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Abstract: This paper proposes a design of novel composite materials inspired by the Peano curve and
manufactured using PolyJet 3D printing technology with Agilus30 (flexible phase) and VeroMagentaV
(rigid phase) materials. Mechanical properties were evaluated through tensile and compression
tests. The general rule of mixture (ROM) for composites was employed to approximate the tensile
properties of the hybrid materials and compare them to the experimental results. The effect of
reinforcement alignments and different hierarchies are discussed. The results indicated that the
5% inclusion of the Peano reinforcement in tensile samples contributed to the improvement in the
elastic modulus by up to 6 MPa, but provided no obvious enhancement in ultimate tensile strength.
Additionally, compressive strengths between 2 MPa and 6 MPa were observed for compression
cubes with first-order reinforcement, while lower values around 2 MPa were found for samples with
second-order reinforcement. That is to say, the first-order reinforcement has been demonstrated more
effectively than the second-order reinforcement, given the same reinforcement volume fraction of
10% in compression cubes. Different second-order designs exhibited slightly different mechanical
properties based on the ratio of reinforcement parallel to the loading direction.

Keywords: Peano curve; composite; PolyJet 3D printing; rule of mixture; multi-material printing;
additive manufacturing

1. Introduction

Fractal patterns exist everywhere in nature in various ways, such as in spider webs,
the Milky Way galaxy, and coastlines. The concept of fractal was first introduced by
Mandelbrot [1] in 1977. He defines it in the book Fractals in Physics as [2]:

‘Fractal is a structure comprised of parts that, in some manner, are similar to the whole
of this structure.’ (p. 250)

Self-similarity, the main attribute of fractal patterns, indicates that the geometry
consists of a unit structure repeating itself in different scales [3]. The self-similarity feature
can be found in many objects, such as Russian matryoshka dolls, the Koch snowflake,
etc. However, fractal structures were not applied to industries until some theoretical
analyses and experiments were conducted recently [4]. Space-filling curves are special
cases of fractal structures, which are characterized by a unique property that, after an
infinite number of iterations, a finite area would be filled with a curve of infinite length.
The most famous space-filling curves include the Peano curve, the Hilbert curve, and the
Moore curve.

In the past two decades, scientists have embraced the study of fractal geometries, with
respect to electronics design (Figure 1a). Studies reveal that fractal-shaped antennas show
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superior properties from their geometrical attributes. The self-similarity characteristic of
fractal patterns contributes to a multiband feature of the corresponding antennas [5–8],
while the high convoluted shape and space-filling properties of certain fractal curves
allow for the reduction of the miniaturization of microstrip antennas, resonators, and
filters [9–12]. These properties show great potential for designing multiband antennas,
frequency-selective surfaces, and reducing the size of antennas. Since fractal geometry was
first introduced to antenna array design by Kim and Jaggard [13], various space-filling curve
designs have been utilised to improve the performance of antennas, including the Peano
curve [14–18], Hilbert curves [14–16,19], the Koch curve [8,20,21], the Gosper curve [22,23],
the Moore curve [10,16], the Sierpinski curve [6,7], the Minkowski curve [24,25], the
Greek cross [16], and combinations of multiple geometries, such as the Peano-Gosper
curve [26–28], the Koch-Sierpinski shape [9,29,30], and the Hilbert-Minkowski pattern [31].
Moreover, the mechanical stretchability of space-filling shaped electronics has attracted
growing interest from researchers to achieve both advanced electronic function and com-
pliant mechanics. Fan et al. [16] demonstrated that fractal-based structures bonded to
pre-strained elastomers enable higher levels of elastic deformation. It was also indicated
that fractal-based layout could provide a strategy to integrate hard and soft materials.
Similar studies were conducted to investigate the stretchability of fractal-based stretchable
electronics [32–35].

In addition to its value in electronics, fractal-based geometry has also been adapted for
novel material design in recent studies. Fractal patterns appear in many natural materials,
such as shells and bones. These natural materials have attracted considerable attention
from scientists due to their excellent mechanical properties. Huiskes et al. [36] claimed that
the fractal morphology of trabecular bone contributed partly to its mechanical efficiency.
Following this theory, Farr [37–39] applied fractal principles to structure designs, showing
the improvement in mechanical efficiency under gentle compressive loading conditions. So
far, many studies have been conducted on fractal-like hierarchical honeycombs regarding
both in-plane and out-of-plane properties [40–49]. In 2015, Meza et al. [50] created structural
metamaterials with exceptional strength, stiffness, and damage tolerance from materials in
which unit cells were organized into a self-repeating geometry. Wang et al. [51] proposed
a Koch-curve hybrid structure as shown in Figure 1b, indicating its energy absorption
capability and lightweight feature. Additionally, fractal-like patterns have also been
demonstrated to be promising in the design of stronger interlockings. Typical examples are
the hierarchical suture joints inspired by ammonite fossils [52] and the 3D-printed Koch
curve interlockings [53]. It was shown that the load-bearing capacity of the interlocking
could be effectively increased via fractal design. Recently, the well-known 3D fractal
structures, which are called Menger Sponge cubes, were 3D printed using direct laser
lithography [54] and demonstrated superior energy absorption ability.

