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Abstract: A dielectric thermal smart glass (DTSG) based on the dielectric heating optical (DHO)
effect in tunable helical polymer-based superstructures—cholesteric liquid crystals (CLCs)—was
exhibited in this study. Field-induced dielectric heating can strongly affect the orientation of liquid
crystals and change its optical properties. The purpose of this research focuses on dual-frequency
CLC materials characterized by their specific properties on dielectric relaxation and demonstrates
their potential for antibacterial biosensor applications. The developed DTSG is driven by voltages
with modulated frequencies. The principal of DTSG in transparent states are a planar (P) state
and a heated planar (HP) state reflecting infrared light, operated with the voltage at low and high
frequencies, respectively. The scattering states are a focal conic (FC) state and a heated FC (HFC)
state, with an applied frequency near the crossover frequency. The biomolecule detection of the
antibacterial property was also demonstrated. The detection limitation of the DTSG biosensor was
found to be about 0.5 µg/mL. The DTSG material has many potential industrial applications, such as
in buildings, photonic devices, and biosensor applications.

Keywords: cholesteric liquid crystals; label-free biosensor; dielectric heating

1. Introduction

Smart glass (SG), which can dynamically alter the transmittance of light by applying an
electric field, has attracted much attention [1,2]. Liquid crystal (LC) materials are the most
important technology for SG applications. Optical states of liquid crystal smart glass (LCSG)
are typically a transparent state and a scattering state, and one can switch between them by
applying different voltages [3]. There are vast applications of LCSG, such as in buildings,
displays, cars, signboards, and airplanes. Typically, there are three types of commercial LC-
based SG: polymer-dispersed liquid crystal (PDLC), polymer-stabilized cholesteric texture
(PSCT), and polymer-stabilized liquid crystal (PSLC). Recently, applications based on dual-
frequency cholesteric liquid crystals (DFCLCs) as bistable and multistable optical devices
have also been demonstrated [4–6]. Rapid and direct switching between transparent and
scattering states has previously been shown in DFCLCs [5]. The relaxation frequency
characteristics of DFCLCs depending on a unique dielectric heating or thermodielectric
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effect have also been reported [7,8]. This thermodielectric effect is caused by the rotation of
the LC molecular dipole within the dielectric material.

In general, the dielectric relaxation of LCs occurs at a very high frequency (>MHz),
regardless of the electric constants ε|| and ε⊥, along the long and short axis of LC molecules.
However, dielectric relaxation of dual-frequency liquid crystals (DFLCs) parallel to the
long axis of LC molecules can occur at a lower frequency range, that is, between 10 and
100 kHz. Thus, it is easier to observe the dielectric relaxation frequency of orientation
in dual-frequency nematic liquid crystals (DFNLCs) or DFCLCs. The dipole of DFLC
materials will rotate with an applied electrical field, and then result in apparent heat. Thus,
the thermodielectric effect can be easily monitored in voltage-driven DFLCs or DFCLCs
because of the relatively low relaxation frequency of long axis dielectric relaxation. Based
on the exceptional dielectric heating or thermodielectric effect in LCs, many applications
have been proposed, such as low-voltage devices [7], photonic crystal devices [8–10], and
electrically tunable devices [11,12]. Compared to the well-known electro-optical (EO)
effects of LCs, the dielectric heating optical (DHO) effect possesses distinctive optical
features. Furthermore, in DFLCs or DFCLCs, the dielectric anisotropy (∆ε = ε|| − ε⊥)
reverses its sign from positive to negative at a particular frequency called the crossover
frequency (fc) [13]. With this specific feature, DFLCs and DFCLCs have a high potential for
fast switchable and multi-functional optical devices.

