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Abstract: In the present work, the ductile formation mechanism of a newly proposed torsion configu-
ration has been investigated. One of the unique attributes of this paper is the first-time disclosure of
the design and fabrication of a novel prototype screw with torsional flow character validating the
orthogonal test model experimentally. The torsional spiral flow patterns that occurred in the torsion
channel cause a ductile deformation of polymer in the form of a spiral, which in turn enhances the
radial convection, achieving an effective mass transfer of material from the top region to the bottom
region and vice versa. Furthermore, the characteristic parameters of torsion configuration have a
significant influence on the plasticizing and melting capability of polymer. By range analysis and
weight matrix analysis, the best factor and level combination was obtained. Results indicated that
the aspect ratio of the torsion channel is almost equal to 1, and the plasticizing and melting capability
of polymer is optimal. This novel design innovation offers a paradigm shift in the energy-efficient
plasticization of polymer compounds.

Keywords: ductile behavior; orthogonal test; torsion configuration; heat transfer; melting capability

1. Introduction

Currently, the issues of energy consumption and carbon emissions have become the
focus of international concern, and there is an increasing need for a low-carbon and high-
efficiency technology upgrade, especially in the chemical industry [1–3]. An extruder is a
typical piece of chemical equipment, and its plasticizing and melting performance is an
important part of polymer extrusion process control, divided into plasticizing efficiency and
plasticizing uniformity, which is accompanied by high energy consumption. In polymer
processing, the energy consumed by melting accounts for 70% to 80% of the total input
energy. The efficiency of the melting process directly determines the entire process, and
the melting process largely determines the stability and quality of the subsequent process.
However, due to the phase transition and solid–liquid two-phase transport, the flow and
heat transfer process is quite complex. Accordingly, it is very important to study the fluid
ductile flow behavior to enhance melting and heat transfer in the melting zone for low-
carbon, energy-saving and improving the quality of products. Screw structure optimization
is an important research and development direction.

The extrusion process generally involves three processes: solid particle compaction,
melt plasticization and melt homogenization. Due to the high viscosity, non-Newtonian
and other special physical properties of polymer melt, it is difficult to plasticize uniformly,
so the homogenization process needs to be extended by using screws with a large length-
diameter ratio to make up for the uneven plasticization, which greatly reduces processing
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efficiency and increases energy consumption. Wang et al. [4] denoted that improving the
processing efficiency and plasticizing uniformity essentially requires effective control of
the flow field and temperature field in the extrusion process, such as the introduction of
elongational flow in the extrusion system.

In fact, in terms of melting efficiency and power consumption, the elongational flow is
far superior to the shear-type flow found in most mixing systems. In this connection, many
scholars and researchers have made great efforts. Qu et al. [5] proposed and studied a
vane extruder based on the volumetric tensile deformation of polymers. Results indicated
that the vane plasticizing and conveying units caused mandatory deformation of particles,
resulting in plastic energy dissipation to accelerate the solid particle melting and shorten
the thermo-mechanical history. Wu et al. [6] further studied the formation mechanism of
the elongational flow field in the vane extruder according to the basic structural and flow
patterns of vane plasticizing and conveying units. Wen et al. [7] designed an eccentric
rotor extruder based on continuous elongational flow. Results showed that mechanical
energy was dissipated into heat via the deformation of particles due to the eccentricity,
which increased the melting efficiency and decreased the energy consumption. Rauwen-
daal et al. [8] developed various screw configurations based on elongational rheology,
such as CRD (Chris Rauwendaal Dispersive)mixing section, CRD barrier screw and CRD
separation-type screw. The main structural feature of the CRD mixing section is that the
flank of screw flights is inclined and conical grooves are set in the screw flights; the main
structural feature of the CRD barrier screw is that a slanted part is added to the top of the
barrier flights and the main structural feature of the CRD separation-type screw is that a
slope is set at the top of the secondary screw flights, all of which causes elongational flow
by setting converging wedge channels. The extensional flow created in the wedge-shaped
zone reduces the viscous dissipation and power consumption and enhances the stress of
the melt, so the melting and mixing are more efficient.

Furthermore, chaos theory is applied to polymer processing by some scholars. For
example, Xu et al. [9] developed a chaos screw by employing a reciprocating baffle. Through
inserting a periodic barrier element into the screw, the steady flow field is disturbed, and
chaotic flow is generated in the channel, thereby improving the efficiency of mixing and
melting. Furthermore, Xu et al. [10] studied the influence of geometric ratio and height of
baffles on the chaotic mixing and achieved an optimal geometric ratio. Zeng and Qu [11]
introduced the vibration to obtain chaos control in the melting process of polymer. Results
indicated that the addition of the vibration force field to the melting process can enhance
the polymer plasticization. Zeng et al. [12] analyzed the polymer plasticization in the
developed electromagnetic dynamic extruder by establishing a mathematical-physical
model. The results showed that the processing temperature and energy consumption were
reduced, and the plasticizing rate was increased over 60% by adding a vibration force field.