The emergence of additive manufacturing realizes the fabrication of structures with
complex geometries and exceptional engineering properties, which could not be achieved
by conventional manufacturing methods. Recent studies regarding multi-material 3D
printing have demonstrated its superior function in creating structures/materials with
tunable mechanical properties [55]. For example, multi-material fused deposition mod-
elling (mFDM) 3D printing technology was utilised by Zhang et al. [56] to manufacture
functionally gradient composites with user-defined mechanical properties. More studies
have been conducted using material-jetting technology. In 2019, Skylar-Scott et al. [57]
proposed an inkjet multi-material, multi-nozzle 3D printing method to generate origami
structures, using two different viscoelastic epoxy inks for flexible hinges and rigid faces,
respectively. The resulting structures showed the capability during compression in terms
of large deformation in the hinges and multiple folding cycles before failure. Later, Yuan
et al. [58] used PolyJet technology to fabricate composites with two photopolymers, Ver-
oBlack and TangoPlus. According to their study, programmed shape-memory behaviours
were achieved by the 3D printed structures.
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Figure 1. (a) Koch and Sierpinski patterns inspired antenna design [9], reproduced courtesy of The Electromagnetics Acad-
emy; (b) Koch snowflake inspired thin-walled structure design for energy absorption [51]. 
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Figure 1. (a) Koch and Sierpinski patterns inspired antenna design [9], reproduced courtesy of The Electromagnetics
Academy; (b) Koch snowflake inspired thin-walled structure design for energy absorption [51].

Previous studies have successfully demonstrated the potential of fractal patterns in ma-
terial design, whereas a limited variety of self-similar shapes have been explored. Despite
the fact that multi-material printing exhibits the capability to create structures/materials
with tunable properties, most studies focused on single material design and fabrication.
In this study, we propose a novel design of 3D-printed composites. The hybrid materials
feature a space-filling curve modified reinforcement and are manufactured using PolyJet
3D printing technology. Experiments, microscopy, and analytical models are conducted
to investigate the mechanical properties of innovative materials. The results of this study
provide insight into a continuous-curve-reinforced polymer composite, which has potential
application in biomedical [59], automotive [60], and aerospace engineering [61].

2. Methods
2.1. Material Design and Fabrication

The Peano curve, which was introduced by an Italian mathematician Giuseppe Peano,
was the first space-filling curve to be discovered. The set of curves consists of many orders,
which can be constructed following a sequence of steps as shown in Figure 2a. Considering
mechanical properties and manufacturing issues, all the sharp edges in the original Peano
curves are smoothed using arcs as shown in Figure 2b. Rhino with the Grasshopper plugin
is employed as the CAD software. Figure 2b defines three geometric parameters, i.e., the
side length of a small square (l), arc curvature (k), and diameter (D). Six patterns of Peano
curves are to be investigated in this study with respect to various orientations and different
hierarchies as shown in Figure 2c.
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Figure 2. (a) Construction of the first three orders of Peano curves; (b) schematic design of a smoothed Peano curve,
including control points (red dots), the side length of a small square (l), arc curvature (k), and diameter (D); (c) variants of
Peano curves at different orders to be investigated in this study.

The proposed first order and second order Peano curves are designed to act as a
hard reinforcement, which is embedded in a soft-material matrix in order to investigate
the mechanical performance of 3D-printed composites. Stratasys J750 Digital Anatomy
3D printer, provided by Stratasys Ltd., Rehovot, Israel, is a PolyJet 3D printer and was
used to fabricate all the samples. This printer has four inkjet heads and two UV light
sources, allowing multi-material 3D printing from a wide range of available materials.
J750 is also capable of generating complex geometries with microscopic layer resolution,
down to 0.014 mm. All the samples were manufactured with two different materials,
VeroMagentaV (VMV) and Agilus30 (A30). VMV is a rigid and opaque photopolymer,
while A30 is a rubber-like polymer. VMV is from the family of Vero; available in seven
hues, including blue, white, black, grey, cyan, magenta, and yellow, the Vero family shares
similar mechanical, thermal, and electrical properties. Here, VeroMagentaV is selected to
offer a more saturated and vibrant colour compared to the transparent A30.