The previous LC-based SGs only emphasize the electrical tuning optical features.
Temperature adjustment is also a key function to be considered for the development of
SG. However, an LC-based SG with adjustable transmittance and heating ability has not
been invented until now. In this study, a novel dielectric thermal smart glass (DTSG) was
first developed using the DHO effect in composite DFCLCs. Characteristics of the DTSG,
including temperature control, frequency modulation, and optical stability, have been
experimentally demonstrated. Compared to previously reported LCSGs, our proposed
DTSG can rapidly switch to the heated states, heated focal conic (HFC) state, and heated
planar (HP) state by applying a high-frequency electric field. When a low-frequency electric
field was applied to the DTSG, the device returned to its room temperature. Thus, exhibited
the scattered focal conic (FC) state and transparent planar (P) state, defined as cold FC state
and cold P state, respectively. Figure 1 shows the schematic of both cold and heated modes
of the DTSG device and the operation principle. The operation and DHO property of the
DTSG was employed to detect Bovine serum albumin (BSA) with antibacterial possibility.

Polymers 2021, 13, x FOR PEER REVIEW 2 of 9 
 

 

relaxation frequency characteristics of DFCLCs depending on a unique dielectric heating 
or thermodielectric effect have also been reported [7,8]. This thermodielectric effect is 
caused by the rotation of the LC molecular dipole within the dielectric material. 

In general, the dielectric relaxation of LCs occurs at a very high frequency (>MHz), 
regardless of the electric constants ε|| and ε⊥, along the long and short axis of LC mole-
cules. However, dielectric relaxation of dual-frequency liquid crystals (DFLCs) parallel to 
the long axis of LC molecules can occur at a lower frequency range, that is, between 10 
and 100 kHz. Thus, it is easier to observe the dielectric relaxation frequency of orientation 
in dual-frequency nematic liquid crystals (DFNLCs) or DFCLCs. The dipole of DFLC ma-
terials will rotate with an applied electrical field, and then result in apparent heat. Thus, 
the thermodielectric effect can be easily monitored in voltage-driven DFLCs or DFCLCs 
because of the relatively low relaxation frequency of long axis dielectric relaxation. Based 
on the exceptional dielectric heating or thermodielectric effect in LCs, many applications 
have been proposed, such as low-voltage devices [7], photonic crystal devices [8–10], and 
electrically tunable devices [11,12]. Compared to the well-known electro-optical (EO) ef-
fects of LCs, the dielectric heating optical (DHO) effect possesses distinctive optical fea-
tures. Furthermore, in DFLCs or DFCLCs, the dielectric anisotropy (Δε = ε|| − ε⊥) reverses 
its sign from positive to negative at a particular frequency called the crossover frequency 
(fc) [13]. With this specific feature, DFLCs and DFCLCs have a high potential for fast 
switchable and multi-functional optical devices. 

The previous LC-based SGs only emphasize the electrical tuning optical features. 
Temperature adjustment is also a key function to be considered for the development of 
SG. However, an LC-based SG with adjustable transmittance and heating ability has not 
been invented until now. In this study, a novel dielectric thermal smart glass (DTSG) was 
first developed using the DHO effect in composite DFCLCs. Characteristics of the DTSG, 
including temperature control, frequency modulation, and optical stability, have been ex-
perimentally demonstrated. Compared to previously reported LCSGs, our proposed 
DTSG can rapidly switch to the heated states, heated focal conic (HFC) state, and heated 
planar (HP) state by applying a high-frequency electric field. When a low-frequency elec-
tric field was applied to the DTSG, the device returned to its room temperature. Thus, 
exhibited the scattered focal conic (FC) state and transparent planar (P) state, defined as 
cold FC state and cold P state, respectively. Figure 1 shows the schematic of both cold and 
heated modes of the DTSG device and the operation principle. The operation and DHO 
property of the DTSG was employed to detect Bovine serum albumin (BSA) with antibac-
terial possibility. 

 
Figure 1. Schematics of the dielectric heating optical (DHO) effect behavior in the dielectric ther-
mal smart glass (DTSG) device when varying the frequency of the AC voltage. 

  

Figure 1. Schematics of the dielectric heating optical (DHO) effect behavior in the dielectric thermal
smart glass (DTSG) device when varying the frequency of the AC voltage.

