].

To help to solve the previous challenge for secondary reactions in the large field of
chemical processes, quantum chemical calculations (QCC) can be applied. In general, such
calculations are performed in the gas phase, whereas most of the experimental data are
available in the condensed phase, which is especially the case for polymerization reactions.
If QCC are used to access the rate coefficients (so-called k(chem) values) that are hard to
measure experimentally, the extrapolated solution-phase computational data are of interest,
as they can be directly applied for the construction of the actual kinetic models in view of
(polymerization) process control. Thus, a number of QCC approaches have been developed
that take solvation into account. Reliability has always been an issue for QCC, but more
recent developments in several research groups have provided a large set of more reliable
absolute k values that can plugged into kinetic models. In any case, QCC is rather reliable
in predicting relative reactivities, facilitating the interpretation of reaction pathways.

In this review, the most important QCC approaches to account for solvent effects are
described in general terms. A roadmap is provided starting from a concise overview of
gas phase GCC approaches to then tackle the solvation models to allow for a transition
to the condensed phase. Specific focus is on QCC for (molecular scale) rate coefficients
and the additional conceptual treatments needed to address specifically polymerization
reactions, aiming at a reader that is less familiar with GCC but is active in the field of
polymer (reaction) engineering or chemistry. It is also explained how the QCC-based
rate coefficients need to be combined with actual polymerization kinetic models that are
dealing with larger length scales. This is further exemplified by including four case studies
from the field of polymerization kinetics but also one in a broader frame of material
property prediction.

2. Gas Phase QCC Approaches

Quantum mechanical approaches rely on the solution of the Schrödinger Equation (1),
which describes molecules in terms of nuclei and electron interactions:

Ĥψ(x, t) = Eψ(x, t) (1)

in which Ĥ is the Hamiltonian operator, ψ(x,t) is the system’s wave function (eigenvec-
tor), and E is the total energy of the system (eigenvalue). In principle, the solution of the
Schrödinger equation (SE) provides the complete description of the molecular structure
and energy. However, the exact solution is available only for the simplest one-electron
system (e.g., the hydrogen atom), as the electron–electron interaction term makes it impos-
sible to construct an analytical solution for complex molecules. Thus, the general exact
wave functions remain unknown. It should be mentioned that the time dependence in
Equation (1) is typically neglected, and only the stationary SE is solved.

QCC explore various pathways toward an approximate solution for the wave func-
tions, among which the Born–Oppenheimer approximation [18] is the most common. The
latter assumes that since the nuclei are much heavier, their motions are negligible at the
time scales of the electron motions. A further assumption is made that the electrons are
responding instantaneously to changes in the nuclear configuration and, thus, nuclei move
in the mean electron field. By these means, the so-called electronic Schrödinger equation
(ESE) is introduced, describing the motion of N electrons in the field of M point charges
generated by the nuclei, and the wave function explicitly depends only on the electronic
coordinates [33].

Practically, more assumptions are needed than just applying ESE. The successful
prediction of the kinetic parameters is directly linked to an overall QCC methodology of
which the most important steps are highlighted in Figure 2. The first step is the selection
of an appropriate molecular model, which for reactions involving macrospecies is of high
importance. One has in reality polymer chains containing thousands of monomer units,
which is impossible for QCC methods to grasp. This leads to the approximation of the
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polymer chains by oligomers with a chain length of two, three, or longer depending on
the computational costs. The specific optical isomers—in case of polymer chains, the
tacticity—should also be (ideally) considered in this first step, and the most probable (from
a thermodynamic of kinetic perspective) should be employed for the further investigations.
In the next step, the electronic energy and (approximate) wave functions are calculated,
and the geometry is optimized for the reactants, transition state, and products in the gas
phase, providing the thermodynamic parameters in this phase. If the reaction in condensed
phase is considered, then the research should select in a third step the appropriate solvation
model. The above-mentioned steps provide the input for the transition state theory (TST)
calculations, which, in the end, lead to the prediction of the kinetic rate coefficients at the
selected temperatures and, hence, the Arrhenius parameters.

Figure 2. General algorithm for QCC to finally retrieve kinetic parameters; case of polymerization chemistry.

Notably, the research on approximating approaches to solve the SE is vast. The reader
is referred to the following contributions to obtain a broader scope [34–36]. In the following
sections, the aforementioned steps in Figure 2 are concisely discussed, paying special
attention to the solvation models.

3. Gas Phase Computational Chemistry Tools

A variety of gas phase computational chemistry tools exists. In the present section, a
differentiation is made between wave-function-based methods, density functional theory
(DFT) calculations, and transition state theory TST; hence, a further elaboration is presented
regarding the individual blocks in Figure 2. Semi-empirical methods are addressed as well.

3.1. Wave-Function Based Calculations

For the first instance, the wave function is approximated by the linear combination of
one-electron molecular orbitals ψi(x,y,z), which are expressed as a linear combination of
one-electron atomic orbitals ϕµ, which is the so-called ‘basis set’:

ψi =
n

∑
µ=1

Cµi·ϕµ (2)
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If the wave function is constructed, the expansion coefficients (Cµi) are optimized
by minimization of the system’s energy. For example, in the Hartree–Fock method
(HF) [34,37,38], the wave function is formed as the Slater determinant. Among all the
wave-function-based approaches, HF is only the starting point, as the approximation that
a particular electron moves in the averaged field generated by all other electrons, rather
than interacting with all other electrons individually, does not lead to accurate electronic
energies. More advanced methods, e.g., the perturbation theory in the formalism of Møller–
Plesset (MP), configuration interaction (CI) [39], and coupled-cluster approaches (CC) [40],
go beyond this approximation by including ‘correlation’ between the electrons via the in-
clusion of excited-state wave functions at the cost of significantly increased computational
demands [41].

3.2. Density Functional Theory

DFT is based on the Hohenberg–Kohn theorem [42] stating that the ground-state
electronic energy can be calculated from the ground-state electron density so that the
wave function does not need to be evaluated. DFT introduces a one-particle functional
that contains all the many-body effects, making it possible to compute in principle the
exact ground-state energy from the electron density. Although it has been shown that
such a functional exists, its form is in general unknown. Thus, the variations of the
functionals that are used for the calculations represent some sort of approximation. Thus, it
is constructed on the basis of one-electron functions that form a basis set (which is similar
to the wave-function-based method).

The basis set significantly influences the accuracy of the calculations; thus, its selection
is crucial for the accurate prediction of the kinetic parameters. In a number of contributions,
the calculation results with different basis sets have been compared [43–45]. Depending on
the chemical system and type of the reaction calculated, different basis sets can provide
more accurate results [46–48].

Due to the low computational demands of DFT, it is widely applicable for QCC
for the chemical reactions involved in a polymerization mechanism. Furthermore, in
contrast to most HF-based methods, DFT has no formal issues dealing with resonance-
stabilized radicals, which is valuable if, e.g., radical polymerization processes are studied
theoretically [49–56].

3.3. Semi-Empirical Methods

Wave-function-based and DFT methods are well-established for relatively small molec-
ular models so that for polymers, the above-mentioned models treat three to five monomer–
oligomer units. For the larger molecules, the computational cost can quickly become
prohibitively high. One can compare e.g., the computational time required to optimize
the geometry of polyacrylate model oligomers consisting of two and five monomeric units
(DFT, B3LYP/6-311+G(d,p)) being 1 h and 11 h respectively, considering six CPUs in paral-
lel (on a 2 × 18-core Intel Xeon Gold 6240 processor). For most methods that yield highly
accurate energies, the computational effort will be higher and moreover scale worse with
the molecular size.

To facilitate the calculations for larger molecules, especially polymers and bio-molecules,
several semi-empirical theoretical methods have been developed. The overview of the
semi-empirical methods was revised recently by Bryce et al. [57]. To mention, PM3, AM1,
and MNDO are suitable to obtain the enthalpy of formation of chemical systems. Devel-
oped by Dewar et al., the MNDO [58] and AM1 [59] methods became a standard tool for
both theoretical and experimental organic chemists. Later, Stewart et al. [60,61] proposed a
mathematical reparameterization of the MNDO method called the PM3 method. In this
method, single-atom parameters were obtained for C, N, H, O, F, S, P, Si, Cl, Al, I, and Br
simultaneously, by fitting 400–500 experimental references. Generally, PM3 provides more
accurate results than the AM1 method. However, most of these methods do not perform
well to locate transition states or predict activation barriers.
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Another method to mention is ONIOM [62]. In this method, a large molecular system
is divided into several layers, which are treated at a different level of theory, leading to
sufficient decrease in the computational demands [33,48]. Zhang et al. [63] demonstrated
the cost-effectiveness of ONIOM calculations by comprehensive investigation of MMA
homopolymerization on different levels of theory. The particular field of ONIOM calcula-
tions is catalysis and enzymatic catalysis, in which the active catalytic site is treated on the
highest level of theory [64].

4. Solution Phase Computational Chemistry Tools
4.1. Transition State Theory

The connection between the kinetic parameters of the chemical reaction under investi-
gation and the thermodynamic properties that can be derived from QCC is provided by
transition state theory (TST), which is applicable not only for the gas phase [65]. TST links
the reaction rates via microscopic partition functions and the reaction barrier at 0 K. This
theory assumes a statistical equilibrium between the degrees of freedom of the reactants,
products, and transition state. In conventional TST, the transition state structure is located
at the maximum energy structure along the minimum energy pathway that connects the
reactants and products. With the minimal number of optimized geometries (for the transi-
tion state and reactants), one can access the kinetic parameters of a particular reaction in
the following way:

k(T) = κ
kBT

h
Q‡

∏ Qi
c◦e−E‡/RT = κ

kBT
h

ce−∆‡G◦/RT (3)

in which κ is the transmission coefficient accounting for quantum tunneling (assumed to be
a value of one in the simplest case), kB is the Boltzmann’s constant, h is the Planck’s constant;
∆‡G◦ is the standard Gibbs free energy difference between the reactants and the transition
state, E‡ is the electronic energy difference between the reactants and the transition state;
and Q‡ and Qi are respectively the molecular partition function of the transition state
and the reactant i. The molecularity of the reaction m should be taken into account by
multiplication by c◦ = (P◦/RT)1−m to obtain the correct units in concentration terms.

The molecular partition functions form the link between the quantum mechanics and
the thermodynamic properties. Typically, they are calculated assuming separability of the
partition function into a translational term (Qtrans), a rotational term (Qrot), a vibrational
term (Qvib), and an electronic term (Qelec). The partition functions are usually calculated
under the assumption that the reaction occurs in the gas phase and the reactants and
products are ideal gases. The vibrational part is usually calculated based on the harmonic
oscillator approximation, although explicitly considering internal rotations and other
large-amplitude motions became common to obtain accurate gas-phase thermodynamics
and kinetics.

Splitting the Gibbs free energy to enthalpic (H) and entropic (S) contributions and
considering the classical temperature dependence of kinetic rate coefficients, one obtains
the relation between the Arrhenius parameters and calculated thermodynamic functions of
the transition state:

k(T) =
kBT

h
e−

∆G‡
RT =

(
kBT

h
e

∆S‡
R

)
e−

∆H‡
RT = Ae−

Ea
RT (4)

One of the TST assumptions is that the motion along the reaction coordinates can be
expressed as a simple, classical translation. However, it is only valid for larger molecules
for which the De Broglie wavelength associated with the molecular rearrangement in the
transition state is small compared to the width of the reaction barrier. For reactions that
involve smaller species, i.e., hydrogen transfer, the quantum effects are relatively important.
Thus, a factor κ that accounts for the tunneling effect is introduced [66–68]. However, for
the direct comparison of the calculated thermodynamic parameters and experimentally
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determined Ea, the tunneling effect and the temperature dependence of kBT
h e

∆S 6=
R are often

neglected compared to e−
∆H 6=

RT , which is a common yet rather crude approximation.
Notably, the contributions of Heuts et al. [69,70] give an excellent example of QCC of

the (gas phase) propagation reaction of ethylene with the complete calculation algorithm,
which can be followed in order to correctly predict the kinetic rate coefficients. Furthermore,
evaluating the current set of data for gas-phase processes in general, for various types
of chemical reactions (mono-, bimolecular, with or without radical species, etc.), different
methods of QCC are now applicable, as the calculated predictions are closer to the experi-
mentally measured values in the gas phase. Benchmark studies have been even performed
to derive the best practices in the theoretical evaluation of the kinetic parameters. For
example, Meier et al. [71] extensively discussed the performance of DFT methods with
respect to accuracy and reliability. Another example is the work of Green et al. [72,73]
in which different DFT and MP2 methods have been compared for alkoxy radical rear-
rangement and gas-phase hydrogen abstraction reactions. More advanced comparison of
theoretically calculated and experimentally measured kinetic parameters for gas-phase
radical addition/β-scission was more recently performed by Sabbe et al. [74].