A significant amount of experience has been gained over decades of active research on
rheology and energy dissipation to accelerate the melting rate of polymers. However, heat
transfer through a barrel is also an important heat resource to melt the polymer, and there
are only a few reports on the heat transfer enhancement in the screw extrusion. Due to the
poor thermal conductivity of polymer, the convective heat transfer effect inside the melt
and between the polymer and external heater is insufficient, so improving the convective
heat transfer is also an important direction to accelerate melting. Rauwendaal [13] simu-
lated the melt flow and temperature evolution in a single screw extruder (SSE) by using the
finite element method (FEM), considering the influence of geometry parameters of screws.
Furthermore, Rauwendaal [14] developed an analytical theory to predicate the melt tem-
perature profiles in the extrusion process by analyzing the flow and heat transfer behavior
of both single and twin screw extruders. Teixeira et al. [15] presented a plasticizing model
for co-rotating the twin screw extruder to predicate the evolution of temperature and me-
chanical power consumption. All of the above researchers made a preliminary analysis of
heat transfer; however, their focus is on temperature distribution without considering heat
transfer efficiency. In order to improve the cooling capacity in polystyrene foam extrusion,
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Rauwendaal [16] fabricated a high heat transfer (HHT) screw and achieved effective mass
transfer from the center region to the outside region in the screw channel. In our previous
work, Jian et al. [17,18] developed a torsion extrusion technology based on multi-field
synergy, inducing torsional spiral flow in the screw channel to improve phase-to-phase
molecular and thermal mobility, achieving effective mass transfer from the top region to
the bottom region in the screw channel. Then, Jian et al. [19,20] studied the heat transfer
and mixing capability of a torsion screw compared with three typical geometric forms
commonly employed in practical application: conventional screw, Maddock screw and Pin
screw. The result indicated that the torsion screw by setting twisted channels displayed
superior mixing and heat transfer properties through the self-twisting mass transfer of
particles, avoiding over-shear and overheating. This multi-field synergy theory of polymer
focuses on the heat transfer enhancement through the barrel and the mass and thermal
transfer efficiency inside of the polymer itself, especially in the radial direction, offering a
novel perspective to optimize and design the screw.

The torsion configuration is designed to achieve an effective exchange of material from
the top region to the bottom region and vice versa, thereby improving the heat transfer
and melting efficiency. Considering the torsion configuration has good heat transfer
and melting capability, it is necessary to further investigate the influence of structural
parameters on performance. Therefore, the authors conducted research on the plasticizing
and melting capability by changing parameters of torsion configuration, including the
number of flights, the width of flight, and the height of the channel based on the orthogonal
test, ascertaining complex ductile deformation behavior and plasticizing properties in the
solid–melt transition process.

2. Computational Methodology
2.1. Physical Model

The three-dimensional model of the newly designed torsion configurations is shown
in Figure 1. As shown in Figure 1a, it has several torsion flights along the circumferential
direction to divide the screw into several torsion channels. There are two surfaces twisted
gradually from 0◦ to 90◦ in each two adjacent torsion flights, called 90◦ twisted surfaces,
thereby leading to a torsion spiral flow in the torsion channels. Figure 1b shows the
characteristic parameters of the torsion configuration, such as diameter (D), root diameter
(d), number of flights, width of flight (e), length of element (L) and length of transition (b).
The torsion channels and flights are evenly divided according to the circle angle α and β,
which determined the width of each channel and flight when the screw diameter is fixed,
in turn, the number of flights is determined by the sum of angle α and β. The height of the
torsion channel is defined by half of the difference between the screw diameter (D) and
screw root diameter (d).

Figure 1. Three-dimensional model (a) and the characteristic dimensions (b) of the torsion configuration.

Here, we focus on the melting section of the screw to study the ductile behavior in
the phase transformation process of solid–melt, and the experimental screw is shown in
Figure 2. There is a set of torsion configurations in the screw, each with three, all of which
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are located close to the outlet side by side. There is a screw zone with one pitch before the
torsion configurations and a polished rod area after the torsion ones, avoiding the influence
of the inlet and outlet boundary on the results. Table 1 shows the basic parameters of the
screw in the simulation.

Figure 2. The simulation object-torsion screw.

Table 1. Basic physical parameters of the screw.