So far, no standard of the tensile test has been established for 3D-printed multi-material
structures/materials. In this study, tensile samples are designed according to the ASTM
D638, with variations from the literature [62,63] as shown in Figure 3a. Two categories of
samples are prepared for further analysis. First, homogeneous A30 samples are printed to
capture their individual mechanical properties, thereby providing a reference to composite
materials. Then, six designs of hybrid samples (Figure 3b) are fabricated, with A30 serving
as the matrix of gauge section, and VMV as both the reinforcements and extended sections.
Figure 3b schematically shows the gauge sections of six heterogenous designs, reinforced
with differently orientated and hierarchical Peano curves, including pure vertical first
order, pure horizontal first order, pure vertical second order, pure horizontal second order,
mostly vertical second order, and mostly horizontal second order. The reinforcements are
distributed in three layers at a spacing of 1 mm. All the hybrid tensile structures were
reinforced with VMV at a volume fraction of 5%. Thus, the diameters for the first and
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second order Peano reinforcements are 0.36 mm and 0.212 mm, respectively. Figure 3c
depicts the 3D-printed tensile samples.
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cube; (f) plan views of four different hybrid structures showing the first order reinforcement with a reinforcement diameter
of 2.8 mm and 1.156 mm for all three second order designs; (g) pictures of 3D printed samples (from left to right, corresponds
to case 1 to case 4, respectively).

The compression specimens are designed as cubes with a side length of 30 mm, as
shown in Figure 3e. The cubic matrix is A30, which is reinforced by five-layer VMV Peano
curves at a spacing of 5 mm. Four different infills, with a volume fraction of 10%, are
introduced as shown in Figure 3f,g. The first order Peano reinforcement has a diameter of
2.8 mm, while the second order has a diameter of 1.56 mm.

2.2. Mechanical Testings

In order to investigate the mechanical properties of Peano reinforced hybrid materials,
tensile and compression tests were conducted using the Universal Instron testing machine.
Tensile tests were controlled with a displacement rate of 1 mm/min until a failure happens,
while the uniaxial compression tests were performed with a rate of 1.3 mm/min until
strain reaches 60%. Compression tests were performed from three axial directions (Table 1)
considering the anisotropic property of the cubic designs. Fives samples for each type of
design were tested to minimise the experimental artifacts.

Table 1. Schematic diagrams and experimental pictures showing three different compressive loading directions (taking the
case 2 design as a schematic example).

Loading Direction 1 Loading Direction 2 Loading Direction 3
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materials. Based on different assumptions, both the upper and lower bounds of the elastic 
modulus for composites could be found. When the load is applied longitudinally to the 
fibre, the ROM defines the highest elastic modulus of the composite according to the iso-
strain assumption: ܧ௖,௠௔௫ ൌ ௙ܧ݂ ൅ ሺ1 െ ݂ሻܧ௠, (1)

where ܧ௖,௠௜௡ denotes the upper bound of the elastic modulus of the composite; ݂ ൌ ௏೑௏೑ା௏೘ 

is the volume fraction of reinforcement; ܧ௙ is the elastic modulus of the VMV reinforce-
ment; and ܧ௠ is the elastic modulus of the A30 matrix. It should be noted that Equation 
(1) can also be applied to predict other elastic properties, for example, the ultimate tensile 
strength. 

When the load is applied transverse to the fibre, the lower bound of the elastic mod-
ulus could be estimated using the following equation according to the iso-stress assump-
tion: ܧ௖,௠௜௡ ൌ ሺ݂ܧ௙ ൅ 1 െ ௠ܧ݂ ሻିଵ, (2)

where ܧ௖,௠௜௡ denotes the lower bound of the elastic modulus of the composite. 
In this study, the theoretical range of the elastic moduli of the novel hybrid materials 

is predicted by Equation (1) and Equation (2). The experimental results are expected to sit 
in between the range. Additionally, the ultimate tensile strength of the composite materi-
als is estimated using the ROM by Equation (1). In the next section, the approximations 
from the analytical models and experiments are compared with detailed discussions on 
the discrepancy. 
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2.3. Rule of Mixture for Composites