2. Materials and Methods
2.1. Materials of DTSG

The host material used for preparing the DFCLC was nematic LC, MLC-2048 (Merck,
Fort Kennerworth, NJ, USA), with the clearing point 106.2 ◦C and fc = 14 kHz at 25 ◦C.
The chiral dopant S811 (DIC) was doped into the host material at a concentration of 5 wt%.
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The helical twisting power (HTP) of S811 in MLC-2048 is −14 µm−1. The composite of the
DFCLC materials was injected into 10 µm thick cells with anti-parallel alignment layers
by capillary action. The alignment layers forced the DFCLC to exhibit an initial planar
state. The frequency-dependent light transmission was examined through a probe laser
beam, derived from a He–Ne laser system operated at a wavelength of 632.8 nm. Moreover,
crossed polarizer schemes were adopted for the electro-optical measurements of the DTSG
device. An arbitrary function generator (Tektronix AFG-3022B, Beaverton, OR, USA) was
employed to apply frequency-modulated voltages. In addition, transmission spectra of the
DTSG were obtained with a fiber-optic spectrometer (Ocean Optics HR 2000+, Orlando, FL,
USA) with a halogen light source. All experimental data were acquired at 26 ± 1 ◦C.

2.2. Fabrication Methods of DTSG Biosensor

To prepare the DTSG biosensor for detecting BSA, the Indium Tin Oxide; ITO glass
substrate was first immersed in a liquid form solution for 0.5 h, containing 1.6% DMOAP
(1-octadecanaminium, and N,N-dimethyl-N-[3-(trimethoxysilyl)propyl] chloride) in deion-
ized water, at 25 ◦C. In the BSA immobilization experiment, the 0.5–10 µg/mL BSA solution
was immersed on the DMOAP substrate for 30 min. After being rinsed with deionized
water to remove unbound BSA, the sandwich DTSG biosensor with two DMOAP coated
substrates was used. In addition, the 10 µm spacers were used to form spaces in the cell.
Then, the DFCLC material was employed to fill the DTSG biosensor by capillary action.

3. Results and Discussions
3.1. Mechanisms of the DTSG Device

Figure 1 schematically shows transmission dependent on the applied frequency in
the DTSG device. The optical states of the DTSG system were the P, FC, HFC, and HP
states with increasing frequency of the applied voltage. The P and HP states were trans-
parent in visible spectral range, while FC and HFC states appeared opaque, caused by
light scattering. Planar structures in the DTSG device were in the low-frequency range
(<10 kHz). The helical axis of the transparent P state was normal to the cell substrates,
and the pitch length was designed to reflect light in the near-infrared selectively. When the
applied frequency was increased, the scattering FC state appeared. However, the dielectric
heating effect was generated when the applied electrical frequency to the fc was increased.
Dielectric dispersion in DFCLCs caused a remarkable increase in temperature because of
the dielectric loss in the long axis of LCs [14]. The FC state transformed into the HFC state
at a higher temperature when the applied frequency exceeded fc. If the applied frequency
is increased continuously, the negative dielectric anisotropic ∆ε becomes dominant, and the
transparent HP state occurred. Figure 2a compares the frequency response transmittance
at 70 Vrms between a CLC cell (which is composed of chiral dopant S811 and cell gap is
10 µm) and a DFCLC cell. The optical signal of a typical CLC device was less frequency
sensitive, as shown in Figure 2a. The electrohydrodynamic (EHD) effect causing the lower
transmittance occurred under 20 kHz. Note that the temperature was measured by using
a thermocouple. However, the dominant dielectric heating induced by the DHO effect
(100–150 kHz) in DFCLCs exhibited dramatically lower optical transmission (FC and HFC
states). In addition, an EHD also appeared when operated at a low-frequency electrical
field (<20 kHz). This EHD instability can produce a rich variety of EHD patterns, caus-
ing the light transmittance to decrease slightly [15]. The obvious heating effect in the
DFCLC material was observed, as shown in Figure 2a. Figure 2b depicts the electro-optical
properties of a DFCLC cell between crossed polarizers under the applied frequency of
1 kHz. Figure 2c shows the frequency response transmittance at various applied voltages.
Transmission as a function of the applied voltage field can also be exhibited in the DTSG.
When the low-frequency (1 kHz) voltage field was applied, the DFCLC bulk showed
positive dielectric anisotropy ∆ε, and the DTSG was initially in the P state. By increasing
the applied voltage, the DTSG exhibited three main optical intensity states.