Note that all QCC provide results at 0 K, whereas the experimental temperatures
are much higher. Via TST, the rate coefficients can be calculated at any temperature,
thus providing access to the Arrhenius parameters. In this aspect, the accuracy for the
calculation of the partition functions plays a significant role. In particular, the correct
accounting of the internal rotations can affect significantly the calculation results as put
forward by Van Speybroeck et al. [75] and Vansteenkiste et al. [76]. In addition, pressure
effects can also be tackled via QCC, which is important for the translation of micro-scale to
macroscale simulations. Several examples are provided in the literature [77–81].

4.2. Solvation Models

QCC are conventionally performed in the gas phase, treating all the molecules as ideal
gas components. To correct for the effect of the solvent, a solvation model is used in a
thermodynamic cycle. It accounts for the desolvation of reactants and the solvation of the
products of a chemical reaction, while the actual reaction step is still treated with QCC in
the gas phase, as shown in Figure 3. More advanced methods also account for the influence
of the solvent on the stabilization of a particular geometry of the TS. A number of solvation
models allows for the correction of the gas-phase calculations toward the condensed phase.
As explained in what follows, the models can be referred to as implicit, explicit, and hybrid.

4.2.1. Implicit Models

The implicit solvation models treat the solvent as a continuum with certain properties.
As these types of models are less computationally demanding, they are widely used for the
description of the solute–solvent interactions. A number of authors reviewed the implicit
models [82–92]; therefore, only a short description of the most common ones is provided
here. A distinction is made between the Polarizable Continuum Model (PCM) [93–96],
the conductor-like screening model (COSMO) [97–99], the Poisson–Boltzmann model
(PB) [100–104], the generalized Born (GB) model [105], and the solvation model based
on density (SMD) [106,107].

In PCM, the solvent is treated as a polarizable continuum medium that is characterized
by its dielectric constant ε. The two most important characteristics of PCM are the use of a
molecular cavity, which follows the real geometry of the system, and the surface charge
distribution, which includes the polarization of the environment. PCM has the possibility
of accounting for any shape and charge distribution. PCM is also characterized by ease
of use and can be seen as a computationally cheap methodology that can be applied in
systems in which short-range solute–solvent interactions play a major role.
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Figure 3. Thermodynamic cycle used to go from gas phase to condensed phase GCC.

COSMO has been developed in parallel to PCM [108–111] and has similar features;
in particular, the condensed phase is modeled as a conductor with an infinitely large
dielectric constant ε, which simplifies the electrostatics computations. COSMO includes
non-electrostatic solute–solvent interactions as well, although it can give false predictions
in case of specific interactions such as the formation of a complex with solvent molecules.
Although COSMO is a common approach for accounting for solvent effects, it has been
noted that this procedure may overestimate entropic factors [112]. To account for more
sophisticated effects, advanced hybrid COSMO-RS methods, as described below, are
typically employed.

The PB model can be applied to describe the electrostatic potential and equilibrium
distribution of ions around molecules in solution, which makes it useful for the inter-
actions of physiological processes and bioinformatics, polymer science, and electron-
ics [92,100,113,114]. With the help of the Poisson–Boltzmann equation, the distribution of
the electric potential in the solution can be described, and thus, the electrostatic interactions
can be modeled. In polymer science, PB is typically applied for the quantum mechanics
calculations of aqueous polymers, polyelectrolytes, and ionization processes [115–117]. The
GB model [118] is an extension of the PB model, which relies on the (linearized) Poisson–
Boltzmann equation. Due to its ability to predict charge distributions, it is widely applied
for biomacromolecules [119,120].

In turn, the SMD model was introduced by Marenich et al. [106] in 2009. SMD is
described as a universal continuum solvation model. By “universal”, the authors assume
its applicability to any charged or uncharged solute in any solvent or liquid medium for
which a few key descriptors are known. In this implicit model, the solvent is represented as
a dielectric medium with surface tensions at the solute–solvent interface. The SMD model
separates the fixed-concentration free energy of solvation into two components: (i) the
bulk-electrostatic contribution and (ii) short-range interactions between the solute and
solvent molecules in the first solvation shell. The first component is the bulk-electrostatic
contribution arising from a self-consistent reaction field (SCRF) treatment. The SCRF
treatment involves an integration of the nonhomogeneous-dielectric Poisson equation for
bulk electrostatics in terms of the COSMO model. The second is the cavity–dispersion–
solvent-structure (CDS) term, which accounts for the solvent-accessible surface areas
(SASAs) of the individual atoms of the solute.
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4.2.2. Explicit Models

If an explicit solvation model is considered, the calculation of geometry and energy
optimization is performed for a system with the solvent molecules explicitly included.
Molecular dynamic calculations are commonly used as well for structure optimization
here. For that, the concept of the “supermolecule” is introduced, which consists of a
reactant/product and a surrounding solvent molecular ensemble. A supermolecule is
made of an aggregate of the solute and a limited number of solvent molecules treated as an
isolated single molecular system at the desired quantum chemical level. Depending on the
accuracy, from one to 40 solvent molecules can be taken into account.

Some success has been achieved in the application of explicit solvent models to
predict organic and inorganic reaction mechanisms [121–123], electrochemical phenom-
ena [122,124–128], and pKa values [129–133]. Such types of calculations predict well
short-range effects such as hydrogen bonding but produce incorrect results for the long-
range effects computation. Furthermore, due to the increased complexity of the system,
i.e., reactant/product + several solvent molecules, the computational costs are high.

4.2.3. Hybrid Models

To combine the strong sides of implicit and explicit solvation models, some hybrid
approaches have been developed. Typically, such types of models treat first the solvation
sphere explicitly while treating the surrounding solvent by an implicit model. Another
approach is to account for the inner solvation shell by quantum mechanical models, and
the outer solvation shell is covered classically. The latter approaches are the so-called
QM/MM methods.

A realistic description of a chemical reaction in solution requires the sampling of all
possible configurations of the solvent molecules around the solute, which can be achieved
through molecular dynamics (MD) simulations. The reader is referred to previous work
on the description of the principles of MD simulations as such [134]. For large systems,
the computational costs are too high though. The efficiency of MD simulations of large
solute–solvent systems can be greatly improved with a “multiscale” approach in which
the solvent molecules in the first solvation shell are obtained using a quantum mechanical
(QM) description, while the long-range effects are approximated by implicit solvation [135].
A more complex model uses the same QM description for the closest solvent molecules but
describes the rest of the system explicitly with molecular mechanics (MM).

Originally, the systems studied with QM/MM were biomolecular proteins or other
relatively rigid systems [136]. Nowadays, there is an increasing interest in extending
the application of these QM/MM models to highly diffusive systems (e.g., homoge-
neous/heterogeneous catalysis and chemistry of solvated systems) [137–143]. Several
QM/MM solvation models have been developed for this purpose, providing a similar level
of accuracy [144]. Chemical reactions involving charged or zwitterionic intermediates are
especially strongly affected by solvent. The intermediates are stabilized in polar protic sol-
vents, while they are destabilized in apolar solvents, often yielding different mechanisms.

The extension of the COSMO model toward a hybrid model is COSMO-RS [109,145],
which is the statistical thermodynamics theory based on COSMO polarization charge
densities. This model overcomes many of the limitations of dielectric continuum models
such as PCM and COSMO. As this model gives the possibility of treating mixtures at
variable temperatures, it is widely applicable for chemical engineering as well as physical
and medicinal chemistry. COSMO-RS may currently be considered the most accurate
model for the prediction of solvation energies as well as the description of solvation effects
for intermediates. The transition states provided by COSMO-RS can be seen as rather
consistent as well.

4.2.4. Advantages and Disadvantages

Each method of accounting for the solvent–solute interactions has certain advantages
and disadvantages, as gathered in Table 1. Typically, a balance between the accuracy and
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the computational costs exists. If a solvation model is selected for a particular system, the
user should keep in mind the specific features of the molecular model under investigation
and the targeted accuracy. In certain general cases, application of the most simple models
provides good qualitative agreement with the experimental data and reveals additional
features of the specific reactions. For more advanced applications, e.g., prediction of the
kinetic rate coefficients or revealing the effect of specific interactions, more complicated
models should be employed. Notably, in the case study section (Section 6), it is illustrated
how the application of solvation models influences the results of QCC in terms of agreement
with the experimental data.

Table 1. Comparison of explicit and implicit solvent models for GCC.

Explicit Models Implicit Models

Features All solvent molecules are
explicitly represented.

Representation of solvent as
a continuum.

Advantages

Realistic physical system description.
Detailed interaction modeling
is provided.
High accuracy of calculation.
Full details on the
molecular geometry.

Simple.
Low computational costs
No explicit solvent atoms.
High level of theory is possible due to
low computational costs.

Disadvantages

Expensive for computation.
Long iterative cycle required to
equilibrate solvent to solute.
Often solvent and solute are not
polarizable.
Large fluctuations in calculation
results due to use of small
system size.

Ignoring of specific short-range
effects. Less accurate.
Need to define an artificial boundary
between the solute and solvent.
No “good” model for treating
short-range effects (dispersion
and cavity).

5. Connection of Lower-Scale Modeling with Higher-Scale Modeling

In TST, emphasis is on the calculations of the intrinsic rate coefficients (k values) at
given temperatures. Thus, infinitely fast diffusion is assumed if one simply defines the
related intrinsic rates in the next phase to describe concentration changes. For gas-phase
kinetics, this can be reasonable, but for condensed-phase kinetics with high viscosities as
in polymerization, this is not the case.

The most convenient way to account for this viscosity effect is to replace the intrinsic by
apparent rate coefficients, the latter being a function of the intrinsic rate coefficients and the
diffusivity of the reactive species involved. One of the most common approaches to evaluate
the apparent reactivity is the so-called parallel encounter pair model, which assumes that
molecules have to diffuse toward each other (k+diff) to form a so-called encounter pair
before the actual reaction step (kchem) occurs. In general, all stages of polymerization
(initiation, propagation, termination, . . . ) are influenced by diffusional limitations. For a
more detailed description, the reader is referred to following references [146–150].

An additional step toward more detailed kinetic modeling is the accounting of the
non-isothermicity of the reactor. For example, most (radical) polymerization kinetic model-
ing studies focus on simplified (theoretical) isothermal conditions and/or consider only
ballpark values for the Arrhenius parameters. In a recent study, Edeleva et al. [151] in-
troduced the first kinetic Monte Carlo (kMC) model featuring an energy balance for a
small-scale (two liter) perfectly mixed batch reactor with the explicit accounting of energy
conservation in the presence of a cooling medium. As the reactor size was small and the
solution conditions had been selected, perfect macro-mixing could be safely assumed.

However, the desire to model any reactor size requires at some point corrections
for macro-scale variations. Note that also meso-scale variations could matter if one has
particulate polymerization processes; however, in view of the scope of the present work,
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this scale is not considered, meaning that either the particles are sufficiently large to assume
“bulk” reactor behavior or such particles are absent.

For the modeling of the macro-scale, two main approaches exist, i.e., compartment
modeling and computational fluid dynamics (CFD). One of the more recent compartment
modeling strategies to cover kinetics is the one of D’hooge et al. [152], as illustrated for
atom transfer radical polymerization with electrodes, with conceptually similar calculations
at meso-scale for droplet sizes in suspension polymerization in the work of Dompazis
et al. [153]. The CFD-based methods have been recently reviewed by Drikakis et al. [154]
and Pan et al. [155]. The contributions by Xie and Luo, who performed numerous studies
of the polymerization reactors by means of hybrid CFD-based models, are notable as
well [156,157].

In addition, for industrial application, one strives to unlock the possibility of fed/semi-
batch reactor operation. In particular, Lemos and Pinto [158] have coupled kMC modeling
with residence time distributions to model continuous stirred tank reactors in a hybrid
analytical/stochastic manner. In the series of articles by Hutchinson et al., solution kMC
models have been expanded toward semi-batch reactors with instantaneous addition of
the reactants at predetermined times [159–164]. This method is efficient for non-starved
feed conditions and for abundant chemical components. D’hooge et al. [165] have reported
a similar kMC model for controlled radical polymerization (CRP) processes aiming at the
production of “forced” gradient copolymers. On the deterministic front, Luo et al. [166]
reported a reversible addition fragmentation transfer (RAFT) polymerization model ac-
counting for inlet streams to the reactor to produce hyperbolic, parabolic, and linear
gradient polymers.

For completeness, it is mentioned here that force-field modeling can contribute to
filling the gap between atomic-level calculations and dynamics of the chemical systems on
a higher scale. Among others, reactive force-field (ReaxFF) [167] can be mentioned. It com-
bines a QCC approach for guidance to the atomic-level effects with empirical interatomic
potentials within a bond-order formalism describing dynamic processes over longer time
frames and on larger scales. This method is particularly useful for the calculations of the
chemical reactions, as other force fields can produce less reliable results in the modelling
of changes in atom connectivity, as bonds break and form through chemical reactions.
In ReaxFF, connection-dependent terms in the force-field description are included, thus
allowing for simulations of the chemical reactions. ReaxFF is not universally applicable,
but the method has its merits for large-scale systems and calculations of a more qualitative
nature. The special application of ReaxFF is the calculation of inter-phase events, making
this method popular for biological processes [168,169], catalysis [170,171], and transport
phenomena in energy storage applications [172,173].

