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Abstract: In this paper, the calorimetric response of the amorphous phase was examined in hy-
brid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced
graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-
filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according
to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted
as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when
MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better
thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a conse-
quence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous
dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative
rearranging region (CRR) size, being even more remarkable when increasing the lignin content.
The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid
amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites
were crystallized up to their maximum extent from the glassy state in nonisothermal conditions.
Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed
among samples, revealing different levels of mobility constraining in the amorphous phase, probably
linked to a filler-dimension dependence of space filling.

Keywords: PLA; CNT; rGO; MMT; glass transition; crystallization; morphology; thermal stability;
calorimetry; cooperativity

1. Introduction

The bio-renewability, ease of processing, and suitability for mechanical recycling [1],
as well as decent mechanical properties, make poly(lactic acid) (PLA) among the best
substitutes to polymers derived from petroleum sources [2]. However, PLA has certain
drawbacks, such as a small elongation at break (<10%), poor impact strength (~5 kJ m−2),
low heat-deflection temperature (<60 ◦C), and poor UV-light barrier properties [3]. Blend-
ing PLA with either other polymers or nanofillers offers more opportunities to tailor its
properties. For instance, PP/PLA-blend nanocomposites with multiwalled carbon nan-
otubes (MWCNT) [4] have enhanced tensile strength and electrical conductivity. Hybrid
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nanocomposites of PLA with nanocellulose/nanoclay have enhanced barrier properties
and improved thermo-mechanical properties [5]. More specifically, nanocomposites, in-
cluding nucleophilic nanofillers like nanoclay, graphene oxide (GO), and MWCNT, in PLA
exhibit better protection against UV radiation [6], improved Young’s modulus, antibacterial
activity, potential use in biomedical applications [7], and increased thermal conductivity,
as well as mechanical and electrical properties [8].

Lignin, one of the most abundant bio-macromolecules on earth, is biodegradable,
nontoxic, and low-cost. Commercially, it is usually easily obtained as a byproduct in the
pulp and paper industry. Its use is also regularly reported in biorefineries [9–11] and in
carbon-fiber manufacturing [12,13]. Moreover, it exhibits interesting mechanical properties
and decent thermal resistance. Hence, there is an increased amount of research on the
use of lignin as a biomaterial [14–21]. Additionally, lignin has been used as an adhesion
promoter in PLA/cotton-fiber composites [22]. The possibility of improving interfacial
adhesion thanks to lignin is the consequence of the numerous intermolecular bonds it can
be involved in. Therefore, it is possible to associate it in hybrid nanocomposites with PLA
via interactions with nanofillers like MWCNT, reduced graphene oxide (rGO), and Cloisite
30B (C30B), which is an organically-modified montmorillonite nanoclay.

Whilst the nanocomposite morphology has been widely probed by X-ray diffraction
and electron microscopy, interest in modulated temperature-differential scanning calorime-
try (MT-DSC) has grown these recent years. Several studies have tentatively related the
nanocomposite structure to the cooperativity length [23–30]. The method developed by
Donth et al. [31,32] in the framework of the cooperative rearranging-regions (CRR) concept,
introduced by Adam and Gibbs [33], makes it possible to estimate the cooperativity length
from the mean temperature fluctuation associated with the glass transition, which is accessi-
ble thanks to MT-DSC. In a previous study on PLA/clay nanocomposites [34], we reported
that exfoliated systems exhibit an increase in the CRR size in comparison to neat PLA, in
agreement with the observations of Chen et al. on polystyrene/clay nanocomposites [23],
whereas intercalation is characterized by a decrease in the CRR size. Calorimetric inves-
tigations also provide information regarding the mobility restrictions at the filler/matrix
interface. These restrictions are characterized by a decrease of the heat-capacity step at
the glass transition, revealing that a part of the amorphous phase does not mobilize. This
interphase is named the rigid amorphous fraction (XRAF filler) [35], in reference to the similar
behavior commonly reported at the crystal/amorphous interface (XRAF crystal). It is known
that XRAF crystal strongly affects the macroscopic properties, such as mechanical or barrier
properties [36,37]. Klonos et al. [38] showed that XRAF filler hinders thermal diffusivity,
whereas XRAF crystal facilitates heat transport.