Polymers 2021, 13, 245 4 of 9

Polymers 2021, 13, x FOR PEER REVIEW 4 of 9 
 

 

effect in the DFCLC material was observed, as shown in Figure 2a. Figure 2b depicts the 
electro-optical properties of a DFCLC cell between crossed polarizers under the applied 
frequency of 1 kHz. Figure 2c shows the frequency response transmittance at various ap-
plied voltages. Transmission as a function of the applied voltage field can also be exhib-
ited in the DTSG. When the low-frequency (1 kHz) voltage field was applied, the DFCLC 
bulk showed positive dielectric anisotropy Δε, and the DTSG was initially in the P state. 
By increasing the applied voltage, the DTSG exhibited three main optical intensity states. 

 
Figure 2. (a) The frequency-dependent temperature with various applied frequencies in the cho-
lesteric liquid crystals (CLC) and dual-frequency cholesteric liquid crystals (DFCLC), (b) the 
voltage-dependent transmittance with three states, and (c) the transmittance intensity of heated 
focal conic/focal conic (HFC/FC) state varied with the applied voltage field. 

The highest transmission was the initial P state and the FC state, which appeared at 
ca. 15–70 Vrms. Finally, the DTSG texture changed to a homeotropic (H) state when the 
applied voltage exceeded 70 Vrms. However, the DTSG showed a negative dielectric ani-
sotropic Δε when the applied voltage field was at the high frequency of ca. 100 kHz. The 
DTSG was initially in the cold P state when the frequency was below 100 kHz. When the 
applied frequency continued to increase, high-frequency voltage caused dielectric heating 
and increased fc. Finally, the dielectric anisotropic Δε changed to the positive dielectric 
anisotropic. The temperature dependence of the fc satisfies the Arrhenius equation, as 
shown in the expression: 

0A exp a
c

B

Ef
K T

 
= − 

   
(1)

where A0 stands for the material constant, Ea denotes the activation energy, KB represents 
the Boltzmann constant, and T is the absolute temperature. Based on the equation, the fc 
increases with an increasing temperature. The dielectric heating power density in LCs can 
be expressed by [10]: 

( )
( )

2
0 0

2 22 1
s

d
Ep

ε ε ωτωε
ω τ

∞−
=

+  
(2)

where ω = 2πf represents the angular frequency, ε0 denotes the permittivity of free space, 
εs and ε∞ stand for the static and high-frequency limiting dielectric constants, respectively, 
and τ is the relaxation time. Based on the power density equation, the power increases 
with the increasing amplitude of the electrical field. Based on these two equations, our 

Figure 2. (a) The frequency-dependent temperature with various applied frequencies in the
cholesteric liquid crystals (CLC) and dual-frequency cholesteric liquid crystals (DFCLC), (b) the
voltage-dependent transmittance with three states, and (c) the transmittance intensity of heated focal
conic/focal conic (HFC/FC) state varied with the applied voltage field.

The highest transmission was the initial P state and the FC state, which appeared at ca.
15–70 Vrms. Finally, the DTSG texture changed to a homeotropic (H) state when the applied
voltage exceeded 70 Vrms. However, the DTSG showed a negative dielectric anisotropic
∆ε when the applied voltage field was at the high frequency of ca. 100 kHz. The DTSG
was initially in the cold P state when the frequency was below 100 kHz. When the ap-
plied frequency continued to increase, high-frequency voltage caused dielectric heating
and increased fc. Finally, the dielectric anisotropic ∆ε changed to the positive dielec-
tric anisotropic. The temperature dependence of the fc satisfies the Arrhenius equation,
as shown in the expression:

fc = A0 exp
(
− Ea

KBT

)
(1)

where A0 stands for the material constant, Ea denotes the activation energy, KB represents
the Boltzmann constant, and T is the absolute temperature. Based on the equation, the fc
increases with an increasing temperature. The dielectric heating power density in LCs can
be expressed by [10]:

pd =
ωε0E2

0
2

(εs − ε∞)ωτ

(1 + ω2τ2)
(2)

where ω = 2πf represents the angular frequency, ε0 denotes the permittivity of free space,
εs and ε∞ stand for the static and high-frequency limiting dielectric constants, respectively,
and τ is the relaxation time. Based on the power density equation, the power increases
with the increasing amplitude of the electrical field. Based on these two equations, our
experimental data were calculated and well understood. The texture of the dielectric
heating-induced f < fc and ∆ε > 0 transforms the DTSG from the P state to the HFC or
H state, as shown in Figure 2c. Further, Figure 2c shows the voltage-dependent DHO
effect in a DTSG. The higher voltage amplitude yields a higher dielectric heating power,
which results in a blue shift of the fc, and, in turn, produces a blue shift in the scattering
HFC states. Figure 3a illustrates how the rise in temperature and the frequencies of
appearance of the HFC/FC states in the DTSG varied with the applied voltage. The rise in
temperature of the DTSG was linear, observed at applied voltages of 30–60 Vrms. Further,
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the DTSG rise in temperature will increase rapidly when the applied voltage exceeds
60 Vrms, and slowly increase with the highest temperature when the voltage exceeds
70 Vrms. Figure 3b demonstrates the light intensity of scattering HFC/FC state varied with
the applied voltage at fc. Excellent performance of the DTSG is observed at an applied
electric field of 60 Vrms. In addition, the transmission spectra of tuning DTSG in heated
mode from HFC to HP at 60 Vrms is shown in Figure 4. The lowest intensity of HFC state is
at 145 kHz, and the highest intensity of HP state is at 165 kHz and 60 Vrms. The contrast
ratio of the DTSG device deduced from the transmittance ratio of HFC to HP with data
retrieved from Figure 4 is 6–7. Compared with its well-known counterpart—LC smart
glass—the most advantageous feature of this smart glass is the heating effect, whereby it
takes a couple of seconds (~5 s) [7] to switch between cold mode (P and FC states) and
heated mode (HP and HFC states). In the previous research, the stability of P and FC stable
state in DTSG endured for several weeks [7]. Compared with the traditional heated glass
technology, which is operated with high voltage (>100 V), our DTSG owns higher energy
efficiency. Figure 4 shows photographs (on black paper) and optical textures of the DTSG
device in the bistable HFC and HP states. It is worth mentioning that the HFC and HP
states are bistable and have excellent scattering and transparent characteristics in the DTSG.
If the voltage field is turned off, the HP and HFC states will gradually change to P and FC
states due to the dielectric heating power vanishing, respectively. Compared with the other
recent smart glass manipulating the light transmission properties via voltage, light, or heat,
the proposed DTSG is the first glass can control light and generate heat at the same time.
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Figure 4. Transmission spectra of the DTSG in the HFC-to-heated planar (HP) state transitions
under various applying electrical field conditions. Photographs of the DTSG device in the bistable
HFC and HP states on black paper, and optical textures of the HFC and HP states under crossed
polarizing microscopy.
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3.2. DTSG Materials for Biosensors