In all the discussed models in this section, one still needs the intrinsic values. Some-
times, larger-scale phenomena fully mask the intrinsic effect (e.g., strong diffusional limita-
tion on radical termination), but in general, the intrinsic rate coefficients have still impact.
In other words, the reliability of the larger-scale models relies on these intrinsic values,
again highlighting the need to further develop GCC and to connect GCC with larger-scale
modeling studies.

6. Case Studies for Connection of Computational Chemistry and Kinetic Modeling

In the present section, it is explained that a correct GCC implementation is relevant to
enable a correct description of four case studies on polymerization kinetics. It is assumed
that no particles are present and no macro-scale effects are active. Hence, a micro-scale
kinetic modeling approach is applied. A fifth case study is also included as well in which
GCC is directly linked to material properties.

6.1. Case Study 1: Radical Polymerization

In general, the mechanism of free-radical polymerization (FRP) with vinyl monomers
involves initiation, propagation, and termination reactions, as shown in Figure 4 (top left).
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For particular families of monomers, e.g., acrylates, a number of monomer-specific sec-
ondary reactions may occur as well (Figure 4; top right). Typically, the activation energies of
the secondary reactions are sufficiently higher than the ones of the primary reactions, which
decreases their occurrence at lower temperature but increases their relative importance
upon temperature increase. Furthermore, as they occur simultaneously with the primary
reactions, their kinetics are hard to measure. That is the reason why numerous kinetic
models neglect these secondary reactions.

Figure 4. Primary and secondary reactions in free radical polymerization (FRP); specific focus is on
the FRP of acrylates; also included are the extra reactions if one goes from FRP to controlled radical
polymerization (CRP).

In a recent study, Edeleva et al. studied the influence of secondary reactions on the
kinetics of FRP of n-butyl acrylate (nBA) via a kMC model. It was demonstrated that the
impact of the secondary reactions is pronounced already at intermediate temperature, and
thus, radical polymerization reaction schemes should be detailed. Secondary reactions in
the studied process contribute not only to the retardation of the overall polymerization
kinetics but also alter the structure of the final polymeric molecules. The latter leads to the
sufficient differences in the material properties between the polymer synthesized at low
and high temperature.

Figure 4 (bottom left) also highlights the transition from FRP to CRP. In CRP, one
can temporarily deactivate radicals in dormant species so that in the pool of primary
reactions, one also has activation and deactivation. The bottom right of Figure 4 also depicts
(secondary) chain transfer reactions that are unavoidable in any radical polymerization
process, although under CRP conditions, they can be minimized. In what follows, an
overview is given of relevant modeling contributions in which the reactions in Figure 4 are
addressed [14,23,146,174–183].

6.1.1. Initiation

Dossi et al. [184] investigated the initiation rate coefficients for four monomers that
are relevant for industrial FRP (methyl acrylate, methyl methacrylate, acrylonitrile, and
styrene) using five widely used initiators (azoisobutyronitrile, di-tert-butyl peroxide, potas-
sium persulfate, 2,2-dimethoxy-2-phenylacetophenone, and dibenzoyl peroxide). The
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rate coefficients of the initiation reaction were obtained using DFT calculations. Upon
comparing to the experimental values, the calculated rate coefficients are accurate enough
despite the absence of solvation correction. The influence of the solvent was accounted for
via an Evans–Polanyi–Semenov correction upon linking the calculated enthalpies with the
experimental activation energies.

Another example of the application of QCC is the study of the self-initiation pro-
cess performed by Srinivasan et al. [185–187], who developed the methodology for the
theoretical investigation of 2-2′, 2′-4′, and 4-4′ cycloaddition reactions of monomers
that are involved in the self-initiation mechanism. This work has been followed up
by Lui et al. [188], who coupled DFT calculations with nonadiabatic TST to develop the
methodology for the energy barrier calculation of the reaction involving spin cross-over.
Eventually, Laki et al. [189] compared the experimentally derived self-initiation rate coef-
ficients for acrylate monomers with the ones predicted theoretically. Experimentally, the
process of radical self-initiation may compete with initiation with impurities, thus being
difficult to measure. Consequently, QCC provide valuable insights into self-initiation. The
data can be considered even more reliable than the experimental data, as the latter are
prone to the influence of impurities, which are nearly impossible to avoid.

6.1.2. Propagation (Non-Aqueous)

As propagation is the determining step in polymerization, accurate determination
of the propagation rate coefficient is crucial. A number of experimental approaches exist
to study the propagation reaction in radical polymerization; among them, pulsed laser
polymerization with size-exclusion chromatography analysis (PLP-SEC) has been the most
studied [190–197]. If an experiment is performed, the secondary reactions can influence the
measurement of the selected propagation, leading to the inaccurate determination of the
rate coefficient. In turn, computational studies of the propagation reaction are free from
the impact of secondary reactions and thus can give important insights into the influence
of the reaction conditions on the reactivity, e.g., solvent effects, pH, and hydrogen bonding.

Heuts et al. [69,70] predicted the absolute rate coefficients in FRP of ethylene with TST
in the mid-1990s, accounting for the effect of internal rotations on the partition functions. In
this contribution, the authors studied the chain-length dependence of the calculated propa-
gation rate coefficient, showing that it converged by the hexyl radical stage. The accuracy
of the prediction can be (insufficiently) increased further in case more advanced coupled
internal rotation is considered, as developed by Van Speybroeck et al. [198,199]. Later on,
Deglmann et al. [200] developed a methodology for the determination of propagation rate
coefficients by the DFT method with the COSMO-RS solvation model. They benchmarked
their theoretical results for most relevant monomers with the PLP-SEC data. The authors
concluded that with the appropriate level of theory and suitable molecular models (up to
200 atoms), it is possible to predict the activation energies for propagation within 4 kJ/mol
accuracy, which is a typical experimental error. Applying ab initio calculations with the
COSMO solvation model, Izgorodina et al. [201] was able to achieve good agreement for
the calculated and experimental values for acrylonitrile and vinyl chloride, even with small
molecular models (e.g., 5 monomer units). However, upon studying the propagation of
methyl acrylate and vinyl acetate, these authors pointed out that DFT methods for the
gas-phase energies and simple continuum models for the solvation energies can lead to
errors of several orders of magnitude. Therefore, such simplified strategies should be
avoided for the general QCC of propagation reactions [202].

Theoretical investigation of the propagation reaction becomes specifically relevant if
several propagation pathways are possible, e.g., head-to-tail and head-to-head monomer
addition, or several types of propagating radicals exist simultaneously, such as for acrylates
with end-chain radicals (ECR) and mid-chain radical (MCR) participating in the propaga-
tion. One can refer here to the work of Van Cauter et al. [203], who studied theoretically the
head-to-head addition in vinyl chloride polymerization. The authors compared calculated
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and experimental relative sequences of head-to-head contents in polymers. They concluded
that the ab initio calculations correctly predict this type of defect in the polymer structure.

The ab initio calculated propagation rate coefficients can also be inputted rate coeffi-
cients for kMC models in case of polymerization systems with a large number of reactive
species. This has been demonstrated by Desmet et al. [66], who were able to model the PLP
of vinyl acetate, inputting theoretical values of the reactive species.

Currently, acceptably accurate propagation rate coefficients have been reported for
the monomers: styrene, methyl acrylate, butyl acrylate, ethyl acrylate, hydroxyethyl
acrylate, methyl methacrylate, butyl methacrylate, glycidyl methacrylate, 2-hydroxyethyl
methacrylate, vinyl acetate, vinylidene fluoride, hexafluoropropylene, and tetrafluorethy-
lene [200,201,204–215].

Upon the calculation of propagation rate coefficients, one always has to explicitly
consider the stereoselectivity of the propagation reaction. Tacticity control in FRP can be
an important topic, since it affects the material properties of the polymers such as the
mechanical strength, the melting and glass transition temperatures, or solubility. However,
at first sight, most of the polymers produced by FRP lack tacticity and are mostly atactic
polymers, since the propagation typically occurs through the sp2 planar radical species,
inevitably leading to racemization. QCC calculation can be helpful to check this hypothesis.
For example, Değirmenci et al. [207] reported a solvent effect for propagation with methyl
methacrylate and the tacticity, which was related to the usage of methanol and (CF3)3COH
as solvent. The formation of syndiotactic-rich polymer was the consequence of hydrogen
bonding between the carbonyl oxygen of the monomer and alcohol’s hydrogen in the
transition structures. The stabilizing effect of the (CF3)3COH on the transition structures
has been attributed to the relatively higher steric effect of the solvent molecules and stronger
hydrogen bond formation as compared to methanol as solvent. These results were obtained
by application of PCM as the solvation model.

More examples of PCM application for QCC regarding the stereospecific propagation
are given by Kayık et al. [216], who studied the radical polymerization of a series of 3 N,N-
alkylacrylamide monomers. The authors were able to explain the favorable stereospecific
addition modes by the interplay between the steric effects and the hydrogen bonding inter-
actions. In another study by Özaltın et al. [217,218], the tacticity of N-isopropylacrylamide
(NIPAAm) was modeled to understand the solvent effect via a combined explicit/implicit
model. Such a sophisticated calculation technique provided the insight that the solvent ei-
ther accelerates the propagation step by the stabilization of the transition state or enhances
the tacticity by forming a complex that brings C=O and –NH groups to a closer proximity.

An interesting case is the FRP of ethylene. While the polymerization is carried out at
high temperature and pressure (up to 350 ◦C and 3000 bar), it cannot be fully considered
a gas phase process. Nevertheless, it is often studied via gas-phase computational tools.
Heuts et al. [69] developed a method based on ab initio calculations and TST to access
the kinetic rate coefficients for the ethylene polymerization. The authors highlighted the
importance of the molecular model selection and suggested a hindered transition state in
this reaction. Their results were in good agreement with the experimental data, suggest-
ing a small influence of solvation when monomers are apolar. Konstantinov et al. [219]
performed a computational study of the propagation rate coefficients and Arrhenius pa-
rameters for the ethylene FRP employing unimer, dimer, trimer, and tetramer models of the
polymer chain. The calculations indicate that except for the unimer, little change occurs to
the activation energy and pre-exponential factor as the system size increases. However, the
direct comparison with the experimental results of Buback et al. [220] and Goto et al. [221]
is not straightforward, as the activation volume needs to be calculated accurately to account
for the pressure effects. However, the authors were able to achieve good agreement for the
tetramer models. The theoretical calculations of the ethylene propagation have additional
complexation of the reaction path degeneracy, four of which arise from the symmetry of
the molecule. The overall reaction rate coefficient is the sum of the rate constants along
all trajectories with the appropriate reaction path degeneracy. Konstantinov et al. [219]
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accounted for that as well, showing that about 30% of the total rate parameter is attributed
to the “anti” transition state, which is higher in Gibbs free energy. The convergence of
the kp calculation results for molecular models larger than 4 is also pointed out by Van
Cauter et al. [222].

Ethylene is typically copolymerized with other monomers; thus, the access to the
reactivity ratios is important. Van Speybroeck et al. [223] screened several theoretical
approaches to the calculation of the addition rate of methyl, ethyl, propyl, and butyl radi-
cals to the ethylene molecule, which is an important step of copolymerization. Similarly,
Filley et al. [224] used ab initio calculations to estimate the reactivity ratios in ethylene−vinyl
acetate free-radical copolymerization. The authors found the small influence of the penulti-
mate unit in this particular case.

6.1.3. Propagation (Aqueous)

The solvent starts to play an important role in the mechanism of radical polymerization
if some specific interactions between the monomer and the solvent exist. This is the case of
for FRP in the aqueous phase. For the theoretical investigations of such systems, special
attention should be paid to the modeling of the solvent–solute interactions via application
of the solvation models. As an example, Thickett and Gilbert [214] applied PCM to the
polymerization of acrylic acid in toluene and water. They obtained a lower activation
energy for the polar aqueous medium, which is due to the better resonance stabilization
of the transition state. Although a remarkably good agreement with experimental rate
coefficients is reported in these contributions, it is clear that such approaches will not
be able to describe, for example, monomer concentration effects in aqueous solution
polymerization.

An overview of the potential of QCC for solvent and concentration dependencies of propaga-
tion rate coefficients for aqueous monomers was recently given by Deglmann et al. [200,225,226].
The authors claimed that the relative changes in rate upon transition from one medium
were in good agreement with the experimental trends in cases where the COSMO-RS
model was applied. Furthermore, with the COSMO-RS model, Kröger et al. [227] predicted
the rate coefficients and reaction enthalpies of the propagation reactions in aqueous N-
isopropylacrylamide/N,N′-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N′-
methylenebisacrylamide systems with an accuracy of a factor of 2–10 compared to the
experimental values. By analyzing the effect of rate coefficients on the microgel formation,
the authors concluded that the differences in the magnitude of the propagation rate values
are a reason for an inhomogeneous cross-linker distribution within the resulting microgel.