In order to provide theoretical references for experimental results, the Rule of Mixture
(ROM) was adapted in this study to approximate the elastic properties of composite
materials. Based on different assumptions, both the upper and lower bounds of the elastic
modulus for composites could be found. When the load is applied longitudinally to the
fibre, the ROM defines the highest elastic modulus of the composite according to the
iso-strain assumption:

Ec, max = f E f + (1 − f )Em, (1)

where Ec,min denotes the upper bound of the elastic modulus of the composite; f =
Vf

Vf +Vm

is the volume fraction of reinforcement; E f is the elastic modulus of the VMV reinforcement;
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and Em is the elastic modulus of the A30 matrix. It should be noted that Equation (1) can
also be applied to predict other elastic properties, for example, the ultimate tensile strength.

When the load is applied transverse to the fibre, the lower bound of the elastic modulus
could be estimated using the following equation according to the iso-stress assumption:

Ec,min =

(
f

E f
+

1 − f
Em

)−1

, (2)

where Ec,min denotes the lower bound of the elastic modulus of the composite.
In this study, the theoretical range of the elastic moduli of the novel hybrid materials

is predicted by Equation (1) and Equation (2). The experimental results are expected to sit
in between the range. Additionally, the ultimate tensile strength of the composite materials
is estimated using the ROM by Equation (1). In the next section, the approximations from
the analytical models and experiments are compared with detailed discussions on the
discrepancy.

3. Results and Discussion
3.1. Tensile Test Results and Discussion

Herein, stress-strain curves obtained in tensile tests are presented and compared. Five
specimens for each design were tested and the results are illustrated with details of the
average stress and standard deviation. The elastic moduli and ultimate tensile strengths are
captured from the experiments and then compared to theoretical estimations. Moreover,
crack propagations and fracture surfaces are investigated with representative microscope
images provided.

Figure 4 shows the tensile testing results for pure A30 samples. Despite the slightly
different elongations of the five specimens, the non-linear responses of all five tests are
repeatable. As revealed by Figure 4a, specimen two experiences the maximum stress of
0.94 MPa, while specimen four experiences the least at 0.85 MPa.
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Since A30 is a rubber-like, hyper-elastic material, it is typically not described using
Young’s modulus and Poisson’s ratio [64]. To be more specific, the elastic modulus of A30 is
not constant but changes with strain. In order to approximate the value, the average stress-
strain curve before fracture is divided into eleven segments. Each segment corresponds to
a 10% strain change as shown and numbered in Figure 4b. The stress-strain curve within
each segment is assumed to be linear so that the elastic moduli of A30 could be estimated.
Results from the eleven segments approximate a range from 0.56 MPa to 1.18 MPa for the
elastic modulus of A30.

Figure 4c depicts the failure samples with a magnified picture at the gauge sections.
Fractures are identified to happen at different locations, including the gauge section (speci-
men two and four from left to right), close to the extension part (specimen one and three
from left to right), and also at the interface of two different materials (specimen five). This
phenomenon could ascribe to 3D printing defects.

Figure 5 shows the tensile test results of hybrid case one samples, which introduce the
first order pure horizontal Peano VMV reinforcement into the A30 matrix. The responses
of all five specimens are similar, particularly the elastic deformation stage (strain less than
20%) as suggested by the stress-strain curves in Figure 5a. All specimens experience similar
maximum tensile stress of 1 MPa, approximately.
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An average elastic modulus of 5.14 MPa is captured in Figure 5b. Compared to the
results of homogenous A30 samples, there are improvements in both the ultimate tensile
stress and elastic modulus. As the results imply, the introduction of embedded VMV
reinforcement in hybrid case one contributes to an enhancement in both the tensile strength
and stiffness.

Different from homogenous A30 samples, all the fractures of case one samples are
located in the A30 matrix and near the edge of the gauge section (Figure 5c). In other
words, failure only happens between the edge of the reinforcement and the extension. This
phenomenon could be explained by the non-effective stress transfer between A30 and VMV.
According to the material datasheet provided by Stratasys Ltd., VMV has a much higher
strength and stiffness than A30. As a result, crack would initiate in A30 instead of VMV
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after the elastic deformation phase. Given the fact that there is no reinforcement existing
near the extensions, these cross-sections are the most vulnerable when subjected to tensile
force. Therefore, the crack initiates and propagates in the matrix near the extension until it
totally fails.

Figure 6 describes the tensile test results on the hybrid case two samples, featuring
the first order pure vertical Peano curve.
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(b) average tensile stress-strain curve and standard deviation of all five testings; (c) pictures of failed tensile samples with
magnification at the locations of fracture.