Dimension Symbol Value/mm

Screw diameter D 30
Barrel diameter D0 30.4

Length of screw zone l1 30
Length of torsion

configuration L + 2b 14

Length of torsion zone l2 42
Length of polished rod area l3 10

2.2. Governing Equations and Mesh System

The plasticizing and melting of the polymer in the screw channel is a process related
to heat and mass transfer, multiphase flow, and complicated rheology and ductile behavior.
In this case, the model fluid was polypropylene (PP), assumed as laminar flow in a non-
isothermal steady state, and was incompressible. The non-slip condition was employed
at the boundary. Inertial force can be neglected compared with viscous force caused by
the high viscosity of PP. Based on these assumptions, the specific governing equations are
as follows:

The continuity equation
∂ui

∂xi
= 0 (1)

The momentum equation

∂P
∂xi

=
∂

∂xj

(
η

∂ui

∂xj

)
(2)

The energy equation

ρCp

(
ui

∂T
∂xi

)
= λ

∂2T
∂x2

i
+ ϕ (3)

Bird-Carreau and Arrhenius models were adopted to describe the apparent viscosity
of PP (Equation (4)), involving the effects of temperature and shear, which is compatible
with most polymers. The material properties of the selected polymer determining the
parameters in the constitutive equation (Equation (4)) are shown in Table 2.
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Table 2. Material properties of polypropylene.

Parameters Symbol Value

Density ρ 910 kg/m3

Thermal conductivity λ 0.2 W/(m·◦C)
Specific heat capacity Cp 2300 J/(kg·◦C)

Pure solvent melting heat ∆Hf 150,000 J/kg
Solidus Temperature TS 100 ◦C

Liquidus temperature TL 170 ◦C
Zero shear viscosity η0 9650 Pa·s

Viscosity at an infinite shear rate η∞ 0 Pa·s
Non-Newtonian index n 0.48

Natural time t0 0.3664 s
Coefficient of temperature sensibility α 2000 ◦C−1

Reference temperature Tα 0 ◦C
Absolute zero T0 −273.15 ◦C

In the simulation of such a screw plasticizing process, the fluid was in the state
of multiphase flow, experiencing melting from solid to melt, hence the “Solidification
and Melting” calculation model was used, and the “Enthalpy-porosity” technology was
adopted to assess the ratio of melt grids in the whole flow domain. The ANSYS Fluent
17.0 packaged software (ANSYS, Inc., Canonsburg, PA, USA) was used for the numerical
simulation. The mesh models were generated by employing ANSYS ICEM 17.0 (ANSYS,
Inc.), and grid independent test was performed to ensure the reliability of the simulation
results. As shown in Figure 3, the data hardly change and tend to be smooth and steady
when the mesh number is over 1,800,000; thereby, the mesh systems used in the present
work were around 2,000,000 cells.

Figure 3. Grid independent test for data of liquid mass fraction and standard deviation of temperature
(a), and the discrete model with about 2,100,000 cells (b).

2.3. Boundary Conditions

The simulation models were the fluid domain from the barrel wall to the screw root.
The flow and thermal boundary conditions employed in the present work are shown in
Table 3.
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Table 3. Boundary conditions.

Screw Model Boundary Flow Conditions Thermal Conditions

Inlet wall Velocity inflow 1 100 ◦C
Outlet wall Pressure = 3 MPa 185 ◦C

Barrel wall 30, 45, 60, 75, 90, 105,
120 r/min

Heat flux, Q =
40,000W/m2

Screw wall Stationary surface Insulated surface
1 Velocity varied with the screw speed.

2.4. Characterization

The plasticizing efficiency and uniformity are two important aspects to reflect the
plasticizing and melting capability. In the numerical simulation, the liquid mass fraction
(LMF) was used to simulate the proportion of melt meshes in the solid–melt two-phase
flow field, which can reveal the plasticizing efficiency in the extrusion process. The Nusselt
number (Nu) was used to characterize the heat transfer efficiency, and the shear stress (τ)
was used to reflect the viscous dissipation. The standard deviation of temperature (TSD) at
the outlet was used to characterize the plasticizing uniformity, which can be expressed as:

δ(T) =

√
∑
(
Ti − T

)2 · ∆Ai

A
(5)

where Ti and Ai are the temperature and area of the ith cell, A is the area of the whole
domain, and T is the average temperature of the whole domain.

2.5. Orthogonal Experiment Design

In this work, three factors of torsion configuration play important roles in determining
the plasticizing and melting capability in the screw extrusion process, which are the number
of flights, the width of flight and the height of the channel.