6.1.4. Termination

An interesting application of QCC for termination reactions is the possibility of dis-
tinguishing between recombination and disproportionation. Indeed, if the termination
occurs via recombination, the resulting polymer has the length of the sum of the two parent
polymer chains, whereas in the disproportionation mechanism, the chain length of the
“dead” polymer chains remains equal to those of the parent chains. Thus, the preferable
termination mechanism affects significantly the number-average molar mass Mn. As the
structures of the products differ in case of termination by recombination and dispropor-
tionation, QCC can distinguish between these two pathways and provide the evidence for
the preferable reaction to occur. In fact, some authors [228,229] point out that the transition
states have different geometries for recombination and disproportionation.

A debate specifically exists for acrylic monomers. While it is commonly accepted
that for acrylates, recombination is predominant, Bamford et al. [230] reported dispropor-
tionation to be the favorable pathway. Nakamura et al. [231,232] used both experimental
methods and theoretical calculations to investigate the termination mode for the methyl
acrylate monomer. The authors concluded that at ambient temperatures, disproportiona-
tion is the predominant mechanism.
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6.1.5. Secondary Reactions

The continuously increasing QCC potential allows the extension toward secondary
reactions in radical polymerization. The investigation of such reactions can be motivated
by two main reasons. The overall kinetics can be significantly influenced, and they can be
the cause of deviations from the desired polymer properties and molecular structure. As
shown in Figure 4, the reactions most relevant to FRP are the following: intermolecular
hydrogen abstractions, backbiting, chain transfer to small molecules (solvent, monomer, or
chain transfer agents), propagation of mid-chain radicals (MCRs) formed in backbiting,
and β-scissions of these MCRs.

Theoretical investigation of the secondary reactions is obstructed by the absence of
reliable experimental data for benchmarking for a broad monomer set. Nevertheless, QCC
can provide useful information on the occurrence of a particular side reaction and the
relative rate of it compared to main reactions. An example can be given by the work of
Cuccato et al. [233], who studied the secondary reactions in FRP of n-butyl acrylate. For
the backbiting reaction, the authors considered 1–3, 1–5, 1–7 and 7-3 possibilities. They
concluded that 1–5 backbiting is favored, due to the stabilized 5-membered ring structure
of the transition state. Furthermore, they concluded that 7-3 backbiting is also possible thus
supporting the occurrence of radical migration in the FRP of n-butyl acrylate (at least under
conditions with low monomer amounts). With the help of QCC, Yu et al. [234] provided
the kinetic rate coefficient for the 1:5 backbiting reaction as well.

Backbiting and subsequent β-scission are also relevant for other monomers, as high-
lighted by Dossi et al. [235] for acrylonitrile. Using the 7-monomer unit models, the authors
calculated the rate coefficients of backbiting and β-scission. The important finding here is
that the authors suggest similar activation energies for β-scission to the “right” and to the
“left” of the MCR, which is similar to acrylic monomers.

Another important reaction that contributes to the formation of the long-chain-
branched polymers is chain transfer to polymer. QCC provides some insights into the
kinetics of this reaction in case of alkyl acrylates, as presented by Moghadam et al. [236].
The abstraction of a hydrogen atom from a tertiary carbon atom was found to be the most
favorable chain transfer to the polymer mechanism in alkyl acrylates. It is interesting to
note that with the COSMO solvation model, the authors observed only a small influence
of solvent on this reaction. Overall, it can be concluded that QCC has been applied for
rate coefficients for secondary reactions with acrylic and methacrylic monomers [210,237],
acrylonitrile, [235,238], and vinyl chloride [203,239,240].

6.1.6. Controlled Radical Polymerization

QCC can give useful insights for the design of novel and more effective CRP-mediating
agents, as they link the kinetic parameters to the (electronic) structure of the reactive species
involved [241,242]. QCC have been successfully employed to identify structure–reactivity
trends within series of mediating agents for RAFT polymerization, nitroxide-mediated
polymerization (NMP), and atom transfer radical polymerization (ATRP). They enable
assessing the suitability of the candidate-mediating agents for a given monomer, limiting
experimental efforts. In case of some secondary reactions, structure–property correlations
based on QCC can provide guidance for minimization of the side reactions’ impact as
well. Hereafter, we showcase several examples of QCC applications for ATRP, RAFT
polymerization, and NMP with particular focus on accounting for the solvent effects.
Note that related to ATRP, so-called single electron transfer–living radical polymerization
(SET-LRP) has been put forward as well [243,244]. The current work is limited to ATRP
mechanisms in order to not overcomplicate the discussion.

The number of theoretical studies for RAFT polymerization is significant. For as
long as this polymerization technique has been developed [245], QCC calculations have
been employed to obtain mechanistic insights, reveal the factors influencing the addition-
fragmentation equilibrium, as well as develop low computational cost screening procedures
for the investigation of the RAFT agents [246–251]. QCC has specifically assisted in the
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identification of new fragmentation pathways in RAFT polymerization [252] and recently
led to the first computer-designed RAFT agent [253,254].

As the mechanism of RAFT polymerization relies on the exchange between active
and dormant species, the selection of the RAFT moieties is important for the synthesis
of well-defined polymers [183,255–258]. The efficiency of RAFT agents is attributed to
their transfer coefficients, which determine the interchange potential between dormant
and living chains. Chemically, the selection of the Z and Y group in transfer agents (see
Figure 4) is crucial to drive the polymerization success. For example, via two contribu-
tions, Rodríguez-Sanchez et al. [259,260] performed theoretical studies of the influence of
the RAFT agent structure on the kinetic parameters. They pointed out that the reactiv-
ity is determined by both Z and Y groups, and they presented several RAFT structure-
polymerizable monomer correlations. It has been further indicated that the Z group of
RAFT agents determines which monomers they can adequately control. The more active
dithioesters and trithiocarbonates control the polymerization of so-called “more activated
monomers” (MAMs), whereas the less active xanthates and dithiocarbamates control the
polymerization of “less-activated monomers” (LAMs) [261]. Thus, a drawback arises for
poly-MAM-block-poly-LAM. In this context, high level QCC have predicted that a fluorine
Z group (so-called F-RAFT agent) should provide good control over the polymerization of
both MAMs and LAMs [253]. The fluorine Z group is predicted to destabilize the RAFT
intermediate radical, promoting its fragmentation. At the same time, the reactivity of
the thiocarbonyl group should not be affected significantly. Notably, some experimental
studies confirmed the efficiency of these F-RAFT agents [254,262].

For completeness, it is mentioned here that an alternative approach for RAFT poly-
merization of LAMs and MAMs has been introduced by Bengalia et al. [263]. These authors
proposed the application of protonable (so-called switchable) RAFT agents with a 4-pyridyl
substituent. The protonation/deprotonation of the latter affect the stabilization of the RAFT
intermediate radical, allowing the efficient polymerization of various monomers [264].

For NMP, QCC have also been applied. Specific focus has been on H-transfer reactions
in the NMP of methacrylic monomers, the thermal instability of nitroxide, and reactions
with oxygen. More in detail, one of the side reactions that lead to the loss of the NMP-
controlled regime is the N-O bond cleavage in alkoxyamines. This process was observed
experimentally for several types of nitroxides [265,266]. Upon investigating the homolysis
of alkoxyamines by DFT, Gaudel-Siri et al. [267] noticed that N-OC bound homolysis can
occur at elevated temperatures. However, it was observed that DFT showed large varia-
tions from the experimental bond dissociation energies (BDEs), although they were able to
model the NO-C versus N-OC competition successfully. An extensive theoretical research
of the N-OC bound cleavage in alkoxyamines was performed by Hodgson et al. [268],
who investigated five- and six-membered cyclic alkoxyamines as well as linear ones. The
authors accounted for the effect of the solvent by PCM and COSMO-RS models. The
authors concluded that the N-OC bond cleavage is favored for the structures with the sta-
bilized aminyl radical. Furthermore, the authors formulated an important methodological
guidance for the theoretical investigation of such reactions with high accuracy.

Another example of QCC application for the investigation of secondary reactions
is presented by Parkhomenko et al. [269], who performed an extensive investigation of
intra-molecular rearrangement of model compounds to study the H-transfer reaction by
DFT. The authors optimized the geometry of the transition state and obtained insights
into the reaction mechanism, showing that the C-ON bond homolysis competes with
intramolecular rearrangement. The experimental observation of the latter depends on the
differences in the activation energies of the primary and side reaction. As the solvation
model, the authors employed PCM, which allowed them to study the solvent effect as well.
Gryn’ova et al. [270] used the high-level ab initio method in combination with COSMO-RS
to model the solvent effects to calculate the reaction rate coefficients of the intermolecular
H-transfer for five systems. The intramolecular reaction was shown to be kinetically
disfavored. However, even its minor occurrence leads to unsaturated chain ends in the
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final polymer and decreases the living fraction. QCC assisted as well the development of
the effective NMP agents with tunable reactivity [177,271–273].

QCC has been employed extensively for ATRP as well. ATRP has expanded signifi-
cantly since its development [274–276], providing a wide range of catalytic systems, ligands,
and experimental conditions. Nevertheless, copper-catalyzed ATRP (Cu-ATRP), i.e., the
classical system, remains the most extensively applied and investigated one, as it allows
polymerizing a wide range of monomers, using various initiators and solvents. Control of
the polymer chain growth via Cu-ATRP is largely attributed to the activation/deactivation
(pseudo-)equilibrium between [CuIL]+ and [X–CuIIL]+ species, with L being a multidentate
nitrogen-donor ligand and X being a halogen atom. The CuI species activates the dormant
alkyl bromide chain end (see Figure 4, bottom left, with X=Br) to form a CuII complex
and a propagating polymer radical. The latter propagates before it transfers the X atom
from the CuII complex to reform a dormant species. For a polymerization being controlled
and maintaining a reasonable rate, the ATRP catalyst system should have large activation
and deactivation rate coefficients with the latter being the highest. These two coefficients
depend on the structure of the halide, which is determined by the monomer being poly-
merized, and the structure of the ligand employed in the catalytic system.

For the ATRP-initiating systems, the strength of the C-X bond is important. Gillies et al. [277]
employed DFT calculations to quantify the BDEs in a number of ATRP initiators and
provided access to equilibrium coefficients. They observed good agreement between the
calculated and experimental values. Lin et al. [206] researched the optimization of these
initiators, taking into account the penultimate effect. The penultimate effect in ATRP is es-
pecially important for the activation–deactivation of the dormant species. Dormant species
with more than one monomeric entity generally display a higher activation rate coefficient
than the initiator. Lin et al. [206] investigated the magnitude of this effect on dimers in-
volving methacrylate, methyl methacrylate, and propylene comonomers by calculating the
BDE values. These authors observed that the penultimate effect was more pronounced
in the methyl methacrylate systems. This means that dimeric initiators are much more
efficient than the monomeric ones in the ATRP of MMA. In a later work, [278] the same
group of authors screened many alkyl halides, employing the solvent corrections via PCM.
The more advanced level of the calculations allowed for the more precise construction of
the potential energy surfaces and unveiled the relevance of the primary and secondary
reaction pathways.

The understanding of the effect of the ligands is also important for ATRP optimization.
In this context, Tang et al. [279] and Fang et al. [280] recently provided structure–properties
correlations. Finally, as in RAFT and NMP polymerization, QCC can be used to design
highly efficient ATRP catalytic systems, optimize experimental conditions, and construct
structure–properties correlations, as for instance exemplified by Woodruff et al. [281].

6.2. Case Study 2: (Metal Complex Catalyzed) Polymerization of Olefins

The core of QCC for polymerization lies in the prediction of the (intrinsic) reactivities.
In the area of olefin catalytic polymerization, the main applications are in the assessment
of reactivity for the classes of monomers and screening the activity of homogeneous and
heterogeneous catalysts. The detailed advances in theoretical studies of catalytic polymer-
ization are presented in the reviews of Ehm et al. [282] and Kang et al. [283]. A special
case is the chain transfer-to-solvent reaction. The advances of the computational chemistry
in that field have been recently reviewed by Zaccaria et al. [284]. In this subsection, for
illustration purposes, a selected number of QCC examples are included for ionic poly-
merization with the special emphasis on solvent effects. A distinction is made between
monomers and catalysts. The main steps of the catalytic olefin polymerization are shown
in Figure 5.
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Figure 5. The main steps of catalytic olefin polymerization, as showcased with ethylene.

6.2.1. (Co)monomers

In a series of contributions by Kaufman et al. [285–287], QCC have been employed
to investigate the mechanism of cyclic oxetane-based monomers. The reactivity in the
cationic polymerization of these types of monomers is screened on the basis of the electro-
static molecular potential contour maps constructed via ab initio calculation with explicit
accounting for a proton in the calculations. It has been found that the rate of cationic
polymerization is proportional to the basicity, the base strength of the monomer, and the
ring strain. The basicity was linked to the sizes of the negative regions on the map around
the O atom. Experiments afterwards confirmed the relative reactivities of the theoretically
studied monomers.