Similar to hybrid case one, the elastic responses of all five specimens are consistent
(less than 40% strain) as indicated in Figure 6a. An average elastic modulus of 1.64 MPa is
identified in Figure 6b. The elastic modulus of hybrid case two is increased by 0.96 MPa
compared to pure A30, which is attributed to the introduction of reinforcement. However,
hybrid case two is less stiff than case one. Given that both case one and case two have
the same hierarchy and volume fraction of reinforcement, it could be inferred that the
orientation of the Peano curves has a significant influence on the elastic modulus.

As the gaps between the curved reinforcement are bigger than those between the
reinforcement and extensions, the A30 within the reinforcement gaps is more vulnerable.
Therefore, fractures of the second case happen in A30 in between the curved reinforcements
(Figure 6c) rather than near the extensions as in case one. With respect to maximum tensile
stress, all specimens experience similar values of around 0.8 MPa. Unlike the hybrid case
one design, the strength of hybrid case two is lower than pure A30 samples. In hybrid
materials, crack initiates in A30 in between the reinforcement and propagates until getting
close to the reinforcement. In homogenous A30 samples, crack keeps propagating until a
fracture happens since there is no reinforcement at any cross-section. However, the VMV
reinforcement along the loading direction in hybrid case 2 confines the deformation of A30
in the transverse direction. Therefore, the ultimate tensile strength decreases compared to
the homogeneous A30 samples.

The tensile test results of hybrid case 3 samples are exhibited in Figure 7. The stress-
strain curves (Figure 7a) reveal that all specimens experience the same stress roughly before
the strain reaches 10%. The average elastic modulus is captured to be 7.21 MPa as shown
in Figure 7b. Similar to hybrid case one and case two, the inclusion of VMV reinforcement
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in case three improves the structural stiffness of the coupon samples. As indicated by the
comparison between cases one and three, the second order reinforcement contributes more
to the stiffness than the first order reinforcement.
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In the plastic deformation stage, the responses of different specimens are significantly
different as described by the large standard deviation in Figure 7b. Specimen one experi-
ences the largest maximum stress of 1.03MPa, while the others share an average around
0.88MPa. It seems that the inclusion of second-order pure horizontal reinforcement con-
tributes little to the ultimate tensile strength compared to homogenous A30. Additionally,
specimens one and two reach much greater elongations than the rest. It is worth noticing
c that specimen one and two break near the extensions, while the other three fail closer
to the middle of the gauge sections. Different fracture locations are mainly owed to the
manufacturing defects.

Different from smooth stress-strain curves obtained for pure A30, hybrid case one, and
case two, the strongly jagged pattern of stress-strain curves is observed for all case three
specimens in the plastic deformation phase. Once the crack initiates in A30, it propagates
perpendicular to the tensile force direction until it encounters the VMV reinforcement. Due
to the arc design of the Peano curve, the straightening of the reinforcement is involved
first and followed by material stretching. This process leads to a decrease in stress and
a certain amount of increase afterward. Since the reinforcement design in case three is
more complicated than that of case one and case two, cracks happen and develop at more
cross-sections, round after round. Consequently, the stress-strain curves, after the crack
initiation, are wavy until fractures happen.

Similarly, the stress-strain curves (Figure 8a) for the elastic stage are repeatable for
hybrid case four samples. An average elastic modulus of 5.62 MPa is captured (Figure 8b).
Comparing with the homogeneous A30 (0.56 ~1.18 MPa), the design of VMV reinforcement
in case four significantly improves the structural stiffness. Again, the higher elastic modulus
captured for case four than case two demonstrates that the second order reinforcement
contributes more to the stiffness than the first order designs.
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The five specimens experience different ultimate tensile stress, ranging from around
0.75 MPa to 1.1 MPa. Specimen two elongates the least (45%) with the maximum ultimate
tensile stress. As observed from Figure 8c, specimen two fails instead of within the gauge
section but nearly at the interface of the gauge section and extension. That is to say, the
entire gauge section deforms elastically until crack happens at the A30 cross-section close
to the extension. Moreover, the elastic deformation stage of specimen two ends at the strain
of 30%, which is longer than the other four specimens. The plastic response of specimen
two is dominant to A30, thereby resulting in a less jagged stress-strain curve compared to
the others. Differently, cracks happen earlier and develop at the cross-section with VMV
reinforcement for specimens one, three, four, and five. This explains the lower ultimate
tensile stress and wavy stress-strain curves experienced by these four specimens. As the
results demonstrate, the second order pure vertical reinforcement design contributes little
to the ultimate tensile strength.