Thus, we used MT-DSC in this study to characterize PLA/lignin nanocomposites
containing nanosheets (rGO), layer-like nanoclays (C30B), or nanotubes (MWCNT). This set
of nanofillers was chosen in order to highlight possible shape and size effects influencing
both the morphological and thermal properties of the hybrid nanocomposites. Qualitative
filler dispersion was assessed from field-emission scanning-electron microscopy (FESEM)
and transmission-electron microscopy (TEM). The thermal stability was evaluated from
thermogravimetric analysis (TGA). Furthermore, cooperativity and the rigid amorphous
fraction were estimated in amorphous and semi-crystalline samples. Since a number of the
properties of PLA depend on its degree of crystallinity, the impact of the nanofiller choice
on the crystallization kinetic was also reported.

2. Materials and Methods
2.1. Preparation of PLA/Lignin Hybrid Nanocomposites

Lignin was extracted from Prosopis juliflora (Sw.), collected from Gujarat, India. PLA-
L105, which is named “PLLA” in the present paper, was purchased from Corbion®, Ams-
terdam, Netherlands with MW = 148 kg mol−1, L-enantiomeric purity of 99.5%, and with a
melting temperature Tm = 180–200 ◦C. MWCNT were obtained from nanocyl (NANOCYL®

NC7000), Sambreville, Belgium. C30B was made by Southern Clay Products®, Gonzales,
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Texas, USA. rGO was synthesized using a previously reported procedure [39]. Graphite
powder, KMnO4, NaNO3, H2SO4, and H2O2 (30%) were obtained from Merck®, Mumbai,
India.

The components were mixed in chloroform using a probe sonicator. For each com-
position, 1 wt% of lignin/chloroform mixture and 1 wt% of filler/chloroform (rGO,
MWCNT, or C30B) was added into the PLLA/chloroform mixture. The sonicated mixture
of PLLA/lignin/nanofiller was cast on a petri dish and dried in an air oven at 70 ◦C.

In this paper, the nanocomposites are named PLLA_lignin_X, with X being the filler.
The respective weight percentages of lignin (y) and nanofiller (z) are indicated as (y:z).
When nothing is mentioned, the ratio between lignin and nanofiller is (1:1).

2.2. Field-Emission Scanning-Electron Microscopy (FESEM) and Transmission-Electron
Microscopy (TEM)

The fracture-surface morphology was taken at 1 kV with the help of a Zeiss®, Marly
le Roi, France, Gemini LEO 1530 apparatus at 60 kV. The samples were cryo-fractured and
dried, and then the fracture surface was coated with a thin film of carbon (about 20–30 nm
thickness) before performing the FESEM analysis.

TEM micrographs of the samples were taken using a Jeol JEM-2100®, Tokyo, Japan
transmission-electron microscope with an accelerating voltage of 200 keV. Ultrathin sections
of bulk specimens (about 100 nm in thickness) were obtained by crosscutting with an
ultramicrotome fitted with a diamond knife.

2.3. Thermogravimetric Analysis (TGA)

Thermogravimetric analyses (TGA) were carried out using a TGA Discovery instru-
ment from TA Instruments®, Guyancourt, France. The analyses were carried out under
nitrogen atmosphere at 25 mL min−1 flow rate, in the temperature range of 30–800 ◦C and
a scanning rate of 10 K min−1 on 5–10 mg samples.

2.4. Modulated Temperature-Differential Scanning Calorimetry (MT-DSC)

MT-DSC experiments were conducted on a DSC Q100 and DSC Q2000 from TA
Instruments®, Guyancourt, France, coupled with a refrigerated cooling system. The ex-
periments were conducted under nitrogen atmosphere at 50 mL min−1 flow rate. The
samples were positioned in Tzero® standard aluminum pans. Baseline correction and
cell-capacitance control were done using standard Tzero® technology. To calibrate the tem-
perature and energy, a standard sample of Indium (Tm = 156.60 ◦C and ∆Hm = 28.38 J g−1)
was used. The calibration of the specific heat capacity was carried out using sapphire as a
reference. Before the calorimetric investigations, the samples (about 5 mg) were placed in a
desiccator under P2O5 and stored under a dehumidified atmosphere for at least one week.