As shown in Table 4, Factor A is the number of flights, Factor B is the width of the
flight, Factor C is the height of the channel, respectively, in the design of the orthogonal
test. The three aforementioned factors and four levels were used to optimize orthogonal
experiments, and the design scheme of the orthogonal test, a total of 16 groups, is shown
in Table 5. According to the orthogonal test table L16(45), 16 torsion configurations were
designed, as shown in Figure 4.

Table 4. Factors and levels of the orthogonal experiment.

Level Factor A Factor B Factor C

1 8 1 mm 3.0 mm
2 10 2 mm 2.5 mm
3 12 3 mm 2.0 mm
4 14 4 mm 1.5 mm

Table 5. Test groups of the orthogonal experiment.

Case Factor A Factor B Factor C

1 8 1 mm 3.0 mm
2 8 2 mm 2.5 mm
3 8 3 mm 2.0 mm
4 8 4 mm 1.5 mm
5 10 1 mm 2.5 mm
6 10 2 mm 3.0 mm
7 10 3 mm 1.5 mm
8 10 4 mm 2.0 mm
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Table 5. Cont.

Case Factor A Factor B Factor C

9 12 1 mm 2.0 mm
10 12 2 mm 1.5 mm
11 12 3 mm 3.0 mm
12 12 4 mm 2.5 mm
13 14 1 mm 1.5 mm
14 14 2 mm 2.0 mm
15 14 3 mm 2.5 mm
16 14 4 mm 3.0 mm

Figure 4. The torsion configurations in each test group among the total 16 groups.

2.6. Experimental

In order to confirm the results of the orthogonal experiment in the numerical simu-
lation, an extrusion test was carried out with polypropylene (PP, T30S), provided by the
Sinopec Zhenhai Refining and Chemical Company (ZRCC, Ningbo, Zhengjiang, China).
The extrusion process of PP was investigated by using a filament die and a modular single
screw with a length-diameter ratio of 28:1. All experiments were performed at a constant
processing condition, that is, the barrel temperature was set to 200 ◦C and the die tem-
perature was set to 195 ◦C. The torsion configurations were arranged at the end of the
melting section.

In order to determine the standard deviation of temperature at the outlet, six melt
temperature sensors were placed through the holes evenly distributed around the die, and
their probes were immersed at various radial locations of the melt, as shown in Figure 5.

Figure 5. The experimental extruder with a radial temperature measurement in the position of
the die.
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3. Results and Discussion
3.1. The Ductile Formation Mechanism of The Torsion Configuration

A good flow field is essential to obtain a proper ductile behavior of polymer for a
screw plasticizing process. Figure 6 illustrates the streamline traces of polymer in the screw
channel for case 6. From the flow patterns in the axial direction, as shown in Figure 6a, a
torsion-spiral flow occurred in the torsion channel at the position of torsion configurations,
inducing a ductile deformation of polymer in the form of a spiral, and thereby, the radial
convections were enhanced. From the streamline distribution in Figure 6b, obvious vortices
can be found in the vertical cross-section. The reason is that the high viscosity polymer
flowing over the torsion channel will generate a torsional rotation under the combined
action of the viscous friction on the barrel surface and the diversion by the two 90◦ twisted
surfaces. Similarly, the same phenomenon was observed for other cases. In this way, an
effective exchange of material (e.g., mass and heat) from the top region to the bottom region
in the screw channel was achieved and vice versa.

Figure 6. Streamline distributions of the axial direction (a) and the vertical cross-section (b) in the
screw channel for case 6.

Figure 7 shows the liquid mass fraction (LMF) distributions near the screw root for
both cases 1 and 10. It is obvious that the results of the liquid mass fraction distributions
were different when the characteristic parameters of the torsion configuration changed. For
case 1, when the polymer was flowing into the second channel of torsion configurations,
the values of LMF were almost close to 100%. However, the values of LMF were not
close to 100% until the polymer was flowing to the third channel for case 10. Accordingly,
it is necessary and significant to optimize the characteristic parameters of the torsion
configuration for obtaining good plasticizing and melting capabilities of polymer.

Figure 7. Liquid mass fraction distributions near the screw root for cases 1 and 10.

3.2. Analysis of Orthogonal Test Results

According to the orthogonal analysis, the effect of three factors including the number of
flights, the width of flight, and the height of the channel, on the liquid mass fraction (LMF),
the Nusselt number (Nu), the shear stress (τ), and the standard deviation of temperature
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(TSD) at the outlet were studied. The orthogonal experiment result table L16(45) involves
three factors, with four levels of each factor, and the test indexes of the results are the
liquid mass fraction (LMF), the Nusselt number (Nu), the shear stress (τ), and the standard
deviation of temperature (TSD) at the outlet when the screw speed was 75 r/min, as shown
in Table 6. All the indexes of the test results were averaged.

