
Modelling of filling and packing stages into the macro-cavity 

 
In this work, the UNISA software, already developed for the simulation of 

the injection molding process, was modified and updated to perform numerical 
simulations of the micro-corner filling,. The UNISA software describes the 
polymer flow from the injection chamber to the cavity by considering a series of 
rectangular or cylindrical elements. The transport equations are solved adopting 
the lubrication approximation, namely, one–dimension laminar flow of a 
viscous non–Newtonian fluid in non–isothermal conditions.  

Under the assumption of lubrication, the predominant velocity is those 
along the flow direction (x coordinate), which depends on the thickness 
coordinate (𝑦 coordinate). The momentum balance becomes: 
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where 𝜏#% is the stress acting along with the flow directio (𝑥) on a surface of 
normal 𝑦, and 𝑃 is the pressure. Under the hypothesis that pressure is constant 
along the thickness direction, the velocity is given by equation 2: 
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where 𝜂 is the viscosity, and 𝐻(𝑥) is the cavity thickness. Thus, combining 
equation 1 and 2, it is possible to obtain the volumetric flow rate 𝑄, whatever 𝑥: 
𝑄 = −2𝑊 !$
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where 𝑊 is the cavity width. Equation 3 gives the relationship between the 
pressure gradient and the flow rate for a viscous fluid at any temperature and 
velocity gradient distribution. Symmetry conditions were assumed at the cavity 
midplane, and no-wall slip condition at the cavity surface. 

In the heat transfer equation, the convective term along the flow direction, 
the conductive term along with the sample thickness, the crystallization latent 
heat, and the viscous generation are considered. The energy balance is given by 
equation 4: 
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where 𝜌 is the material density, assumed constant during the filling stage, 𝐶𝑝 is 
the specific heat, 𝑘 is the thermal conductibility, 𝜆 is the latent heat of 
crystallization, 𝜒 is the crystallinity degree.  

Symmetry conditions were applied at the midplane and a heat transfer 
coefficient, depending upon the local contact time of the melt with the mold, was 
considered at the surface. Additional assumptions are made during the filling, 
packing, and cooling stages. During the filling stage, the material is considered 
incompressible, and the flow rate is imposed as an inlet condition. The fountain 
flow is not implemented but the variables at the flow front are averaged based 
on flow rate (i. e. cup-mixing variables are considered at the front). During the 
packing stage, the material is considered compressible and the flow rate, at each 
axial position, is determined by the downstream densification. The mass flow 
rate will be given by equation 5, where L is the cavity lenght: 
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During the cooling stage, the pressure evolution is evaluated based on the 
PVT behavior of the material, accounting for crystallization kinetics. The effect 
of mold deformation, due to the polymer pressure, is accounted for during the 
packing and cooling stages. The complete/extensive characterization of the iPP 
considered in this work allowed including models in the software to describe 
rheology, crystallization kinetics, volumetric behavior, and their mutual effects. 
A multi-phases crystallization kinetics model considering meso and alpha phase 
evolution is considered. A flow-induced crystallization model, based on the 



molecular stretch, is considered for the alpha phase morphology evolution [1]. 
Molecular stretch evolution is described adopting a non-linear Maxwell’s model 
with a single relaxation time, under constant temperature and pressure, 
dependent upon the molecular stretch [2]. Density and viscosity are considered 
dependent also upon crystallinity. Material solidification is considered a gradual 
phenomenon, described by the viscosity increase on temperature decrease, and 
both crystallinity and pressure increases. The iPP viscosity was described by a 
modified Cross model accounting for the crystallization evolution, as given in 
equation 6. 
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where n and 𝜏<	are material parameters. Equation 6 gives, for low values of shear 
rates, a constant Newtonian viscosity, whereas a power-law behavior is obtained 
at high shear rates. The Newtonian viscosity η0 was described by the well–
known WLF equation 
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which describes the Newtonian viscosity dependence upon pressure and 
temperature, whereas the factor δ(χ) in equation 6 describes the effect of 
crystallinity, χ, on viscosity according to the relationship given in equation 8 
[1,3]. 
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At each temperature, the effect of crystallinity on the viscosity is not 

constant along the flow curve. At low shear rates, the viscosity increase is of the 
order of 𝛿(𝜒) whereas at high shear rates it is the order of 𝛿(𝜒)>, and 𝑛 is smaller 
than 1 for most of semicrystalline polymers. 

The description of the evolution of the undirsturbed volume during the 
crystallization process is given by the Nakamura’s approach, which concerns the 
crystallization toward the mesomorphic phase, and the Kolmogoff’s approach, 
which concerns the evolution toward the alfa phase. In the model adopted for 
crystallization kinetics, the two phases compete for the same available 
amorphous part, and the evolution of each crystalline phase is given by 
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where 𝜉 is the overall relative crystalline degree, 𝜉A is the relative crystalline 
degree of the i-phase, 𝑘A is the evolution of the undisturbed volume of the i-
phase. Kolmoroff’s equation describes the evolution of the undisturbed volume 
of the 𝛼-phase: 
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Where N and G are the nucleation density and the growth rate, respectively. 
They are given by equations 11 and 12: 
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where 𝑇J = 𝑇J,+ + 𝛼J𝑃 and 𝑇K = 𝑇K,+ + 𝛼K𝑃 
Nakamura’s equation describes the evolution toward the mesomorphic 

phase: 
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where K is given by equation 14: 
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All the parameters are given in Table 1. 
At 140 °C, with a 20% crystallinity degree, in the Nwwtonian zone, the 

viscosity increases by three orders of magnitude with respect to the viscosity 
evaluated without considering crystallization, whereas, in the high shear rates 
power-law zone, the viscosity increase reduces only to one order of magnitude. 
Table 1 summarizes the parameters adopted for equations 6-14. 

Table S1. Parameters adopted for T30G in the constitutive models described by equations 6-14 
Parameter Value Equation 

n [–] 0.34     6 
𝜏! [Pa] 9850     6 

D1 [Pa s] 7664     7 
A1 [–] 1.74     7 
D2 [K] 503     7 

D3 [K/bar] 0.18     7 
A2 [K] 301.4 7 
h [–] 180 8 

𝑁+ [nuclei cm-3] 1.95 109 11 
𝐴> [-] 1.30 108 11 
𝐵> [K-1] 0.155 11 
𝐺+ [cm s-1] 1380 12 

U/R [K] 751.6 12 
𝐾M [K2] 371381 12 
𝑇J,+ [K] 467.54 11,12 

𝛼J [K bar-1] 0.01643 11,12 
𝑇K,+ [K] 198.46 12 

𝛼K [K bar-1] 0.03129 12 
𝐾+ [s-1] 3.12 14 

𝑇JN%,+ [K] 297.48 14 
D [K] 29.95 14 

𝛼JN% [K bar-1] 0.04578 14 
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