Figure 9 depicts the tensile test results of the hybrid case five samples, which in-
cludes the second order mostly horizontal Peano VMV reinforcement into the A30 matrix.
The repeatable response before a strain of 10% (Figure 9a) captures an average elastic
modulus of 7.23 MPa (Figure 9b). Comparing to pure A30 (0.56~1.18 MPa), the design
of VMV reinforcement in case five significantly improves the structural stiffness of the
coupon samples.

However, the ultimate tensile stress experienced by all five specimens is not obviously
increased in hybrid case five. As illustrated in Figure 9c, all specimens fail within the gauge
section and at the cross-section with VMV reinforcement. Nevertheless, the elongation of
different specimens varies widely between a strain of 40% to 90%. It could be observed
from the magnified picture of specimen five that no obvious crack happens at other cross-
sections except for the final failure. As a result, specimen five fractures at the smallest
strain. On the other hand, specimen three experiences the greatest elongation of 90% with
many cracks at different cross-sections.
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The tensile stress-strain curves and failed samples of the hybrid case six design are
presented in Figure 10. The elastic stage, corresponding to a strain less than 10%, is quite
repeatable for all specimens (Figure 10a) with an average elastic modulus of 6.95 MPa
(Figure 10b). Obviously, the VMV reinforcement in case six enhances the stiffness of the
coupon samples compared to homogenous A30. The elastic moduli of case four and case
six are very close, owing to similar reinforcement alignments (orientation and hierarchy).

The five specimens experience different ultimate tensile stress as well as elongations.
Specimen one reaches the highest fracture strain of more than 90%, while its ultimate stress
is the smallest among all at 0.82 MPa. On the contrary, specimen four exhibits the highest
strength at 1.01 MPa and goes through the least elongation. Furthermore, specimen four
fails near the extension whereas others fail within the gauge section at the cross-section
containing reinforcement (Figure 10c). The wavy patterns of all stress-strain curves could
be explained by the crack propagation from A30 to VMV as mentioned before. Different
fracture locations are likely to result from manufacturing defects within the gauge section.

Herein, Table 2 compares the final experimental results with the analytical predictions
on elastic modulus and ultimate tensile strength of the hybrid materials. Figure 11a
schematically summaries the responses of materials subjected to tensile loadings. Data
regarding VMV is adopted from Tee et al. [62] to help better understand the mechanical
properties of the novel hybrid materials.
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As revealed by the table, elastic moduli obtained from experiments are within the
analytical prediction ranges but much closer to the lower bounds. All the hybrid materials
exhibit higher elastic moduli than homogeneous A30, indicating the positive effect of
VMV reinforcement embedded in the A30 matrix. For the hybrid materials with the same
hierarchical reinforcements, the higher ratio of the reinforcement parallel to the loading
direction and perpendicular to the loading direction leads to a higher elastic modulus.
However, it is not applicable to materials with different order reinforcements. Samples
reinforced by the first order Peano curves (case one and case two) yield smaller elastic
moduli than the second ones (case 3–6), even though the ratio for the former ones is higher
than the latter. Results demonstrate that the second order reinforcement designs are more
effective than the first order despite having the same volume fraction (5%). In addition,
hybrid case three and case five exhibit the highest stiffness among all. It can be concluded
that the second order pure horizontal and the second order mostly horizontal reinforcement
are the most effective designs in terms of stiffness enhancement.
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Table 2. Comparisons between experimental results and predictions using the ROM of average elastic modulus and ultimate tensile strength.

Material
Homogeneous Composites

A30 VMV Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Ratio of reinforcements parallel and perpendicular
to the loading direction - - 6.00 0.40 2.35 0.34 1.21 0.68

Approximate volume fraction of reinforcement
parallel to the loading direction - - 4.28% 1.43% 3.51% 1.27% 2.73% 2.02%

E (MPa)

Experiment 0.56~1.18 858 5.14 1.64 7.21 5.62 7.23 6.95

ROM

Voigt’s (upper
bound) - - 37.31~37.91 12.81~13.42 30.65~31.25 11.47~12.09 23.99~24.60 17.87~18.48

Reuss’ (lower
bound) - - 0.59~1.22 0.59~1.20 0.58~1.22 0.57~1.19 0.57~1.21 0.57~1.20

UTS (MPa)

Experiment 0.90 57.50 1.0340 0.79 0.91 0.89 0.93 0.94

ROM - - 3.32 1.71 2.89 1.62 2.45 2.04

Discrepancy - - 68.86% 53.57% 68.65% 45.31% 61.88% 54.12%

Note: The ROM denotes the general rule of mixture for composites; E denotes the elastic modulus measured from tensile testing; UTS denotes the average ultimate tensile strength measured from tensile testing.
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Figure 11. (a) Comparisons of tensile stress-strain curves of homogenous A30 (Agilus30), VMV (VeroMagentaV), and six
hybrid designs (plan views of gauge sections for different hybrid cases are shown on the right); (b) microscopic images (50×
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case 5 specimen, showing the uneven fracture surfaces, crack initiating points, and crack distributions.