Table 6. Orthogonal experimental schemes and results at 75 r/min.

Case Factor A Factor B Factor C LMF/% Nu τ/kPa TSD/ ◦C

1 1 1 1 79.70 342.2 2.504 0.625
2 1 2 2 78.75 315.9 2.832 0.418
3 1 3 3 76.38 274.5 3.331 0.439
4 1 4 4 73.58 240.8 3.806 0.410
5 2 1 2 78.95 318.8 2.765 0.499
6 2 2 1 78.01 308.9 2.942 0.381
7 2 3 4 74.03 242.7 3.804 0.290
8 2 4 3 76.68 277.1 3.241 0.360
9 3 1 3 75.67 266.7 3.363 0.550

10 3 2 4 74.56 246.8 3.855 0.276
11 3 3 1 78.57 317.4 2.871 0.294
12 3 4 2 75.68 271.4 3.382 0.329
13 4 1 4 75.36 254.6 3.453 0.327
14 4 2 3 73.02 242.2 3.794 0.214
15 4 3 2 76.87 288.9 3.120 0.212
16 4 4 1 79.69 339.2 2.640 0.319

The results of the range analysis can be found in Tables 7–10. Specifically, Kij (i = A,
B, C; j = 1, 2, 3, 4) reflects the average of all the result indicators related to the level j; the
range (Ri) is the difference between minimum and maximum of Kij for the factor i in the
same column, representing the importance degree of factor i.

Table 7. Range analysis results for liquid mass fraction.

Parameters Factor A Factor B Factor C

Ki1 77.10 77.42 78.99
Ki2 76.92 76.09 77.56
Ki3 76.12 76.46 75.44
Ki4 76.24 76.41 74.38
Ri 0.98 1.33 4.61

Table 8. Range analysis results for Nusselt number.

Parameters Factor A Factor B Factor C

Ki1 293.35 295.58 326.93
Ki2 286.88 278.45 298.75
Ki3 275.58 280.88 265.16
Ki4 281.23 282.13 246.23
Ri 17.77 17.13 80.70

Table 9. Range analysis results for shear stress.

Parameters Factor A Factor B Factor C

Ki1 3.12 3.02 2.74
Ki2 3.19 3.36 3.02
Ki3 3.37 3.28 3.43
Ki4 3.25 3.27 3.73
Ri 0.25 0.34 0.99
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Table 10. Range analysis results for the standard deviation of temperature.

Parameters Factor A Factor B Factor C

Ki1 0.47 0.50 0.40
Ki2 0.38 0.32 0.36
Ki3 0.36 0.31 0.39
Ki4 0.27 0.35 0.33
Ri 0.20 0.19 0.07

3.2.1. Liquid Mass Fraction

Table 7 shows the range analysis results for the liquid mass fraction. In practice, the
larger the liquid mass fraction, the better the plasticizing efficiency in the process, that is,
the larger value of Kij is optimum. Thus, the best group is A1B1C1, corresponding to case 1,
that is, when the number of flights is eight, the width of flight is 1 mm, and the height of
the channel is 3 mm, the average liquid mass fraction of the whole domain is the maximum,
which is 79.7%.

As shown in Table 7, the range of each factor is RC > RB > RA. Accordingly, the
influence degree of three factors on the liquid mass fraction at 75 r/min is: the height of
the channel > the width of flight > the number of flights. Thus, we can find that, in three
factors affecting the liquid mass fraction, the height of the channel is the main factor, and
the width of flight and the number of flights are second, respectively.

3.2.2. Nusselt Number

Table 8 shows the range analysis results for the Nusselt number. In practice, the larger
the Nusselt number, the better the heat transfer in the process, that is, the larger value of
Kij is optimum. Thus, the best group is A1B1C1, corresponding to case 1, that is, when the
number of flights is eight, the width of flight is 1 mm, and the height of the channel is
3 mm, the average Nusselt number of the whole domain is the maximum, which is 342.2.

As shown in Table 8, the range of each factor is RC > RA > RB. Accordingly, the
influence degree of three factors on the Nusselt number at 75 r/min is: the height of the
channel > the number of flights > the width of flight. Thus, we found that, in three factors
affecting the Nusselt number, the height of the channel is the main factor, and the number
of flights and the width of the flight are second, respectively.

3.2.3. Shear Stress

Table 9 shows the range analysis results for shear stress. Considering that a larger
shear stress results in a larger viscous dissipation to accelerate the melting process, that
is, the larger value of Kij is optimum, special attention should be paid to the fact that the
shear stress should not be too large to avoid product defects caused by overheating and
over-shear; fortunately, this condition did not occur in this orthogonal experiment.