To compare the crystallization kinetics between materials, the samples were first
melted to erase the thermal history and optimize the thermal contact between the sample
and the crucible. Then, the samples were cooled to 0 ◦C at 50 K min−1. A heating scan
was subsequently performed from 0 ◦C to 200 ◦C in heat-only conditions (oscillation
amplitude of ±0.318 ◦C, oscillation period of 60 s, and heating rate of 2 K min−1). These
conditions prevent cooling in the modulation period, as the instantaneous heating rate is
never negative. They are recommended for analyzing crystallization and melting events
without the biases caused by melt-recrystallization processes [40].

Glass-transition-characteristic parameters and CRR size were obtained by applying
heat–cool-modulation parameters (oscillation amplitude of ±2.5 ◦C, oscillation period of
100 s, and a heating rate equal to 1 K min−1) on amorphous and semi-crystalline samples.
These conditions respect the minimum number of modulation steps needed to investigate
the glass transition, and were previously shown to be efficient for the study of PLA
nanocomposites [34]. Amorphization was done using a Perkin Elmer®, Villebon-sur-Yvette,
France, DSC8500 apparatus. The samples were cooled down from the melt to −50 ◦C at
300 K min−1. Then, a first MT-DSC heat-cool scan was performed from 0 to 105 ◦C, i.e.,
until each sample reached its maximum crystallization extent, with the glass transition
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being recorded at about 60 ◦C and the cold crystallization proceeding between 80 and
100 ◦C. In a second step, each sample was cooled to 0 ◦C at 50 K min−1 before being heated
again to 105 ◦C in heat–cool conditions.

2.5. Cooperative Rearranging Regions (CRR)

The complete deconvolution procedure suggested by Reading [40] was applied, giving
access to MT-DSC signals, with C′ and C” being the in-phase and the out-of-phase com-
ponents of C*, the complex heat capacity, respectively. More details regarding phase-lag
correction and heat-capacity estimation can be found in [41]. The number of relaxing
structural units per CRR, Nα, was estimated according to [32]:

Nα =
NA

(
1

Cp,glass (Tα)
− 1

Cp,liquid (Tα)

)
kB T2

α

M0 (δT)2 (1)

where Tα is the dynamic glass-transition temperature, kB the Boltzmann constant, Cp the
heat capacity at constant pressure, M0 the molar mass of one structural unit (one repeating
unit in the present case, i.e., M0 = 72 g mol−1), NA the Avogadro number, and δT the mean
temperature fluctuation related to the glass-transition temperature of an average CRR. Tα is
defined as the maximum of C” Gaussian fit when δT is its standard deviation. Cp, glass (Tα)

and Cp, liquid (Tα) are determined by prolonging C′ glass and liquid lines to Tα.

3. Results and Discussion

The main morphological features associated with the dispersion of lignin and nanofillers
into the PLLA matrix are shown in Figure 1, based on electron-microscopy analyses on
PLLA_Lignin_MWCNT nanocomposites. One can observe the successful incorporation of
lignin and nanofiller, appearing as light domains and white filaments, respectively, in the
dark-colored PLLA matrix of the FESEM image, which is confirmed by the TEM image. The
TEM micrograph shows the presence of MWCNT distributed homogeneously over lignin
exhibiting good interaction between them. Lignin exhibits a highly complex chemical
structure, in which several chemical functions can contribute to interfacial interactions, not
only by the formation of hydrogen bonds through hydroxyl groups, but also by favoring
secondary van der Waals interactions via phenyl and carbonyl groups, with the latter being
particularly compatible with PLLA ester groups [42].
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Figure 1. (a) FESEM image of PLLA_Lignin_MWCNT. PLLA matrix is indicated in red, and the areas containing lignin
are shown in green. Blue arrows point at filament shapes, which are characteristic of MWCNT, (b,c) TEM images of
PLLA_Lignin_MWCNT.