With regard to ultimate tensile strength (UTS), Table 2 reveals that there is no obvious
improvement in hybrid materials compared to homogenous A30. Particularly, the rein-
forcements in case two and case four contribute negatively to UTS. This phenomenon is
attributed to the reinforcement along the tensile force direction that confines the transverse
deformation of A30 in the gauge section. Hybrid case one exhibits the highest tensile
strength, whereas all specimens fail at the cross-section without any reinforcement. The
results indicate that the coupon sample design of case one could not transfer the stress from
the A30 matrix to VMV reinforcement effectively. Moreover, experimental results are lower
than the theoretical estimations due to manufacturing defects in samples. Even though
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the improvement in tensile strength is not remarkable by the inclusion of reinforcement, a
clear upward trend of UTS is identified with the increasing ratio of reinforcements parallel
to and perpendicular to the loading direction.

Post-mortem analysis of tensile samples was conducted using an optical microscope.
Fracture surfaces, top, bottom, and side views of failed samples were studied to understand
the crack propagation and failure patterns.

Representative microscope images are shown in Figure 11b,c. As we can see from
Figure 11b, cracks happen in A30 and stop near the VMV reinforcement in one of the case
two specimens. It is a result of the higher stiffness and strength of VMV than that of A30.
The digital microscope images (Figure 11c) exhibit the uneven fracture surfaces of hybrid
structures, which are captured for all other specimens as well. As revealed by the top view
of the bottom half specimen (Figure 11c), small black lines and dots could be observed near
the right extension. These are identified as the crack initiation points, which are caused
by the stress concentration from the curved design of the Peano reinforcement. Then, the
cracks propagate in the A30 matrix and form into a continuous crack, such as the long
wave-shape black line shown in the top half of the specimen in Figure 11c. Additionally,
no obvious delamination is captured at the A30/VMV interface, which indicates a reliable
combining of the two different materials.

3.2. Compression Test Results and Discussions

The results obtained from compressive tests are summarised in Figure 12, with com-
parisons made in three loading directions and among different hybrid materials.

Generally, the stress developed in all VMV reinforced hybrid samples is remarkably
higher than that in homogenous A30 samples according to Figure 12a–c. The result
indicates that the inclusion of the VMV Peano curve strengthens the A30 matrix regardless
of loading directions. With regards to different reinforcement hierarchies, it could be
observed that the composite materials with the first order reinforcement (case one) yield a
higher compressive strength than the second order materials (case 2–4). This phenomenon
ascribes to a larger diameter of reinforcement in the hybrid case one design (2.8 mm) than
the other cases (1.56 mm), given the same volume fraction of 10% for all. It is also worth
noticing that the responses of case two, case three, and case four are relatively similar for
all three loading directions. It is caused by their similar amount of reinforcement at the
cross-section perpendicular to the compression force.

As compressive cubes are designed anisotropic, compressive properties of four dif-
ferent hybrid cases are studied in different directions as shown in Figure 12d–g. The
results elucidate that all hybrid cubes exhibit the lowest compressive strength subjected
to loading direction one. Since Peano reinforcements lie in five-layers perpendicular to
the compressive loading direction one, the amount of VMV material in the corresponding
cross-section is the least among all three directions. For hybrid case one, the highest com-
pressive strength (5.55 MPa) is captured in loading direction two and the second highest
is found in loading direction three (3.68 MPa). This can be explained by the amount of
reinforcement along the loading directions, which restrains the transverse expansion of
A30 and thereby increases the strength. For the other three hybrid cases with second order
reinforcement, there is only a slight difference between the compressive strength in loading
direction two and loading direction three. As the hierarchy of reinforcement increases from
first order to second order, the amount in the difference of reinforcement both lying along
or perpendicular to loading direction two and loading direction three becomes very small.
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Figure 12. Stress-strain curves of different material designs, obtained from uniaxial compressive testings from (a) loading 
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strain curves from three different loading directions for (d) design case one (pure horizontal/vertical first order); (e) design 
case two (pure horizontal/vertical second order); (f) design case three (mostly horizontal second order); (g) design case 
four (mostly vertical second order). (h) high resolution images (first row) and microscope images (bottom row) of case 
one, hybrid cube (pure horizontal/vertical first order) after compression from loading direction one. High resolution im-
ages show the cross-section A and B, from which cracks were found in the A30 matrix rather than A30/VMV interface. 
Microscope images show uneven fracture surfaces. 
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vertical designs owing to a higher ratio of reinforcement parallel to the tensile force. 