For the purpose of improving the plasticizing and melting, the best group is A3B2C4,
corresponding to case 10, that is, when the number of flights is 12, the width of flight is 2
mm, and the height of the channel is 1.5 mm, the average shear stress of the whole domain
is the maximum, which is 3.855 kPa.

As shown in Table 9, the range of each factor is RC > RB > RA. Accordingly, the
influence degree of three factors on the shear stress at 75 r/min is: the height of the channel
> the width of flight > the number of flights. Thus, we can conclude that, in three factors
affecting the shear stress, the height of the channel is the main factor, and the width of
flight and the number of flights are second, respectively.

Compared with the range analysis results in Tables 7–9, it can be seen that the ranges
of factor A and factor B for all these three indexes (LMF, Nu, τ) are close in value and much
smaller than the ranges of factor C. The evidence indicates that among the three factors,
the height of the channel has considerable effect on the liquid mass fraction (LMF), the
Nusselt number (Nu), and the shear stress (τ), whereas the width of flight and the number
of flights have little effect on these three indexes.
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As is well-known, viscous dissipation and convective heat transfer are two main
sources of polymer temperature rise. From Tables 7 and 8, it can be found that the trend
of the liquid mass fraction and the Nusselt number is identical. However, the law of
the range values between shear stress and liquid mass fraction is not obvious, compared
with the range analysis results in Tables 7 and 9. The possible explanation is the torsion
configurations can hardly affect the shear behavior due to a lack of strong shear structures;
however, the torsion configurations have significant influence on the Nusselt number and
heat transfer, which is also what it was designed for. Specifically, the heat transfer process
is very important for plasticizing and melting capability in the extrusion.

3.2.4. Standard Deviation of Temperature

Table 10 shows the range analysis results for the standard deviation of temperature
at the outlet. In practice, the smaller the standard deviation of temperature, the better the
plasticizing uniformity in the process, that is, the smaller value of Kij is optimum. Thus,
the best group is A4B3C4, which was obviously not in this orthogonal experiment scheme,
reflecting that the orthogonal analysis can find the best combination, even the unplanned
experiment group. According to the results of the orthogonal experiment, the best group of
this test is A4B3C2, corresponding to case 15, that is, when the number of flights is 14, the
width of the flight is 3 mm, and the height of the channel is 2.5 mm, the average standard
deviation of temperature at the outlet is the minimum, which is 0.212 ◦C.

As shown in Table 10, the range of each factor is RA > RB > RC. Accordingly, the
influence degree of three factors on the standard deviation of temperature at 75 r/min is:
the number of flights > the width of flight > the height of the channel.

Specifically, the ranges of factor A and factor B are very close, and the combination of
them determines the width of the torsion channel. Moreover, factor C has little influence
on the standard deviation of temperature because of its low range value. In order to
further validate the influence of the torsion configurations on the standard deviation of
temperature, we defined the aspect ratio of the torsion channel as the ratio of width to
height and simulated the temperature distributions in a single torsion channel. Table 11
shows the dimensions of the four single torsion channels employed in the simulation, and
we kept the height constant owing to its low influence.

Table 11. Dimensions of the single torsion channel.

Case Length Height Width Aspect Ratio

I 15 mm 2 mm 1 mm 0.5
II 15 mm 2 mm 2 mm 1
III 15 mm 2 mm 4 mm 2
IV 15 mm 2 mm 8 mm 4

Figure 8 shows the temperature distributions of different axial cross-section in the
single torsion channels. It is obvious that the polymer fluid with high temperature near
the upper barrel surface went down to the screw surface due to the torsional rotation flow
for all these four cases, thereby the radial transfer and uniform distribution of thermal
energy were realized. Moreover, the standard deviation of temperature at the outlet was
calculated, as shown in Figure 8. Results indicated that the standard deviation of the
temperature at the outlet reduces first and then improves with the increasing aspect ratio
of the torsion channel, and there is an intermediate value, 11.87 ◦C in the simulation, when
the aspect ratio was equal to 1. This is consistent with the range analysis results for the
standard deviation of the temperature at the outlet, that is, the aspect ratio for case 15 was
also close to 1. Accordingly, the molten and mass transfer model in one torsion channel
can be established, as shown in Figure 9. An effective mass and heat transfer of material is
achieved from the top region to the bottom region by torsional flow in the torsion channel
and vice versa.
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Figure 8. Temperature distributions in the single torsion channels.

Figure 9. The molten and mass transfer mechanism model in one torsion channel.