Figures 2 and 3 show the evolution of the weight percent as a function of temperature
in PLLA_Lignin and hybrid nanocomposites, depending on the nanofiller nature (Figure 2)
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and on the lignin/nanofiller ratio (Figure 3). Data regarding neat PLLA and neat lignin
were also added in Figures 2 and 3, respectively. The degradation of neat lignin occurs in
three stages, named the drying stage, the fast-degradation stage, and the slow-degradation
stage by Ma et al. [43]. The degradation of PLA-based materials occurs in two steps: The
weight loss corresponding to the temperature range 100–170 ◦C for all samples might be
due to the presence of water, and the major weight loss observed in the range 280–395 ◦C
might be due to the complete degradation of the matrix. Temperatures Tw% associated with
representative mass-loss percentage w% are given in Table 1, with w = {5; 10; 50; 90; 95}.
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Table 1. TGA and MT-DSC heat-only extracted parameters.

TGA MT–DSC

Temperatures Corresponding to % of Weight
Loss (◦C)

Heat Capacity Step ∆Cp (J g−1 K−1),
Glass-Transition Temperature Tg (◦C),

Enthalpy of Cold–Crystallization ∆Hc (J g−1),
Degree of Crystallinity Xc (%)

T5% T10% T50% T90% T95% ∆Cp Tg ∆Hc Xc *

neat PLLA 289 337 365 380 383 0.21 53.5 16 41
PLLA_Lignin 315 340 367 381 385 0.42 52.5 33 18

PLLA_Lignin_MWCNT 291 334 365 380 383 0.14 54.0 10 43
PLLA_Lignin_rGO 321 341 366 381 385 0.38 55.0 31 23

PLLA_Lignin_C30B (1:1) 166 334 365 379 382 0.43 56.5 30 23
PLLA_Lignin_C30B (1:2) 205 309 358 371 437 0.38 56.5 23 28
PLLA_Lignin_C30B (2:1) 270 340 362 373 377 0.42 56.5 29 21

* Uncertainties regarding Xc are ±2% from data reproducibility.

The T5% values are dispersed because of slight variations regarding the water content
in the samples. T10% seems to be the most significant temperature at which to compare
the thermal stability among nanocomposites, since it corresponds to the beginning of
the matrix-degradation step (Figures 2b and 3b). First, the addition of lignin seems to
slightly improve the thermal stability, as expected [44]. Nanocomposites for which the
lignin/nanofiller ratio is (1:1) show small differences in their TGA profile. Some are
consistent with previous results from the literature [45,46], e.g., rGO improves the thermal
stability, whereas MWCNT induces the opposite effect. On the other hand, our results show
accelerated degradation with the addition of C30B in contrast to the reported stabilizing
effects [47]. The antagonist actions of both lignin and C30B are highlighted by modifying
their ratio. T10% shifts to higher values in PLLA_Lignin_C30B (2:1) but severely drops in
PLLA_Lignin_C30B (1:2).

T50%, T90%, and T95% are globally homogenous among materials, with the exception of
PLLA_Lignin_C30B (2:1) and PLLA_Lignin_C30B (1:2). Both exhibit lower values of T50%
and T90% compared to other systems, which is more surprising for PLLA_Lignin_C30B
(2:1). We may assume that lignin, partly degraded, loses its stabilizing effect at these
advanced stages of pyrolysis. T95% is curiously high in PLLA_Lignin_C30B (1:2). However,
this result might be influenced by the nanofiller content that does not degrade, which may
hinder the release of gases.

Figure 4 gives the evolution of the MT-DSC average heat flow as a function of the
temperature for all the samples, consecutive to cooling from the melt at 50 K min−1. The
classical behavior obtained for neat PLLA was observed as follows: a heat-flow step
of around 55–60 ◦C, corresponding to the glass transition; an exothermic peak with a
maximum at around 80 ◦C, corresponding to the cold crystallization; and an endothermic
peak at around 170 ◦C, indicating the melting temperature. The addition of lignin brought
about a remarkable change in the thermal behavior of the PLLA. Indeed, we observed that
the amplitude of the heat-capacity step ∆Cp at the glass transition and the enthalpy of
cold crystallization ∆Hc were increased when the glass transition temperature Tg shifted to
lower temperatures. These changes are the signature of a greater amorphization during
cooling. The degree of crystallinity Xc, calculated according to Equation (2) and given in
Table 1, confirms that the addition of lignin retards the PLLA crystallization.