• Regarding ultimate tensile strength, the improvement of hybrid designs compared 
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Figure 12. Stress-strain curves of different material designs, obtained from uniaxial compressive testings from (a) loading
direction one (LD1); (b) loading direction two (LD2); (c) loading direction three (LD3). Comparisons of compressive
stress-strain curves from three different loading directions for (d) design case one (pure horizontal/vertical first order);
(e) design case two (pure horizontal/vertical second order); (f) design case three (mostly horizontal second order); (g) design
case four (mostly vertical second order). (h) high resolution images (first row) and microscope images (bottom row) of
case one, hybrid cube (pure horizontal/vertical first order) after compression from loading direction one. High resolution
images show the cross-section A and B, from which cracks were found in the A30 matrix rather than A30/VMV interface.
Microscope images show uneven fracture surfaces.

To investigate the failure pattern of compression cubes, high resolution pictures and
optical microscope images are taken to capture the fracture surfaces of failed samples.
As compression samples are not broken into pieces, a bandsaw is used to cut the failed
specimens in half along the compressive loading directions. Figure 12h shows the fracture
surfaces of the hybrid case one specimen after compression from loading direction one. The
high-resolution images of cross-section A and B, in the top row, clearly show the existence
of wavy cracks in the A30 matrix. Supportive information is provided by the microscope
images of the fracture surfaces (bottom row of Figure 12h). Transparent A30 is observed
on top of VMV (bottom left image in Figure 12h), indicating the existence of a crack in
the matrix rather than any debonding of A30/VMV. The results imply that the interface
between two different materials is relatively strong. Furthermore, a concave surface is
captured in A30 after the compression (bottom right image in Figure 12h). The reason
behind this phenomenon is the same as the wave-shape cracks observed in tensile samples.
To be more specific, it is caused by the stress concentration in the A30 matrix due to the
curved design of VMV reinforcement.

4. Conclusions

In this paper, we designed novel composite materials inspired by the Peano curve.
PolyJet 3D printing technology was used to fabricate samples with Agilus30 (A30) and Vero-
MagentaV (VMV). Mechanical properties were evaluated by mechanical tests, analytical
predictions, and optical microscopy. Herein, the following conclusions are made:

• Compared to homogenous A30, all the hybrid tensile samples reinforced with VMV
Peano curves yielded higher stiffness. This was attributed to the higher elastic mod-
ulus of VMV compared to A30. Consistent with the hypothesis, the elastic moduli



Polymers 2021, 13, 3516 19 of 21

obtained from tensile tests were within the range approximated from the rule of
mixture (ROM) for composites.

• Hybrid tensile samples, which were designed with the second order Peano reinforce-
ment, generally had a higher elastic modulus than tensile samples with the first order
Peano reinforcement. It can be concluded that the second order reinforcement designs
were more effective than the first order ones in terms of stiffness enhancement. For
the hybrid tensile designs with the same reinforcement hierarchy, the pure horizontal
alignment of reinforcement always provided a higher stiffness than the pure vertical
designs owing to a higher ratio of reinforcement parallel to the tensile force.

• Regarding ultimate tensile strength, the improvement of hybrid designs compared to
homogenous A30 was not obvious. Hierarchy and alignment of Peano reinforcements
seemed to have little influence on the tensile strength as the stress could not be
transferred effectively from matrix to reinforcement. However, an increasing trend
of UTS could be witnessed with the growing ratio of reinforcements parallel to, and
perpendicular to the loading direction. Experimental results were much lower than
theoretical predictions due to the 3D manufacturing defects.

• The introduction of VMV Peano reinforcement in the A30 matrix resulted in higher
stiffness and strength of the compression cubes. The first order reinforcement exhib-
ited the best performance in all three directions among four different designs. The
responses of three different second order designs were similar under compression.

• The second order compression cubes exhibited similar properties in loading direction
two and loading direction three, due to the similar amount of reinforcement in all
three cases along the compressive force.
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