In a more recent study, Hlil et al. [288] addressed the reactivity of five- to eight-
membered cyclic olefins in ring-opening metathesis polymerization with ruthenium cat-
alysts, which are second-generation Hoveyda–Grubbs catalysts. They studied the poly-
merization in dichloromethane (DCM), toluene, and tetrahydrofuran (THF), applying DFT
coupled with the SMD solvation model. The authors pointed out that all studied solvents
reduce the energy of the intermediates and transition states equally.

It should be further put forward that the efficient copolymerization of ethylene with
substituted polar monomers remains challenging due to the difference in the reactivity
with typical catalysts. Chen et al. [289] address this problem via QCC investigation of the
organoscandium-catalyzed ethylene + amino olefin copolymerization mechanism. PCM
was used to account for the solvent effects. It was found that the copolymerization activity
is largely governed by intermolecular amino olefin N-coordination with the catalyst.

6.2.2. Homogeneous and Heterogeneous Catalysts

Catalyst development for ionic polymerization is one of the cutting-edge applications
of QCC, as it allows estimating the catalyst reactivity prior to the actual synthesis. Fur-
thermore, QCC provides guidance for the applicability of particular types of catalysts for
the polymerization of functional monomers and for the model-guided synthesis of the
catalysts with targeted properties.

With the help of DFT calculations, Vo et al. [290] determined for instance the initiation
and propagation pathways of the polymerization reaction of isobutylene via a catalytic
reaction with a Lewis acid catalyst (AlCl3) under aqueous conditions. The polymerization
medium was explicitly accounted for by including two AlCl3 and one water molecule into
the molecular model. Previously, it was assumed that AlCl3OH2 was the active species
during the catalysis of those types of reactions, whereas Vo et al. [290,291] showed that
the catalyst complex that is identified as the active species that catalyzes the initiation
and propagation has the structure of a complex with two AlCl3 groups and one H2O
group (AlCl3HOHAlCl3), producing highly acidic protons. The calculations are in good
agreement with the experimental data, as a reaction rate comparable to the one using
AlCl3HOHAlCl3 is observed.

Solvent effects are indeed important for the homogeneous catalytic systems, as pointed
out by many researchers [292–296]. From this point of view, Belelli and Castellani [297]
studied the Zr-based metallocene catalysts active sites employing PCM. The authors
concluded that the PCM simulates the solvent effect with higher precision, providing a
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correct description of the catalytic system as the simulation results followed the observed
experimental trends. Stability of the binuclear Zr based metallocenes was addressed by
Meelua et al. [298]. The authors showcased that the stability of the binuclear catalytic
complex is significantly affected by the solvent polarity through DFT calculations with the
SMD solvation model. Thus, in order to conduct olefin polymerization or cationic ring-
opening polymerization of polar cyclic monomers such as lactones and cyclic carbonates,
the solvent should be selected carefully.

In turn, Castro et al. [299] highlighted that both solvent and dispersion effects need
to be accounted for in the theoretical calculations for coordination polymerization. For
the Zr-based catalysts, they showed that the solvent correction via SMD only leads to
underestimation of the energetic barriers, whereas inclusion of solvent and dispersion
correction provides good agreement between the theoretical and experimental results.

In addition, for the heterogeneous Ziegler–Natta catalytic systems with TiCl4 and its
Lewis base complex on MgCl2 support, Cavallo et al. [300] studied the geometries of the
active complexes and binding energies in propylene polymerization. DFT calculations with
the COSMO solvation model provided structural information of the catalytic complexes,
and relative energies between the different Ti complexes can be calculated with a reasonable
accuracy. The crystalline structure of the catalysts and catalyst–support interactions are
also addressed via QCC, even though the reaction medium does not play a significant role.
Hence, the environment is typically calculated explicitly in those type of calculations. An
example is here the work of Correa et al. [301], who explored the crystalline structure of
TiCl4 catalysts on MgCl2 support.

The QCC results for metal–organic compounds should be treated with caution, as
certain difficulties exist that arise from the treatment of the exchange-correlation in SE.
Furthermore, the benchmarking of the calculated and experimental results is not always
straightforward, as good agreement can be sometimes due to the cancellations of the errors.
For the detailed summary of challenges existing in DFT for transition metal compounds,
the reader is referred to the works of Harvey et al. [302–304].

6.3. Case Study 3: Step-Growth Polymerization

Polymers produced via a step-growth polymerization mechanism form an important
class of materials with a broad application range. Among others, polyurethanes formed in
the reaction of isocyanates with alcohols are an important class of polymer materials. If
a urethane bond cleaves, a reversed to urethane formation reaction occurs, which can be
considered as a possible production route for some important isocyanates. This reaction
possesses a high energetic barrier, and the equilibrium is fully shifted toward the formation
of polyurethanes. The addition of catalysts alters the rate of urethane bond formation, thus
facilitating the polymerization process. Furthermore, a number of side reactions may occur
in isocyanate–alcohol systems, forming by-products.

As the mechanism of polyurethane formation is rather complex, it is not surprising
that computational studies can assist in the identification of acceptable reaction pathways.
For instance, one of the questions that has arisen is the mechanism of alcohol addition to
the isocyanate bond, as it can happen either through C=N or C=O bonds. In what follows,
some key QCC contributions are discussed that can be seen in a general context for other
step-growth polymerizations as well.

More in detail, with the help of DFT calculations and the PCM solvation model,
Cysewski et al. [305] studied the non-catalytic two-step mechanism with addition of the
hydroxy group of the alcohol molecule to the C=O bond of the isocyanate. They calculated
the activation energies of urethane formation in benzene and identified the structures of
the transition states and intermediates. Despite the high level of theory, only qualitative
agreement with the experimental data was achieved.

A series of studies by Samuilov et al. [306–308] addressed the mechanism of the
isocyanate–alcohol reaction for a number of isocyanates and alcohols via QCC with the
PCM solvation model. These reactions were considered to proceed via four-membered ring
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transition states. The results clearly show that the addition of the alcohol hydroxy group
to the C=N bond is favored compared to the addition to the C=O bond. The autocatalytic
role of the alcohol was pointed out as well. The mechanism of alcohol molecule addition to
the isocyanate bond is also addressed by Çoban and Konuklar [309], who computed free
energy profiles of bimolecular urethane formation in benzene based with PCM, and by
Raspoet et al. [310], who used the HF method for the calculation of the transition states, also
employing PCM. All authors agreed that the addition of a hydroxy group to the C=N was
more preferable and showed the importance of autocatalysis. Application of the hybrid
SMD model by Cheikh et al. [311] showed that isocyanates may also participate in the
autocatalytic pathway for urethane formation.

Gertig et al. [312] performed a computational study of urethane polymerization/
depolymerization coupled with the experimental study of urethane cleavage for non-
catalytic systems, assuming the reaction mechanisms presented in the literature. As the
authors aimed to study a broad range of reaction conditions, i.e., temperature, alcohol
concentration, and reaction medium, they employed the COSMO-RS solvation model for a
higher accuracy. The main goal was to evaluate the role of autocatalysis in the polyurethane
formation. The authors identified various transition states for the non-catalytic reaction
as well as for autocatalysis by the alcohol, showing quantitative agreement with the
experimental literature data with reasonable accuracy. They identified two main reaction
pathways in the autocatalytic route, i.e., autocatalysis by one and by two additional
alcohol molecules, corresponding to the reaction via transition states with six- and eight-
member ring structures. The latter seemed more important in non-polar media and at high
alcohol concentrations, whereas the reaction via transition states with six-ring structures
contributes strongly occurs in polar solvents and at low alcohol concentrations. The
contribution of the completely non-catalytic reaction to the overall observed rate of urethane
formation turned out to be negligible. It was also shown that for the depolymerization
reaction, autocatalysis also plays an important role. The mechanisms of the autocatalytic
urethane bond formation are presented in Figure 6.

Figure 6. Global reaction of urethane bond formation being the basis of polyurethane step-growth
polymerization. Mechanism of autocatalysis by alcohol molecules as explored by Gertig et al. [312].
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6.4. Case Study 4: Polymer Environmental or Aging Degradation

Due to light, heat, humidity, air, or a combination of those, many polymers undergo
degradation [313–321], as also shown in Figure 7. It can be either an undesirable process
that alters the polymer processing and causes the decrease in the (average) molar mass, or
it can be a targeted process if polymer recycling through depolymerization is considered.

Figure 7. Schematic representation of polymer degradation under environmental conditions starting
from H-atom abstraction with consecutive polymer chain β-scission.

Depending on the chemical structure of the polymer, different reactions can contribute
to the polymer degradation. For instance, if polyesters are considered, the β-scission
reaction at the ester linkage is the preferable mechanism. For polyolefins, radical degra-
dation is the preferable mechanism. The basic scheme for polymers in the presence of
oxygen, i.e., autooxidation, was originally developed by Bolland et al. [322–324] for rub-
bers and lipids. According to their scheme, the reaction of hydrogen abstraction from the
polymer by the peroxyl radical (ROO˙ + RH→ROOH + R˙) is the main event. However,
recently, Gryn’ova et al. [325] showed via QCC that this reaction has a large energy barrier
(10–65 kJ mol−1), which cannot be lowered neither by elevated temperature nor solvation.
To account for the effect of the solvent, the authors used the COSMO-RS model. In fact, they
observed lower BDEs in solution than in the gas phase. Furthermore, the authors showed
that structural defects are responsible for the autooxidation for most polyesters and most
polyalkenes. These defects, such as terminal or internal double bonds, are formed either
during polymerization or in the degradation process itself. Based on the main reaction
step in the degradation process, the authors proposed several mitigation strategies for
enhancement of the polymer stability.

Another important QCC application for the prediction of the stability and degrada-
tion mechanisms is the work of Okanishi et al. [326] focusing on polymer electrolyte fuel
cells, as the insight for the enhancement of the membrane stability should facilitate the
commercialization of these types of power sources. A typical membrane in a polymer
electrolyte fuel cell consists of polymers with a fluorinated backbone, preferably perfluoro-
sulfonic acid (PFSA) polymers, modified with sulfonic groups that facilitate the transport
of protons [326–329]. The degradation process can occur due to mechanical, thermal, and
chemical impact. Generally, it is assumed that the chemical degradation of a PFSA mem-
brane is caused by the attack of free radicals from hydrogen peroxide (H2O2), which is
formed naturally in the atmosphere. In order to find the degradation initiation step, the
BDE for the various bonds in the PFSA polymer’s structure was calculated [330–339]. On
the basis of that, the unzipping from the chain end mechanism was confirmed [340,341].
Interaction with solvent also plays an important role for the PFSA membranes, as they
change the conductivity.

Furthermore, to study the degradation mechanism of PFSA under the attack of OH
radicals, Yu et al. [342] employed the BP model to correctly take into account the charged
structures. The authors concluded that OH radicals attack the side chain of the polymer
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with the formation of sulfuric acid. The findings of Yu et al. are in good agreement with
experimental observations of the degradation products by 19F NMR and pH decrease [343].
The PCM model was also successfully applied by Panchenko [344] for the theoretical inves-
tigation of the degradation mechanism for sulfonated polyether(ether)ketone (sPEEK) and
polyethersulfone (PSU), which are also promising materials for fuel cell construction. The
author proposed a mechanism of OH radical addition to the aromatic rings of the polymer.

Another example of PCM solvation model application is the investigation of poly(3-
hexylthiophene) polymer degradation in organic photovoltaics [345]. The calculations
were performed for the polymers in a solid state. As these types of polymers are exposed to
intensive UV irradiation, their stability is crucial for the performance. Sai et al. concluded
that in the condensed phase, the degradation process starts with the radical attack on the
polymer side chain. The authors underlined that the application of the solvation model is
important for the correct conclusion, as the correction to the solid state (as a condensed
phase) completely changed the final calculation results.

It is interesting to note that application of the implicit solvation model did not af-
fect much the conclusions driven for the gas phase QCC made by Ebadi et al. [346] for
the degradation process of PEO, PVA, PEC, PTMC, PCL, polyethylenimine (PEI), and
polyacrylonitrile (PAN) host polymers in polymer/lithium batteries with proposed decom-
position pathways through Ccarbonyl–Oethereal and Cethereal–Oethereal bond cleavage. In fact,
the authors obtained reasonable results of the charged structures already with a simple
PCM model. This was also showcased by Xing et al. [347], who studied the stability of the
propylene carbonate under oxidative decomposition in the presence of anions in lithium
ion batteries. Anyway, in general, the PB model is more applicable if ionic structures are
considered. This was pointed out by Ma et al. [348], who addressed the stability of poly-
acrylamide (PAM)-based mining fluids toward degradation in saline for low pH solutions.
Thanks to the advanced calculation method, it could be concluded that both base- and
acid-catalyzed reactions have transition barriers in the range of 20–30 kcal mol−1, which are
much lower than the uncatalyzed reactions (40–50 kcal mol−1) under the neutral condition.
The calculation results support the experimental observation of enhanced PAM hydrolysis
in the presence of salts.