XC =
∆H f − Σ∆Hc

∆H f
◦ (2)

where ∆Hf is the enthalpy of melting and ∆H f
◦ is the enthalpy of melting of 100% crys-

talline PLLA, which is considered to be equal to 93 J/g [48]. ∆Hc and ∆Hf were normalized
to the mass of PLLA. The same normalization was applied to ∆Cp (see Table 1).
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The results presented in Figure 4a and Table 1 highlight that only PLLA_Lignin_MWCNT
crystallized more than neat PLLA under cooling from the melt. According to Hu et al. [46],
carbon nanotubes are more efficient nucleating agents than rGO. Barrau et al. [49] proposed
that the high specific surface of carbon nanotubes implies a large number of nucleation
sites. Therefore, the crystallization rate, and consequently Xc, can be adjusted according to
the choice of the filler. The results obtained for PLLA_Lignin_C30B show that additional
control can be managed by modifying the filler/lignin ratio. This is interesting for industrial
production, for which the cooling rate is not easily adjustable.

One can assume that lignin creates specific interactions with both the matrix and
nanofillers, which could differ in nature, size, or content, depending on the nanofillers.
The idea behind the calculation of the CRR size is to use the glass-transition calorimetric
response as a fingerprint of the intermolecular architecture. To evaluate the impact of lignin
and nanofillers properly, it is mandatory to investigate amorphous samples. Differences
are observed regarding ∆Cp, Tα, and ∆T, impacting the CRR size. The results are presented
in Table 2 for all materials.
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Table 2. Rigid amorphous fraction and crystalline-phase contents, as well as the characteristic amorphous-phase parameters
extracted from the C’ and C” signals (∆Cp, Tα, and ∆T) that were used for the CRR-size calculation.

Amorphous Semi-crystalline
Tα

(◦C)
∆T

(◦C)
∆Cp

(J g−1 K−1) Nα
Tα

(◦C)
∆T

(◦C)
∆Cp

(J g−1 K−1)
Xc *
(%)

XRAF crystal
** (%) Nα

neat PLLA 58.5 2.70 0.54 338 67.0 4.3 0.13 32 45 139
PLLA_Lignin 58.2 2.75 0.53 318 64.0 4.6 0.15 33 39 120

PLLA_Lignin_MWCNT 58.8 2.63 0.57 368 64.6 5.0 0.17 30 39 106
PLLA_Lignin_rGO 58.4 2.70 0.60 364 65.0 6.4 0.16 33 40 67

PLLA_Lignin_C30B (1:1) 59.2 2.68 0.54 346 67.2 4.9 0.18 31 35 105
PLLA_Lignin_C30B (1:2) 59.2 2.63 0.56 365 67.2 5.35 0.16 31 39 93
PLLA_Lignin_C30B (2:1) 59.6 2.40 0.58 458 65.6 4.8 0.19 29 40 119

* Uncertainties regarding Xc are ±2% from data reproducibility. ** Uncertainties regarding XRAF crystal are ±5% from data reproducibility.

Figure 5 and Table 2 show that the hybrid nanocomposites exhibit a slight increase
of Nα and ∆Cp. Classically reported effects of nanofillers on the calorimetric response at
the glass transition are a decrease of ∆Cp, attributed to the existence of XRAF filler [35], and
a decrease of Nα [34], which is a consequence of mobility restrictions likely induced by
XRAF filler; both effects are in contradiction with our results. Equation (3), in which ∆Cp◦ is
∆Cp of neat amorphous PLLA, is not valid in our case, as it leads to negative values for
XRAF filler.

XRAF f iller = 1− ∆Cp
∆Cp◦

(3)