Above all, the optimal combination of factors and levels for the liquid mass frac-
tion (LMF) and the Nusselt number (Nu) is A1B1C1, whereas the optimal combination is
A3B2C4 for the shear stress (τ) and is A4B3C4 for the standard deviation of temperature
(TSD), respectively. In a word, the influence of characteristic parameters of the torsion
configuration on different indexes is different. Therefore, we should consider each index
comprehensively, weigh the requirements to maximize the benefits of the whole life cycle
in the extrusion, including efficiency, energy consumption and quality, and finally get the
optimal combination.

3.3. Screw Speed Analysis

To display the influence law of the factors and levels on the test indexes and confirm
the effect of screw speeds on the results, Figure 10 illustrates intuitively the correlation
between the factors and the test indexes at different screw speeds. It can be found from
Figure 10a,b, the variation trend of the impact of different factors and levels on the liquid
mass fraction (LMF) and the standard deviation of temperature (TSD) at various screw
speeds were similar; in particular, the similar phenomenon is more obvious at high screw
speeds for the standard deviation of temperature (TSD). This shows from a certain side that
the above orthogonal analysis is feasible to select a certain speed, 75 r/min in the analysis.

Figure 10. Variation curve of LMF (a) and TSD (b) with factors and levels at different screw speeds.

As we know from the range analysis results for liquid mass fraction, factor C, the
height of the channel, is the main factor affecting the liquid mass fraction. From Figure 10a,
it can be found that the liquid mass fraction reduces markedly with the decrease in the
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height of the channel. Likewise, from the range analysis results for the standard deviation
of temperature, factors A and B, the number of flights and the width of flight, are the main
factors that affect the standard deviation of temperature. From Figure 10b, the standard
deviation of temperature at the outlet shows a downward trend with increasing the number
of flights and the width of the flight.

3.4. Weight Matrix Analysis

By weight matrix analysis, the specific weight of each factor level can be quantitatively
obtained, and the result is illustrated in Table 12. The weight calculation process is relatively
fixed, and Yao et al. [21] described the weight calculation formulas in detail in the relevant
literature; thus, they will not be repeated here.

Table 12. Weight matrix analysis schemes and results at 75 r/min.

Parameters A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

LMF/% 0.03556 0.03548 0.03511 0.03516 0.04877 0.04793 0.04817 0.04814 0.17163 0.16853 0.16391 0.16162
TSD/ ◦C 0.08192 0.10127 0.10700 0.14460 0.07399 0.11484 0.11982 0.10440 0.03466 0.03851 0.03593 0.04308

According to the calculation results, the influence weights of different factors for
liquid mass fraction (LMF) are A = 0.1413, B = 0.1930, C = 0.6657, the impact order of three
factors for LMF is: C > B > A, the weight value of factor C is the largest and much larger
than those of factors A and B. Similarly, the influence weights of different factors for the
standard deviation of temperature (TSD) are A = 0.4348, B = 0.4131, C = 0.1521, the impact
order of three factors for TSD is: A > B > C, the weights of factor A and factor B are close
and much larger than that of factor C. The results of the weight matrix analysis and the
range analysis are in good agreement. Considering the comprehensive effect of the three
factors on the liquid mass fraction (LMF) and standard deviation of temperature (TSD) at
the outlet, the best group is A4B3C1, and the worst combination is A1B1C4.

3.5. Experimental Validation

In order to validate the orthogonal analysis results, the optimal (A4B3C1, marked
with A*) and the worst (A1B1C4, marked with B*) torsion configurations were designed
and fabricated to run an extrusion experiment, and as a control, the conventional screw
(marked with C*) was also employed in the experiment.

By measuring the melt temperature before and after the position of torsion configura-
tions in the melting section, we can obtain the axial temperature distributions, as shown in
Figure 11. It is obvious that the temperatures in position 2 were different after the polymer
flowed through the torsion configurations, that is, the temperature for screw A* was the
highest, the temperature for screw B* was second, and the temperature for screw C* was
the lowest, respectively, indicating screw A* had the best melting capability. Therefore, the
order of the melting capability for the three screws at 75 r/min is: A* > B* > C*, which is
consistent with the orthogonal results.

Figure 12 shows the temperature distributions in the extruder die. As shown in
Figure 12a, the trend of the radial temperature profiles was the same for all of the testing
screws, that is, the temperature decreases from the center to the wall of the extrusion
die. However, the maximum difference of temperature was different, and the order
of the temperature difference for the three screws at 75 r/min is: A* < B* < C*. The
standard deviation of temperature at different screw speeds was calculated and is shown
in Figure 12b. We can see that the standard deviation of temperature increases with the
increase in the screw speed, but among all the screw speeds, screw A* had the smallest
standard deviation, followed by screw B*, and screw C* had the largest standard deviation,
respectively. In fact, the plasticizing and melting capability of screw A* are better than that
of screw B*, which is consistent with the orthogonal analysis results.
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Figure 11. Axial temperature profile for three screws at 75 r/min.