6.5. Case Study 5: Material Properties

QCC are primary applicable to the molecular level and then translated to study
kinetics and thus time dependencies. In some cases, this kinetic translation step is avoided,
and the “basic” QCC results can provide direct evidence of the material properties. To
make the reader aware of this QCC potential in the present subsection, emphasis is placed
on the examples of polymer batteries and capacitors, although polymers find a broad range
of application in microelectronics, as depicted in Figure 8 [349,350].

Figure 8. Application of polymers in electronic devices.
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6.5.1. Polymer Batteries

In the present section, focus is first on Li-ion batteries (LIBs) and then on electrode
developments, all in view of highlighting QCC potential. LIBs with non-aqueous liquid
electrolytes have made great advances in energy storage over the past few decades. Lithium
metal batteries (LMBs) pose even superior properties, as the development of solid polymer
electrolytes (SPEs) enhances their safety and energy density. The main components of
the battery element are the cathode, anode, and electrolyte. Extensive theoretical and
experimental investigations were carried out for understanding the chemical and physical
nature of the electrochemical processes taking place during charge/discharge processes in
batteries, thus contributing to the enhanced performance of the energy storage devices.

He et al. [351] specifically gave a general overview of the QCC development in
the field of battery materials. Allam et al. [352] reviewed machine learning DFT-based
methods for the development of electrode materials in LIBs. Yan et al. [353] focused their
review on the development of cathode materials and the QCC relevance. Wang et al. [354]
overviewed the research in anode solid electrolyte interphase modeling. A step forward in
the energy storage device development is the lithium–sulfur (Li-S) batteries development.
Furthermore, Yang et al. [355] reviewed the state-of-the-art in Li-S energy storage devices
enhancement. The computational studies of carbon nitride-based materials of energy
storage applications were discussed in the review by Adekoya et al. [356]. Considering the
interaction of battery molecules with the medium, in his review, Leung [357] pointed out
that the common method should be explicit modeling.

This QCC potential also follows from electrode design. The electrodes consist of a
radical polymer moiety in the conductive medium. Typically, the polymer contains nitroxyl
radical substituents that may easily undergo reversible oxidation, forming an oxoammo-
nium cation, or reversible reduction, forming an aminoxyl anion. As the performance
of the energy storage device depends on the above-mentioned electrochemical reaction,
certain optimization can be achieved via QCC. For instance, the methodology of redox
potential calculation is given in the paper of Moens et al. [358]. These authors put forward
the importance of the solvation model for accurate calculations, as exemplified by the
calculation of redox potentials with the PCM solvation model.

The methodology and accuracy of DFT/PCM calculation of nitroxides’ properties was
revised by Tanaka et al. [359]. The accuracy of the QCC toward the prediction of the redox
potentials of the radical substituted polymers was also addressed by Dardenne et al. [360],
who applied DFT with the SMD solvation model. The authors concluded this method to
be accurate and computationally less demanding so that it can be used for the prediction
of the organic polymer batteries. The mentioned approach (high-throughout DFT/SMD
modeling) was successfully applied by Cruz et al. [361] for phenazines as well, which
are a new class of organic compounds for electrochemical energy storage applications.
The authors screened 200 phenazine derivatives with electron-donating or -withdrawing
substituents at different positions in non-aqueous media. They concluded that depending
on the substituents and their position in the phenazine structure, the redox potential can
be varied within a significant range.

6.5.2. Capacitors

To improve the electrical energy storage devices’ performance, e.g., capacitive energy
density, breakdown strength, and dielectric constant, research has been aimed at exploring
new polymer nanocomposites, ferroelectric crystalline, or amorphous polar polymers.

For example, as shown by Ma et al. [362], polythiourea can be one of those promising
materials. In order to enhance the processability, some functional moieties are introduced
into the polymer backbone. DFT studies were used in the rational design of polythioureas
containing different chain segments. Then, further computational studies were applied
to calculate and compare electronic and dielectric properties. Lastly, a series of polymers
were actually synthesized and investigated in terms of dielectric constant and loss, band
gap, charge–discharge behavior, and DC breakdown strength. In order to increase the
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accuracy of the calculations and identify the three-dimensional structure of the polymers,
the authors explicitly accounted for van der Waals interactions.

Screening of the materials for the anode can also be facilitated with QCC. Cui et al. [363]
tested a polymer from polyarylimide and porphyrin as a new anode material for the aque-
ous zinc-ion hybrid capacitors (ZIHCs). Via DFT, they concluded that the Zn ion storage on
the porphyrin nitrogen sites of the polymers is irreversible. However, they can increase the
conductivity of the polymer and enhance the storage capacity of the device. This finding
was consistent with the performed electrochemical tests.

The most important part of capacitors is the dielectric medium, which can be polymer-
based. The strategies of polymer-based dielectric research via QCC are reviewed by
Wang et al. [364]. In this work, focus is on the typical DFT calculations used to determine
the properties of dielectrics, such as the dielectric constant and band gap by Wang et al. [365].
Nowadays, biaxially oriented polypropylene (PP) is the most common dielectric used
for high-energy-density capacitors, but the dielectric constant is low. Furthermore, the
properties of PP may be enhanced via introducing the OH groups. Therefore, DFT calcu-
lations are used to determine the effect of OH-functionalized PP and trapped moisture
inside the dielectric. As the authors aimed to simulate the oriented polymer, they selected
two “chains” arranged in head-to-tail configuration, thus accounting for the medium ex-
plicitly. Furthermore, one to two water molecules were added to the molecular system. The
average value of the total dielectric constant increased for the polymer and polymer–water
complexes upon comparison with the pure polymer. For PP, the total dielectric constant
could be completely attributed to electronic contributions, but the increase due to the
addition of OH groups could be linked to ionic contributions. Adding two H2O molecules
leads to the formation of an H-bonded ring containing two OH groups and the two H2O
molecules. It is important to mention that DFT thus clarifies the effect of the OH group and
the addition of H2O, but it does not take into account the morphological variations of PP if
functionalized with OH groups.

DFT calculations can also be used to obtain the band gap of different types of dielectrics.
For instance, research has been done to identify the relationship between the electronic,
ionic, and total dielectric constant with the band gap by Gonze et al. [366,367]. An inverse
relationship has been found between the electronic dielectric constant and the band gap.
This can be understood because the electric part of the dielectric response is a sum over
electronic transitions from occupied to unoccupied states. No relationship has been found
between the ionic dielectric constant and the band, as shown by Pilania et al. [368,369].
Thus, the total dielectric constant can be increased by increasing the ionic dielectric constant
without compromising the band gap.

7. Conclusions

QCC is becoming more and more a strong tool to support kinetic modeling studies.
With the development of novel software packages [370,371] and computational facilities,
QCC has become a standard tool for organic and polymer chemists and engineers. In the
present contribution, this has been specifically illustrated for polymerization (kinetics). In
the polymerization field, one needs the appropriate QCC overall methodology, focusing
on the correct oligomer approximation and the suited solvation model. Here, one can
distinguish between implicit, explicit, and hybrid models that all have their advantages
and disadvantages but jointly have allowed improving the mechanistic understanding of
polymerization reactions in the condensed phase.

Ideally, one inputs absolute data on rate coefficients via TST in larger-scale kinetic
models. Corrections for diffusional limitations due to viscosity increases are likely needed,
and during scale-up, macro-scale modeling is inevitable. The current work highlights
that in the following decades, much more advanced multiscale modeling tools will be
available, as a better embedding of the molecular scale will be in reach. With more
appropriate solvation models, one can for instance also study better dispersed phase
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polymerization in which in each phase reactive species will have different affinity toward
further chemical modification.

For chemistries in which QCC rate coefficients are less accurate, preference should be
given to the understanding of relative trends. In any case, both step- and chain-growth
mechanisms can be considered, as illustrated through various case studies.

It should be further realized that (intrinsic) rate coefficients are essential input param-
eters in kinetic models, with often the need of such coefficients for both main and side
reactions. The longer the model polymer chain, the more realistic the model, but the more
difficult it will be to obtain accurate and robust thermodynamic and rate parameters: the
many degrees of freedom regarding internal rotation and tacticity demand a large number
of calculations, and the entropy is more difficult to predict, particularly in the liquid phase.

In addition, new trends are expected. While automated structure prediction algorithms
exist and might assist in this regard, they never gained broad popularity, which was often
due to a combination of the large computational power required, limited chemistry for
which it was designed, and user input/evaluation that was still required anyhow. However,
recent advances in neural network development might assist to reduce computational
demands in the prediction of solvation energies, solution-phase thermodynamics, and
minimum-energy structures. A more versatile implementation of multiscale methods could
in this context lead to the simulation of longer polymer chains for which kinetics can still
be predicted accurately.
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217. Özaltın, T.F.; Değirmenci, İ.; Aviyente, V.; Atılgan, C.; De Sterck, B.; Van Speybroeck, V.; Waroquier, M. Controlling the tacticity in
the polymerization of N-isopropylacrylamide: A computational study. Polymer 2011, 52, 5503–5512. [CrossRef]

218. Özaltın, T.F.; Kura, B.; Catak, S.; Goossens, H.; Van Speybroeck, V.; Waroquier, M.; Aviyente, V. Effect of Lewis acids on the
stereoregularity of N, N-dimethyl acrylamide: A computational approach. Eur. Polym. J. 2016, 83, 67–76. [CrossRef]

219. Konstantinov, I.; Ewart, S.; Brown, H.; Eddy, C.; Mendenhall, J.; Munjal, S. Accurate density functional theory (DFT) protocol for
screening and designing chain transfer and branching agents for LDPE systems. Mol. Syst. Des. Eng. 2018, 3, 228–242. [CrossRef]

220. Beuermann, S.; Buback, M. Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog. Polym.
Sci. 2002, 27, 191–254. [CrossRef]

221. Goto, S. Computer model for commercial high-pressure polyethylene reactor based on elementary reaction rates obtained
experimentally. Appl. Polym. Symp. 1981, 36, 21–40.

222. Van Cauter, K.; Van Speybroeck, V.; Vansteenkiste, P.; Reyniers, M.-F.; Waroquier, M. Ab Initio Study of Free-Radical Polymeriza-
tion: Polyethylene Propagation Kinetics. ChemPhysChem 2006, 7, 131–140. [CrossRef]

223. Van Speybroeck, V.; Van Cauter, K.; Coussens, B.; Waroquier, M. Ab Initio Study of Free-Radical Polymerizations: Cost-Effective
Methods to Determine the Reaction Rates. ChemPhysChem 2005, 6, 180–189. [CrossRef] [PubMed]

224. Filley, J.; McKinnon, J.T.; Wu, D.T.; Ko, G.H. Theoretical Study of Ethylene-Vinyl Acetate Free-Radical Copolymerization:
Reactivity Ratios, Penultimate Effects, and Relative Rates of Chain Transfer to Polymer. Macromolecules 2002, 35, 3731–3738.
[CrossRef]

225. Weiss, H.; Deglmann, P. Needs and Opportunities-Molecular Modeling Meets Polymer Process Modeling. In Macromolecular
Symposia; Wiley-VCH: Weinheim, Germany, 2011; pp. 6–15.

226. Lazzari, S.; Lischewski, A.; Orlov, Y.; Deglmann, P.; Daiss, A.; Schreiner, E.; Vale, H. Toward a digital polymer reaction engineering.
Adv. Chem. Eng 2020, 56, 187–230.

227. Kröger, L.C.; Kopp, W.A.; Leonhard, K. Prediction of chain propagation rate constants of polymerization reactions in aqueous
NIPAM/BIS and VCL/BIS systems. J. Phys. Chem. B 2017, 121, 2887–2895. [CrossRef]

228. Camaioni, D.M.; Autrey, S.T.; Salinas, T.B.; Franz, J.A. Calculation of the effects of branching and conjugation on intrinsic barriers
for H atom transfer reactions involving hydrocarbons. J. Am. Chem. Soc. 1996, 118, 2013–2022. [CrossRef]

229. Ammon, H.L. New atom/functional group volume additivity data bases for the calculation of the crystal densities of C-, H-, N-,
O-, F-, S-, P-, Cl-, and Br-containing compounds. Struct. Chem. 2001, 12, 205–212. [CrossRef]

230. Bamford, C.; Dyson, R.; Eastmond, G. Network formation IV. The nature of the termination reaction in free-radical polymerization.
Polymer 1969, 10, 885–899. [CrossRef]

231. Nakamura, Y.; Lee, R.; Coote, M.L.; Yamago, S. Termination mechanism of the radical polymerization of acrylates. Macromol.
Rapid Commun. 2016, 37, 506–513. [CrossRef]

232. Nakamura, Y.; Ogihara, T.; Hatano, S.; Abe, M.; Yamago, S. Control of the termination mechanism in radical polymerization by
viscosity: Selective disproportionation in viscous media. Chem. A Eur. J. 2017, 23, 1299–1305. [CrossRef]

233. Cuccato, D.; Mavroudakis, E.; Moscatelli, D. Quantum chemistry investigation of secondary reaction kinetics in acrylate-based
copolymers. J. Phys. Chem. A 2013, 117, 4358–4366. [CrossRef] [PubMed]

234. Yu, X.; Broadbelt, L.J. Kinetic study of 1, 5-hydrogen transfer reactions of methyl acrylate and butyl acrylate using quantum
chemistry. Macromol. Theory Simul. 2012, 21, 461–469. [CrossRef]

235. Dossi, M.; Storti, G.; Moscatelli, D. Relevance of backbiting and beta-scission reactions in the free radical polymerization of
Acrylonitrile. In Macromolecular Symposia; Wiley-VCH: Weinheim, Germany, 2010; pp. 119–123.