To explain the increase of ∆Cp and Nα, we assumed a successful exfoliation [34],
which favored intermolecular interactions without generating XRAF filler, i.e., XRAF filler was
equal to zero. Recently, Szymoniak et al. also reported an increase of ∆Cp in epoxy-based
nanocomposites [50], reaching an optimum before falling with the increase of the filler
content, probably due to the competition existing between the creation of interactions and
the mobility restrictions. According to our results, Nα is equal to 458 in PLLA_Lignin_C30B
(2:1). Figure 6 shows C′ and C” signals for this system and PLLA_Lignin_C30B (1:1)
for comparison. Such an increase in Nα in comparison with neat PLLA exceeded our
expectations. We assume that this characterizes the role of lignin as an interaction promoter
in hybrid nanocomposites.
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These considerations do not extend beyond amorphous systems. In semi-crystalline
nanocomposites, the mobility criteria are strongly affected, and the response observed for
amorphous systems is usually not reproduced. This is particularly obvious when high
values of XRAF crystal are obtained, leading to a huge decrease in CRR size [34]. Therefore, we
investigated the cooperativity in semi-crystalline nanocomposites annealed in conditions
helping to grow XRAF crystal at a low temperature from the glassy state [51]. The results are
given in Table 2. XRAF, i.e., the total amount of rigid amorphous fraction in the investigated
material is calculated according to Equation (4). XRAF crystal is obtained by subtracting
XRAF filler from XRAF. Because XRAF filler is null, XRAF crystal is simply equal to XRAF.

XRAF = XRAF crys = 1− ∆Cp
∆Cp◦

− Xc (4)

First, Nα decreased from about 340 to 140 by annealing neat PLLA, as expected. Xc
and XRAF crystal were similar between samples, but Nα was the highest for neat PLLA. A
comparison among PLLA_Lignin_C30B materials revealed that this decrease in the CRR
size was not related to the lignin, but to the nanofiller. Finally, Nα depends on the nature of
the nanofiller. It reached the lowest value of 67 for PLLA_Lignin_rGO. Considering that Xc
and XRAF crystal are similar between samples, this could reasonably indicate that the crys-
talline morphology differs. It has already been reported that PLA-based nanocomposites
containing rGO nanoflakes are characterized by very imperfect crystals in comparison to
neat PLLA [45]. For equally high measurements of Xc and XRAF crystal, a decrease in the long
period, i.e., in the spacing between adjacent crystalline lamellae layers, will result in a more
efficient propagation of the mobility restriction from the crystal to the mobile amorphous
through the RAF. To summarize, the results obtained for amorphous nanocomposites
confirm the role of lignin as a promoter of interfacial interactions because the calorimetric
response is highly sensitive to intermolecular interactions. On the other hand, the mi-
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crostructure and the morphology govern the glass-transition signature in semi-crystalline
nanocomposites, which is consistent with previous observations [34,52].

The structural dependence of the CRR size is not systematically accompanied by simi-
lar variations in other relaxation parameters characteristic of the glass-transition dynamics.
The kinetic fragility index, for example [53], which characterizes the degree of deviation
from the Arrhenius-type temperature dependence of the relaxation time when approaching
the glass transition during cooling, can show complex variations with cooperativity [54].
Hong et al. [55] separated the fragility into two terms, volume and energetic, with only
the first being correlated with cooperativity. This volume term has been interpreted by
Araujo et al. [56] as the contribution of interchain interactions to the relaxation motions.
One may assume that the kinetic fragility increases, along with cooperativity, by adding
lignin to PLLA nanocomposites, due to the increase of the volume term; however, further
investigations are needed to validate this assumption. Indeed, various trends can be found
in the literature regarding fragility variations with nanofiller inclusion [24,50,57–59], and it
has been shown that cooperativity and fragility can evolve in opposition [60].

4. Conclusions

Calorimetric studies can provide information regarding both interactions and mo-
bility restrictions at the filler/matrix interface of nanocomposites, which is helpful for
completing the morphological diagnostic, often limited to the filler-dispersion evaluation.
It emerged from our results that lignin is a promising additive for the design of PLLA-
based nanocomposites. Even when added in low amounts, it promotes a homogeneous
dispersion or exfoliation when creating weak interactions with both filler and matrix, and
regularly increases the thermal stability. Interestingly, lignin is versatile regarding its im-
pact on PLLA-crystallization kinetic, depending on the chosen added nanofiller, which is of
tremendous relevance for the material design. Moreover, the possible association between
lignin and several nanofillers, exhibiting different shape, size, and dimensionality, offers
other ways of modulating the macroscopic properties, as observed from the difference in
amorphous dynamics among semi-crystalline samples. It is worth noting that lignin is a
macromolecule that can be abundantly extracted from biomass. Thus, this study might
contribute to the valorization of lignin for sustainable development.
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