Figure 12. Temperature profile in the extrusion die: (a) radial temperature distribution at 75 r/min;
(b) standard deviation of temperature at different screw speeds.

4. Conclusions

In the study, ductile behavior of torsion configurations was numerically studied
by adopting CFD technology and orthogonal analysis. The velocity and temperature
distribution inside the screw channel was recorded, and the ductile formation mechanism
of the torsion configuration was discussed. The main factors affecting the plasticizing and
melting capability of torsion configurations and the optimal group of factors and levels
were obtained by range analysis, together with the weight matrix analysis of the orthogonal
test. The specific conclusions are as follows:

(1) From the flow and thermal conditions inside the screw channel, we found that the
torsion spiral flow patterns occur in the torsion channel, inducing a ductile deformation of
polymer in the form of a spiral, which in turn enhances the radial convection, resulting
in a good plasticizing and melting capability. In addition, the characteristic parameters of
torsion configuration have a significant influence on the plasticizing and melting capability
of polymer.

(2) The range analysis of the orthogonal experiment shows that the orders of the
influence degree of factors on the liquid mass fraction (LMF), the Nusselt number (Nu) and
the shear stress (τ) are: the height of the channel > the width of flight ; the number of
flights (C > B ; A), whereas the order of the standard deviation of temperature (TSD) is: the
number of flights ; the width of flight > the height of the channel (A ; B > C), respectively.
The results indicated that the influence of characteristic parameters of torsion configuration
on different indicators is different, which should be considered comprehensively.

(3) The weight matrix method of the orthogonal experiment shows that the influence
weights of different factors on the liquid mass fraction (LMF) are A = 0.1413, B = 0.1930,
C = 0.6657, whereas the weights for the standard deviation of temperature (TSD) are
A = 0.4348, B = 0.4131, C = 0.1521. Results indicated the height of the channel is the
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main factor to determine the liquid mass fraction (LMF), and combinations of the number
of flights and the width of flight, reflecting the width of the torsion channel, are the main
factors to jointly determine the standard deviation of temperature (TSD).

(4) Combining the range analysis and weight matrix analysis, we found that the
optimal combination is A4B3C1; in other words, when the number of flights is 14, the width
of flight is 3 mm, and the height of the channel is 3 mm, i.e., the aspect ratio of the torsion
channel is almost equal to 1, the plasticizing and melting capability of the polymer is the
best, which was validated by the extrusion experiment in practice. Thereby, it can offer a
reference for the design and optimization of torsion configurations and provide an example
for energy-efficient plasticization of polymers.

(5) Although the torsion configuration performs good radial convection and heat
transfer enhancement, it does not have positive displacement transport characteristics
compared with a helically grooved screw because its torsion flights are parallel to the
screw axis. By redesigning the torsion flights to the helical type, it is expected to improve
the positive displacement transport of the torsion configuration, which is one of our
ongoing studies.
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Nomenclature

LMF = liquid mass fraction, %
Nu = Nusselt number
τ = shear stress, kPa
TSD = standard deviation of temperature, ◦C
D = screw diameter, mm
D0 = barrel diameter, mm
l1 = length of screw zone, mm
L + 2b = length of torsion configuration, mm
l2 = length of torsion zone, mm
l3 = length of polished rod area, mm
∆Hf = pure solvent melting heat, J/kg
TS = solidus Temperature, ◦C
TL = liquidus temperature, ◦C
Kij = average of all the results indicator related to the level j
Ri = range
u = velocity vector, m/s
T = temperature, K
P = pressure, Pa
ϕ = heat dissipation term
.
γ = shear rate, s−1
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ρ = density, kg/m3

Cp = specific heat capacity, J/(kg·K)
λ = thermal conductivity, W/(m·K)
η = apparent viscosity, Pa·s
η0 = zero shear viscosity, Pa·s
η∞ = viscosity at an infinite shear rate, Pa·s
t0 = natural time, s
α = temperature sensibility coefficient, K−1

n = non-Newtonian index
Tα = reference temperature, ◦C
T0 = absolute zero, ◦C
δ(T) = standard deviation of temperature, ◦C
Ti = temperature of the ith cell, ◦C
Ai = area of the ith cell, m2

A = area of the whole domain, m2

T = average temperature of the whole domain, ◦C
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