236. Moghadam, N.; Liu, S.; Srinivasan, S.; Grady, M.C.; Rappe, A.M.; Soroush, M. Theoretical study of intermolecular chain transfer
to polymer reactions of alkyl acrylates. Ind. Eng. Chem. Res. 2015, 54, 4148–4165. [CrossRef]

237. Mavroudakis, E.; Cuccato, D.; Moscatelli, D. Determination of Reaction Rate Coefficients in Free-Radical Polymerization Using
Density Functional Theory. In Computational Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–98.

238. Luo, Q.; Shi, Z.; Li, D.; Zhu, C.; Wang, M. DFT study on the ionic cyclization mechanism of copolymers of acrylonitrile-itaconic
acid: Direct or autocatalytic? Chem. Phys. Lett. 2017, 687, 158–162. [CrossRef]

239. De Vleeschouwer, F.; Toro-Labbé, A.; Gutiérrez-Oliva, S.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Reversibility
from DFT-based reactivity indices: Intramolecular side reactions in the polymerization of poly (vinyl chloride). J. Phys. Chem. A
2009, 113, 7899–7908. [CrossRef]

240. Cuccato, D.; Dossi, M.; Moscatelli, D.; Storti, G. Quantum Chemical Investigation of Secondary Reactions in Poly (vinyl chloride)
Free-Radical Polymerization. Macromol. React. Eng. 2012, 6, 330–345. [CrossRef]

241. Poli, R. Relationship Between One-Electron Transition-Metal Reactivity and Radical Polymerization Processes. Angew. Chem. Int.
Ed. 2006, 45, 5058–5070. [CrossRef]

242. Coote, M.L. Quantum-Chemical Modeling of Free-Radical Polymerization. Macromol. Theory Simul. 2009, 18, 388–400. [CrossRef]
243. Rosen, B.M.; Percec, V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymeriza-

tion. Chem. Rev. 2009, 109, 5069–5119. [CrossRef]

http://doi.org/10.1016/j.polymer.2012.05.018
http://doi.org/10.1016/j.jmgm.2014.01.005
http://doi.org/10.1016/j.polymer.2011.10.009
http://doi.org/10.1016/j.eurpolymj.2016.08.010
http://doi.org/10.1039/C7ME00087A
http://doi.org/10.1016/S0079-6700(01)00049-1
http://doi.org/10.1002/cphc.200500249
http://doi.org/10.1002/cphc.200400277
http://www.ncbi.nlm.nih.gov/pubmed/15688662
http://doi.org/10.1021/ma011805+
http://doi.org/10.1021/acs.jpcb.6b09147
http://doi.org/10.1021/ja950740l
http://doi.org/10.1023/A:1016607906625
http://doi.org/10.1016/0032-3861(69)90120-7
http://doi.org/10.1002/marc.201500677
http://doi.org/10.1002/chem.201604659
http://doi.org/10.1021/jp402025p
http://www.ncbi.nlm.nih.gov/pubmed/23638652
http://doi.org/10.1002/mats.201200005
http://doi.org/10.1021/ie504110n
http://doi.org/10.1016/j.cplett.2017.09.011
http://doi.org/10.1021/jp900884z
http://doi.org/10.1002/mren.201200010
http://doi.org/10.1002/anie.200503785
http://doi.org/10.1002/mats.200900050
http://doi.org/10.1021/cr900024j


Polymers 2021, 13, 3027 35 of 39

244. Lligadas, G.; Grama, S.; Percec, V. Single-electron transfer living radical polymerization platform to practice, develop, and invent.
Biomacromolecules 2017, 18, 2981–3008. [CrossRef]

245. Moad, G.; Rizzardo, E.; Thang, S.H. Living radical polymerization by the RAFT process. Aust. J. Chem. 2005, 58, 379–410.
[CrossRef]

246. Coote, M.L.; Krenske, E.H.; Izgorodina, E.I. Computational studies of RAFT polymerization–mechanistic insights and practical
applications. Macromol. Rapid Commun. 2006, 27, 473–497. [CrossRef]

247. Coote, M.L. Ab initio study of the addition−fragmentation equilibrium in raft polymerization: When is polymerization retarded?
Macromolecules 2004, 37, 5023–5031. [CrossRef]

248. Izgorodina, E.I.; Coote, M.L. Reliable Low-Cost Theoretical Procedures for Studying Addition−Fragmentation in RAFT Polymer-
ization. J. Phys. Chem. A 2006, 110, 2486–2492. [CrossRef]

249. Coote, M.L.; Izgorodina, E.I.; Krenske, E.H.; Busch, M.; Barner-Kowollik, C. Quantum chemical mapping of initialization
processes in RAFT polymerization. Macromol. Rapid Commun. 2006, 27, 1015–1022. [CrossRef]

250. Barner-Kowollik, C.; Buback, M.; Charleux, B.; Coote, M.L.; Drache, M.; Fukuda, T.; Goto, A.; Klumperman, B.; Lowe, A.B.;
Mcleary, J.B. Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. J. Polym. Sci.
Part A: Polym. Chem. 2006, 44, 5809–5831. [CrossRef]

251. Coote, M.; Krenske, E.; Pas, E. Quantum-chemical studies of RAFT polymerization: Methodology, structure-reactivity correlations
and kinetic implications. In Handbook of RAFT Polymerization; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008;
pp. 5–49.

252. Coote, M.L.; Radom, L. Substituent effects in xanthate-mediated polymerization of vinyl acetate: Ab initio evidence for an
alternative fragmentation pathway. Macromolecules 2004, 37, 590–596. [CrossRef]

253. Coote, M.L.; Henry, D.J. Computer-aided design of a destabilized RAFT adduct radical: Toward improved RAFT agents for
styrene-block-vinyl acetate copolymers. Macromolecules 2005, 38, 5774–5779. [CrossRef]

254. Theis, A.; Stenzel, M.H.; Davis, T.P.; Coote, M.L.; Barner-Kowollik, C. A synthetic approach to a novel class of fluorine-bearing
reversible addition–fragmentation chain transfer (RAFT) agents: F-RAFT. Aust. J. Chem. 2005, 58, 437–441. [CrossRef]

255. Derboven, P.; Van Steenberge, P.H.; Reyniers, M.F.; Barner-Kowollik, C.; D’hooge, D.R.; Marin, G.B. Chain transfer in degenerative
RAFT polymerization revisited: A comparative study of literature methods. Macromol. Theory Simul. 2016, 25, 104–115. [CrossRef]

256. De Rybel, N.; Van Steenberge, P.H.; Reyniers, M.F.; Barner-Kowollik, C.; D’hooge, D.R.; Marin, G.B. An update on the pivotal role
of kinetic modeling for the mechanistic understanding and design of bulk and solution raft polymerization. Macromol. Theory
Simul. 2017, 26, 1600048. [CrossRef]

257. Chiefari, J.; Mayadunne, R.T.; Moad, C.L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M.A.; Thang, S.H. Thiocarbonylthio com-
pounds (SC=(Z)S–R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization).
Effect of the activating group Z. Macromolecules 2003, 36, 2273–2283. [CrossRef]

258. YK, C.J.C.; Ercole, F. Living free-radical polymerization by reversible addition−fragmentation chain transfer: The RAFT process.
Macromolecules 1998, 31, 5559–5562.

259. Rodríguez-Sanchez, I.; Glossman-Mitnik, D.; Zaragoza-Contreras, E.A. Theoretical evaluation of the order of reactivity of transfer
agents utilized in RAFT polymerization: Group Z. J. Mol. Model. 2009, 15, 1133–1143. [CrossRef]

260. Rodríguez-Sanchez, I.; Zaragoza-Contreras, E.A.; Glossman-Mitnik, D. Theoretical evaluation of the order of reactivity of transfer
agents utilized in RAFT polymerization. J. Mol. Model. 2010, 16, 95–105. [CrossRef] [PubMed]

261. Devlaminck, D.J.G.; Van Steenberge, P.H.M.; De Keer, L.; Reyniers, M.-F.; D’Hooge, D.R. A detailed mechanistic study of bulk
MADIX of styrene and its chain extension. Polym. Chem. 2017, 8, 6948–6963. [CrossRef]

262. Busch, M.; Roth, M.; Stenzel, M.H.; Davis, T.P.; Barner-Kowollik, C. The use of novel F-RAFT agents in high temperature and
high pressure ethene polymerization: Can control be achieved? Aust. J. Chem. 2007, 60, 788–793. [CrossRef]

263. Benaglia, M.; Chen, M.; Chong, Y.K.; Moad, G.; Rizzardo, E.; Thang, S.H. Polystyrene-block-poly (vinyl acetate) through the Use
of a Switchable RAFT Agent. Macromolecules 2009, 42, 9384–9386. [CrossRef]

264. Keddie, D.J.; Guerrero-Sanchez, C.; Moad, G.; Rizzardo, E.; Thang, S.H. Switchable reversible addition–fragmentation chain
transfer (RAFT) polymerization in aqueous solution, N, N-dimethylacrylamide. Macromolecules 2011, 44, 6738–6745. [CrossRef]

265. Gigmes, D.; Gaudel-Siri, A.; Marque, S.R.; Bertin, D.; Tordo, P.; Astolfi, P.; Greci, L.; Rizzoli, C. Alkoxyamines of Stable Aromatic
Nitroxides: N–O vs. C–O Bond Homolysis. Helv. Chim. Acta 2006, 89, 2312–2326. [CrossRef]

266. Edeleva, M.; Marque, S.R.; Bertin, D.; Gigmes, D.; Guillaneuf, Y.; Morozov, S.V.; Bagryanskaya, E.G. Hydrogen-transfer reaction
in nitroxide mediated polymerization of methyl methacrylate: 2,2-Diphenyl-3-phenylimino-2,3-dihydroindol-1-yloxyl nitroxide
(DPAIO) vs. TEMPO. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6828–6842. [CrossRef]

267. Gaudel-Siri, A.; Siri, D.; Tordo, P. Homolysis of N-alkoxyamines: A computational study. Chemphyschem A Eur. J. Chem. Phys.
Phys. Chem. 2006, 7, 430–438. [CrossRef]

268. Hodgson, J.L.; Roskop, L.B.; Gordon, M.S.; Lin, C.Y.; Coote, M.L. Side reactions of nitroxide-mediated polymerization: N−O
versus O−C cleavage of alkoxyamines. J. Phys. Chem. A 2010, 114, 10458–10466. [CrossRef]

269. Parkhomenko, D.; Bagryanskaya, E.G.; Marque, S.R.; Siri, D. Intramolecular proton transfer (IPT) in alkoxyamine: A theoretical
investigation. Phys. Chem. Chem. Phys. 2013, 15, 13862–13871. [CrossRef]

270. Gryn’ova, G.; Lin, C.Y.; Coote, M.L. Which side-reactions compromise nitroxide mediated polymerization? Polym. Chem. 2013, 4,
3744–3754. [CrossRef]

http://doi.org/10.1021/acs.biomac.7b01131
http://doi.org/10.1071/CH05072
http://doi.org/10.1002/marc.200500832
http://doi.org/10.1021/ma049444w
http://doi.org/10.1021/jp055158q
http://doi.org/10.1002/marc.200600170
http://doi.org/10.1002/pola.21589
http://doi.org/10.1021/ma035477k
http://doi.org/10.1021/ma050415a
http://doi.org/10.1071/CH05069
http://doi.org/10.1002/mats.201500076
http://doi.org/10.1002/mats.201600048
http://doi.org/10.1021/ma020883+
http://doi.org/10.1007/s00894-009-0476-3
http://doi.org/10.1007/s00894-009-0524-z
http://www.ncbi.nlm.nih.gov/pubmed/19506923
http://doi.org/10.1039/C7PY00961E
http://doi.org/10.1071/CH07200
http://doi.org/10.1021/ma9021086
http://doi.org/10.1021/ma200760q
http://doi.org/10.1002/hlca.200690215
http://doi.org/10.1002/pola.22991
http://doi.org/10.1002/cphc.200500308
http://doi.org/10.1021/jp1064165
http://doi.org/10.1039/c3cp50821h
http://doi.org/10.1039/c3py00534h


Polymers 2021, 13, 3027 36 of 39

271. Parkhomenko, D.A.; Edeleva, M.V.; Kiselev, V.G.; Bagryanskaya, E.G. pH-sensitive C–ON bond homolysis of alkoxyamines of
imidazoline series: A theoretical study. J. Phys. Chem. B 2014, 118, 5542–5550. [CrossRef]

272. Audran, G.; Bikanga, R.; Brémond, P.; Edeleva, M.; Joly, J.-P.; Marque, S.R.; Nkolo, P.; Roubaud, V. How intramolecular hydrogen
bonding (IHB) controls the C–ON bond homolysis in alkoxyamines. Org. Biomol. Chem. 2017, 15, 8425–8439. [CrossRef] [PubMed]

273. Audran, G.; Bagryanskaya, E.; Edeleva, M.; Marque, S.R.; Parkhomenko, D.; Tretyakov, E.; Zhivetyeva, S. Coordination-Initiated
nitroxide-mediated polymerization (CI-NMP). Aust. J. Chem. 2018, 71, 334–340. [CrossRef]

274. Siegwart, D.J.; Oh, J.K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym.
Sci. 2012, 37, 18–37. [CrossRef]

275. Neugebauer, D. Two decades of molecular brushes by ATRP. Polymer 2015, 72, 413–421. [CrossRef]
276. Krol, P.; Chmielarz, P. Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Prog. Org.