LC biosensors were invented by Dr. Abbott in 2001 [16]. Since then, LC biosen-
sors have become an important sensing technology. The LC biosensor technology uses
biomolecules immobilized on a substrate to induce the vertical-to-planar reorientation of
LC molecules to make a device with high sensitivity. However, this kind of LC biosensor
lacks a heating-induced antibacterial property. Figure 5 shows the mechanisms of the
DTSG biosensors with and without BSA biomolecules on the DMOAP layer. The immobi-
lized biomolecules diminish the vertical alignment force of the DMOAP substrate. When
the biomolecules BSA are adsorbed onto DMOAP-coated glass, the vertical anchoring
power becomes much weaker. These BSA allow DTSG molecules to transfer to the P state.
The DTSG transiting from the FC to P mode makes the Bragg reflection property more
obvious. To prepare a DTSG device for detecting BSA, we immersed ITO glass substrates
for 0.5 h in a fluid-form solution, including 1.6% (v/v) of DMOAP in Deionized water (DI)
water to induce DMOAP-coated substrates. Prior to the BSA immobilization, 0.5–10 µg/mL
of BSA solution was dispersed onto a DMOAP substrate for 30 min. Once rinsed with
DI water to remove unbound BSA, the cells of each DTSG were self-assembled with a
10 µm spacer. The details of the BSA solution immobilization and device fabrication can
be found in past publications [17,18]. The DFCLC changed to the P state with increasing
concentrations of BSA. Ultimately, the qui-perfect P state led the DTSG biosensors to be
in a reflective perfect P state (Figure 5) [17]. In addition, the DHO effect produced by the
electrical features of DTSG can be applied to bioinspired sensing with regard to antibac-
terial surfaces. To investigate the voltage-induced heating property, a function generator
was employed to supply square-wave voltages 70 V at 100 kHz on the DTSG biosensor to
produce the HP of DFCLC through dielectric coupling DHO. The change of HP reflection
light intensities could lead the DTSG biosensor to be used as a sensitive biosensor. Thus,
increasing BSA concentrations could yield a higher optical intensity in the DTSG biosensor.
The transmittance correlation and Bragg reflection of various BSA concentrations is also
displayed in Figure 6. The experiment results show that the transmittance (Bragg reflection)
of DTSG in the light spectrum could be used to detect and quantitate the biomolecules
in this manner [18]. Therefore, this concludes that the BSA concentration cannot be de-
tected by more than 8 µg/mL. Besides, the detection limit is about 0.5 µg/mL, because
the transmission difference of DTSGs cannot be discerned beyond 0.5 µg/mL. The fitting
relationship with a coefficient of R2 ≥ 0.92 was observed between 0.5 and 6 µg/mL of
BSA (Figure 6). Therefore, the DTSG material could be used in biomedical sensing. The
selectivity of LC biosensors has been demonstrated in the past [19–21]. Compared with the
several based protein assays (absorbance- and fluorescence-based assays), the detection
limit of BSA detected by our DTSG-based protein assay is more sensitive. Thus, with
the proper voltage control, the DTSG device can be heated to have antibacterial efficacy
(maximum temperature 60 ◦C), making the biosensors highly suitable for antibacterial
deactivation applications.
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4. Conclusions

The DTSG device based on a dielectric heating effect in tunable helical superstructure,
CLC, is proposed. The electrical field-induced dielectric heating strongly affects the optical
properties of LCs, which is known as the DHO effect. The DFCLC materials characterized
by their special dielectric anisotropy and relaxation can be employed as a novel DTSG in
heated and cold modes. Additionally, the DTSG can be driven by simply applying voltage-
modulated frequencies. The DTSG possesses two transparent states (P and HP) and
scattering states (FC and C). This novel DTSG offers excellent features and exhibits several
potentials in temperature-dependent modulation, simple fabrication, and optical stability.
Therefore, the DTSG material can be used in windshields, sunroofs, and heat preservation
glass based on the special properties proposed in this study. The DTSG biosensor for the
biomolecule detection with the antibacterial property was successfully established. Based
on the results of the DTSG, we may be able to capture Respiratory Syndrome coronavirus 2
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(SARS-CoV-2) and affect the arrangement of DTSGs. Combined with detection, this may
have great advantages for coronavirus disease quarantine.
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Abbreviations

DTSG Dielectric thermal smart glass
DHO Dielectric heating optical
CLC Cholesteric liquid crystal
HP Heated planar
P Planar
FC Focal conic
HFC Heated focal conic
SG Smart glass
LC Liquid crystal
PDLC Polymer dispersed liquid crystal
PSCT Polymer-stabilized cholesteric texture
DFCLC Dual-frequency cholesteric liquid crystal
DFLCs Dual-frequency liquid crystals
HTP Helical twisting power
EHD Electrohydrodynamic
DMOAP 1-octadecanaminium, and N,N-dimethyl-N-[3-(trimethoxysilyl)propyl] chloride
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