Coat. 2014, 77, 913–948. [CrossRef]
277. Gillies, M.B.; Matyjaszewski, K.; Norrby, P.-O.; Pintauer, T.; Poli, R.; Richard, P. A DFT Study of R−X Bond Dissociation Enthalpies

of Relevance to the Initiation Process of Atom Transfer Radical Polymerization. Macromolecules 2003, 36, 8551–8559. [CrossRef]
278. Lin, C.Y.; Coote, M.L.; Gennaro, A.; Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties

of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. J. Am. Chem. Soc. 2008,
130, 12762–12774. [CrossRef] [PubMed]

279. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.V.; Coote, M.L.; Matyjaszewski, K. Understanding atom transfer radical
polymerization: Effect of ligand and initiator structures on the equilibrium constants. J. Am. Chem. Soc. 2008, 130, 10702–10713.
[CrossRef] [PubMed]

280. Fang, C.; Fantin, M.; Pan, X.; de Fiebre, K.; Coote, M.L.; Matyjaszewski, K.; Liu, P. Mechanistically guided predictive models for
ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 2019, 141,
7486–7497. [CrossRef]

281. Woodruff, S.R.; Davis, B.J.; Tsarevsky, N.V. Selecting the Optimal Reaction Conditions for Copper-Mediated Atom Transfer
Radical Polymerization at Low Catalyst Concentration. In Progress in Controlled Radical Polymerization: Mechanisms and Techniques;
ACS Publications: Washington, DC, USA, 2012; pp. 99–113.

282. Ehm, C.; Zaccaria, F.; Cipullo, R. From mechanistic investigation to quantitative prediction: Kinetics of homogeneous transition
metal-catalyzed α-olefin polymerization predicted by computational chemistry. In Computational Quantum Chemistry; Elsevier:
Amsterdam, The Netherlands, 2019; pp. 287–326.

283. Kang, X.; Luo, Y.; Hou, Z. Theoretical Insights into Olefin Polymerization Catalyzed by Cationic Organo Rare-Earth Metal
Complexes. Comput. Quantum Chem. 2019, 327–356.

284. Zaccaria, F.; Budzelaar, P.H.; Zuccaccia, C.; Cipullo, R.; Macchioni, A.; Busico, V.; Ehm, C. Chain Transfer to Solvent and Monomer
in Early Transition Metal Catalyzed Olefin Polymerization: Mechanisms and Implications for Catalysis. Catalysts 2021, 11, 215.
[CrossRef]

285. Kaufman, J.J. Quantum Chemical Investigations of the Mechanism of Cationic Polymerization; Johns Hopkins Univ Baltimore Md:
Baltimore, MD, USA, 1980.

286. Kaufman, J.J.; Hariharan, P.; Tobin, F.L.; Petrongolo, C. Electrostatic Molecular Potential Contour Maps from Ab-initio Calculations.
1. Biologically Significant Molecules. 2. Mechanism of Cationic Polymerization. In Chemical Applications of Atomic and Molecular
Electrostatic Potentials; Springer: New York, NY, USA, 1981; pp. 335–380.

287. Kaufman, J.J.; Hariharan, P.; Roszak, S.; Keegstra, P. Ab-initio electrostatic molecular potential contour maps for initiation step
and Ab-Initio MRD-CI calculations for propagation step of cationic polymerization of oxetanes. In Makromolekulare Chemie.
Macromolecular Symposia; Hüthig & Wepf: Basel, Switzerland, 1986; pp. 315–330.

288. Hlil, A.R.; Balogh, J.; Moncho, S.; Su, H.L.; Tuba, R.; Brothers, E.N.; Al-Hashimi, M.; Bazzi, H.S. Ring opening metathesis
polymerization (ROMP) of five-to eight-membered cyclic olefins: Computational, thermodynamic, and experimental approach. J.
Polym. Sci. Part A: Polym. Chem. 2017, 55, 3137–3145. [CrossRef]

289. Chen, J.; Motta, A.; Zhang, J.; Gao, Y.; Marks, T.J. Mechanism of organoscandium-catalyzed ethylene copolymerization with
amino-olefins: A quantum chemical analysis. ACS Catal. 2019, 9, 8810–8818. [CrossRef]

290. Vo, M.N.; Basdogan, Y.; Derksen, B.S.; Proust, N.; Cox, G.A.; Kowall, C.; Keith, J.A.; Johnson, J.K. Mechanism of isobutylene
polymerization: Quantum chemical insight into AlCl3/H2O-catalyzed reactions. ACS Catal. 2018, 8, 8006–8013. [CrossRef]

291. Vo, M.N. Quantum Chemical Studies of Metal Ion Solvation and Coordination and Elucidation of the Isobutylene Polymerization Mechanism;
University of Pittsburgh: Pittsburgh, PA, USA, 2017.

292. Fusco, R.; Longo, L.; Masi, F.; Garbassi, F. Ethylene polymerization with homogeneous Ziegler-Natta catalysts: Theoretical study
on the role of ion pairs in the polymerization mechanism. Macromol. Rapid Commun. 1997, 18, 433–441. [CrossRef]

293. Xu, Z.; Vanka, K.; Ziegler, T. Influence of the Counterion MeB (C6F5)3− and Solvent Effects on Ethylene Polymerization Catalyzed
by [(CpSiMe2NR) TiMe]+: A Combined Density Functional Theory and Molecular Mechanism Study. Organometallics 2004, 23,
104–116. [CrossRef]

294. Araujo, C.M.; Doherty, M.D.; Konezny, S.J.; Luca, O.R.; Usyatinsky, A.; Grade, H.; Lobkovsky, E.; Soloveichik, G.L.; Crabtree, R.H.;
Batista, V.S. Tuning redox potentials of bis (imino) pyridine cobalt complexes: An experimental and theoretical study involving
solvent and ligand effects. Dalton Trans. 2012, 41, 3562–3573. [CrossRef] [PubMed]

http://doi.org/10.1021/jp5024372
http://doi.org/10.1039/C7OB02223A
http://www.ncbi.nlm.nih.gov/pubmed/28952643
http://doi.org/10.1071/CH17570
http://doi.org/10.1016/j.progpolymsci.2011.08.001
http://doi.org/10.1016/j.polymer.2015.02.054
http://doi.org/10.1016/j.porgcoat.2014.01.027
http://doi.org/10.1021/ma0351672
http://doi.org/10.1021/ja8038823
http://www.ncbi.nlm.nih.gov/pubmed/18761460
http://doi.org/10.1021/ja802290a
http://www.ncbi.nlm.nih.gov/pubmed/18642811
http://doi.org/10.1021/jacs.9b02158
http://doi.org/10.3390/catal11020215
http://doi.org/10.1002/pola.28695
http://doi.org/10.1021/acscatal.9b02317
http://doi.org/10.1021/acscatal.8b01494
http://doi.org/10.1002/marc.1997.030180511
http://doi.org/10.1021/om0341202
http://doi.org/10.1039/c2dt12195f
http://www.ncbi.nlm.nih.gov/pubmed/22318461


Polymers 2021, 13, 3027 37 of 39

295. Belelli, P.G.; Damiani, D.E.; Castellani, N.J. DFT theoretical studies of UV–Vis spectra and solvent effects in olefin polymerization
catalysts. Chem. Phys. Lett. 2005, 401, 515–521. [CrossRef]

296. Wang, X.; Kang, X.; Zhou, G.; Qu, J.; Hou, Z.; Luo, Y. DFT studies on cis-1,4-polymerization of dienes catalyzed by a cationic
rare-earth metal complex bearing an ancillary PNP ligand. Polymers 2017, 9, 53. [CrossRef]

297. Belelli, P.G.; Castellani, N.J. Solvent Effects in Olefin Polymerization Catalysts: A Dft Study; Universidad Nacional del Sur: Bahía
Blanca, Argentina, 2005.

298. Meelua, W.; Keawkla, N.; Oláh, J.; Jitonnom, J. DFT study of formation and properties of dinuclear zirconocene cations: Effects of
ligand structure, solvent, and metal on the dimerization process. J. Organomet. Chem. 2020, 905, 121024. [CrossRef]

299. Castro, L.; Kirillov, E.; Miserque, O.; Welle, A.; Haspeslagh, L.; Carpentier, J.-F.; Maron, L. Are solvent and dispersion effects
crucial in olefin polymerization DFT calculations? Some insights from propylene coordination and insertion reactions with group
3 and 4 metallocenes. ACS Catal. 2015, 5, 416–425. [CrossRef]

300. Cavallo, L.; Del Piero, S.; Ducéré, J.-M.; Fedele, R.; Melchior, A.; Morini, G.; Piemontesi, F.; Tolazzi, M. Key interactions in
heterogeneous Ziegler− Natta catalytic systems: Structure and energetics of TiCl4−Lewis base complexes. J. Phys. Chem. C 2007,
111, 4412–4419. [CrossRef]

301. Correa, A.; Credendino, R.; Pater, J.T.; Morini, G.; Cavallo, L. Theoretical Investigation of Active Sites at the Corners of MgCl2
Crystallites in Supported Ziegler–Natta Catalysts. Macromolecules 2012, 45, 3695–3701. [CrossRef]

302. Harvey, J.N. DFT computation of relative spin-state energetics of transition metal compounds. Princ. Appl. Density Funct. Theory
Inorg. Chem. I 2004, 151–184.

303. Harvey, J.N. On the accuracy of density functional theory in transition metal chemistry. Annu. Rep. Sect. C (Phys. Chem.) 2006,
102, 203–226. [CrossRef]

304. Harvey, J.N.; Poli, R.; Smith, K.M. Understanding the reactivity of transition metal complexes involving multiple spin states.
Coord. Chem. Rev. 2003, 238, 347–361. [CrossRef]

305. Cysewski, P.; Król, P.; Shyichuk, A. First principle simulations of ethylene glycol addition to diisocyanates. Macromol. Theory
Simul. 2007, 16, 541–547. [CrossRef]

306. Samuilov, A.Y.; Zenitova, L.; Samuilov, Y.D.; Konovalov, A. Quantum-chemical study on the reaction of phenyl isocyanate with
linear methanol associates: II. Addition at the C=O bond. Russ. J. Org. Chem. 2009, 45, 68–73. [CrossRef]

307. Samuilov, A.Y.; Balabanova, F.; Kamalov, T.; Samuilov, Y.D.; Konovalov, A. Quantum-chemical study on reactions of isocyanates
with linear methanol associates: III.* Reaction of methyl isocyanate with linear methanol associates. Russ. J. Org. Chem. 2010, 46,
1452–1460. [CrossRef]

308. Samuilov, A.Y.; Samuilov, Y.D. Noncatalytic and Autocatalytic Rate Constants of the Reaction of Phenyl Isocyanate with Butan-1-ol.
Russ. J. Org. Chem. 2018, 54, 1749–1753. [CrossRef]

309. Çoban, M.; Konuklar, F.A.S. A computational study on the mechanism and the kinetics of urethane formation. Comput. Theor.
Chem. 2011, 963, 168–175. [CrossRef]

310. Raspoet, G.; Nguyen, M.T.; McGarraghy, M.; Hegarty, A.F. The alcoholysis reaction of isocyanates giving urethanes: Evidence for
a multimolecular mechanism. J. Org. Chem. 1998, 63, 6878–6885. [CrossRef]

311. Cheikh, W.; Rózsa, Z.B.; Camacho López, C.O.; Mizsey, P.; Viskolcz, B.; Szőri, M.; Fejes, Z. Urethane formation with an excess of
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